Галушина Елена Николаевна. О многомерных аналогах эллиптических функций Вейерштрасса:




  • скачать файл:
  • Название:
  • Галушина Елена Николаевна. О многомерных аналогах эллиптических функций Вейерштрасса:
  • Альтернативное название:
  • Галушина Олена Миколаївна. Про багатовимірних аналогах еліптичних функцій Вейєрштрасса
  • Кол-во страниц:
  • 200
  • ВУЗ:
  • Сибирский федеральный университет
  • Год защиты:
  • 2018
  • Краткое описание:
  • Галушина Елена Николаевна. О многомерных аналогах эллиптических функций Вейерштрасса: диссертация ... кандидата Физико-математических наук: 01.01.01 / Галушина Елена Николаевна;[Место защиты: ФГАОУ ВО «Сибирский федеральный университет»], 2018


    Введение к работе
    Актуальность темы.Всем хорошо известны примеры периодических функций на комплексной плоскости: sinz, cosz,tgz, ctgzс периодами 2-7Г и 7г соответственно. Поднимая вопрос о существовании функций с большим количеством периодов, можно легко убедиться в том, что не существует более двух линейно независимых (над полем вещественных чисел) периодов, а функции, обладающие двумя такими периодами, называются двоякопериодическими.
    Из теоремы Лиувилля следует, что аналитические двоякопериодиче-ские функции без особых точек являются константами. Среди аналитических двоякопериодических функций с особенностями выделяется классэллиптических функций— не имеющих никаких других особых точек, кроме полюсов в узлах решётки на плоскости.
    Изучению эллиптических функций предшествовало накопление знаний об эллиптических интегралах, систематическое описание которых дал А. Лежандр. Развитие эллиптических функций шло двумя путями: К. Яко-би в основу теории положил эллиптические функции, которые позже были названы в его честь, и вспомогательные тэта-функции; К. Вейерштрассом был предложен другой подход, базирующийся на р-функции. С её помощью можно описать все эллиптические функции, так как они все представляются в виде алгебраических выражений отр-функции и её производной. В современной математике теория эллиптических функций занимает одно из центральных мест: объединяя алгебраические, аналитические и арифметические методы, она связывает различные её области.
    В случае нескольких переменных хорошо известнымногомерные тэта-функции, заданные в виде экспоненциальных рядов, и построенные с их помощью многомерные элллиптические функции. В начале 1980-х годов итальянский математик П. Заппа дал иное многомерное обобщениер-и (^-функций Вейерштрасса в виде дифференциальных форм. Напомним, что для решётки Г изоморфной1? ^-функция Вейерштрассазадаётся в
    Мамфорд, Д. Лекции о тэта-функциях: Пер. с англ. / Д. Мамфорд. — М.: Мир, 1988. — 448 с
    Zappa, P. Sulle classi di Dolbeault di tipo (0,n — 1) con singolarita in un insieme discreto / P. Zappa // Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. — 1981. — V. 8. — № 70. — P. 87-95
    виде ряда
    1 ^-^1z
    СZ)=~/1 1 o
    z*-^z— 7 7 7^
    7ЄГ{0} / / /
    Слагаемые вида-1можно рассматривать как ядра Коши без дифферен-
    y-—; циалаdz.Тогда, если теперь Г — решётка максимального ранга в С, и
    Фвм (z— 7) — ядро Бохнера-Мартинелли с особенностью в 7 без голоморфных дифференциаловdz1А ... A dzn,тоQ-формаопределяется рядом
    У U
    :г{0} V
    Е(дфвм,л. дфвм ,л-\п(1)ziН7Г1(7Jzi.
    ._1^Zi^Zi
    С(z) = фвм (z) +фвм (z -7) +Фвм Ь) -
    7ЄГ{0}
    дфвм , , . дфвм
    —т(7)zi+
    Аналоги р-функции Вейерштрасса — это формырг(z),определённые равенством
    д
    Р Z)=~т—С(z)ozi
    Свойства таким образом определённых дифференциальных форм напоминают свойства классическихр-и (^-функций Вейерштрасса. Кроме того, они сохраняют воспроизводящее свойство, присущее форме Бохнера-Мартинелли.
    В 1995 году Р. Диаз и С. Робинсдали новое доказательство известной формулы Пика:
    В
    I+ — — 1 =S,2
    связывающей число / целых точек целочисленного многоугольника внутри него, числоВцелых точек на границе многоугольника и площадьSэтого многоугольника, при помощи (^-функции Вейерштрасса. Оно основано на том, что интеграл от (^-функции по замкнутому контуру сводится к интегралам от ядра Коши. Так как вычет ядра Коши равен 0 либо 1 в зависимости от того, попадает ли его особенность внутрь контура или нет, этот факт можно использовать для подсчёта числа особых точек (^-функции внутри контура.
    3Diaz, R. Pick’s Formula via the Weierstrass -Function / R. Diaz, S. Robins // The American Mathematical Monthly. — 1995. — V. 102. — № 5. — P. 431-437
    Аналогичным образом воспроизводящее свойство С-формы можно использовать для исследования проблемы числа точек решётки в многомерной области.
    Цельюданной работы является изучение свойств многомерных аналогов эллиптических функций Вейерштрасса и их применение к задаче оценки числа точек решётки в замыкании области.
    Для достижения поставленной цели необходимо было решить следующиезадачи:


    Исследовать свойства многомерных аналогов эллиптических функций Вейерштрасса.


    Доказать возможность почленного дифференцирования ряда для С-формы.


    Вычислить такую формуг/,чтобы формаС ~ Vстала Г-инвариантной.


    Получить интегральное представление для разности взвешенного числа точек решётки в замыкании области и её объёма:


    У07lD —Vol(D).
    7ЄГ
    Научная новизна:Результаты работы являются новыми и состоят в следующем:


    Впервые была исследована сходимость рядов для производных С-формы,


    Вычислена дифференциальная формаг/с линейными коэффициентами такая, что формаС ~ Vявляется Г-инвариантной,


    Доказано новое интегральное представление для разности взвешенного числа точек решётки в замыкании области и её объёма.


    Практическая и теоретическая ценность.Результаты, полученные автором, являются теоретическими. Их ценность состоит в том, что они могут быть использованы в многомерном комплексном анализе, алгебраической геометрии, комбинаторике и теории чисел, а также в компьютерной алгебре.
    Практическое применение полученных результатов состоит в их внедрении в учебный процесс в виде материала для проведения специальных курсов по современным проблемам многомерного комплексного анализа
    кафедры теории функций Института математики и фундаментальной информатики Сибирского федерального университета.
    Работа выполнена при финансовой поддержке Минобрнауки РФ (гос. задание для Сибирского федерального университета № 1.2604.2017/ПЧ).
    Mетодология и методы исследования. В работе используются методы многомерного комплексного анализа, в частности, техника теории интегрального представления Бохнера-Мартинелли, теория сходимости многомерных числовых и функциональных рядов.
    При вычислении суммы двойного числового ряда использовались методы теории специальных функций и асимптотические оценки, а при исследовании сходимости функционального ряда оценивалась величина производной ядра Бохнера-Мартинелли на компакте.
    Доказательство основного результата опирается на фундаментальные свойства интегрального представления Бохнера-Мартинелли. В исследованиях последнего раздела диссертации важную роль сыграла симметрия рассматриваемых множеств.
    В процессе исследований для выполнения расчётов и верификации полученных результатов активно использовались методы численного моделирования, а также системы компьютерной алгебры.
    Достоверность полученных результатов работы подтверждается строгими математическими доказательствами.
    Апробация работы. Основные результаты диссертации докладывались и обсуждались на:


    Красноярском городском научном семинаре по комплексному анализу и алгебраической геометрии (СФУ, 2010-2017 гг);


    50-ой международной научной конференции «Студент и научно-технический прогресс» (Новосибирск, 2012 г.);


    Четвёртом российско-армянском совещании по математической физике, комплексному анализу и смежным вопросам (Красноярск, 2012 г.);


    Пятом российско-армянском совещании по математической физике, комплексному анализу и смежным вопросам (Ереван, 2014 г.);


    Международной школе-конференции по многомерному комплексному анализу и дифференциальным уравнениям (Красноярск, 2014 г.);


    6. Третьей российско-китайской научной конференции по комплексному анализу, алгебре, алгебраической геометрии и математической физике (Москва, 2016 г.).
    Публикации.Основные результаты диссертации опубликованы в 3 статьях и 4 тезисах. Все статьи ([1—) опубликованы в журналах из перечня ВАК изданий, рекомендованных для публикации результатов диссертации. Одна статья () совместная, её результаты получены в нераздельном соавторстве с А.В. Щуплевым с равнозначным вкладом соавторов. Две другие ([1; ) подготовлены лично автором диссертации. Кроме того, для проведения компьютерных экспериментов была разработана программа «Tex2Cpp», зарегистрированная в Федеральной службе по интеллектуальной собственности[.
    Объем и структура работы.Диссертация состоит из введения, трёх глав и заключения. Полный объём диссертации составляет 65 страниц текста с 1 рисунком и 2 таблицами. Список литературы содержит 53 наименования.
  • Список литературы:
  • -
  • Стоимость доставки:
  • 230.00 руб


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины


ПОСЛЕДНИЕ СТАТЬИ И АВТОРЕФЕРАТЫ

ГБУР ЛЮСЯ ВОЛОДИМИРІВНА АДМІНІСТРАТИВНА ВІДПОВІДАЛЬНІСТЬ ЗА ПРАВОПОРУШЕННЯ У СФЕРІ ВИКОРИСТАННЯ ТА ОХОРОНИ ВОДНИХ РЕСУРСІВ УКРАЇНИ
МИШУНЕНКОВА ОЛЬГА ВЛАДИМИРОВНА Взаимосвязь теоретической и практической подготовки бакалавров по направлению «Туризм и рекреация» в Республике Польша»
Ржевский Валентин Сергеевич Комплексное применение низкочастотного переменного электростатического поля и широкополосной электромагнитной терапии в реабилитации больных с гнойно-воспалительными заболеваниями челюстно-лицевой области
Орехов Генрих Васильевич НАУЧНОЕ ОБОСНОВАНИЕ И ТЕХНИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ВЗАИМОДЕЙСТВИЯ КОАКСИАЛЬНЫХ ЦИРКУЛЯЦИОННЫХ ТЕЧЕНИЙ
СОЛЯНИК Анатолий Иванович МЕТОДОЛОГИЯ И ПРИНЦИПЫ УПРАВЛЕНИЯ ПРОЦЕССАМИ САНАТОРНО-КУРОРТНОЙ РЕАБИЛИТАЦИИ НА ОСНОВЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА