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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность работы 

С момента обнаружения первого гена ионного канала открыто более 

200 генов, которые кодируют различные виды калиевых каналов. 

Калиевые каналы – мультимеры α-субъединиц, которые образуют ионную 

пору. У млекопитающих насчитывается более 70 различных α субъединиц, 

образующих большое семейство ионных каналов (Hartmann et al.,1991, 

Coetzee et al., 1999). Мутации каналов приводят к наследуемым 

генетическим заболеваниям, получившим в современной литературе 

название «каналопатии» (Griggs and Nutt, 1995). 

Семейство ether-à-go-go EAG включает три подсемейства: Eag (Kv10), 

Erg (Kv11) и Elk (Kv12). Канал Kv10.2 является наименее изученным. 

Канал Kv10.2 в основном экспрессируется в ЦНС, но также обнаружен в 

скелетных мышцах, печени, почках, легких, сердце и поджелудочной 

железе, особенно в момент дифференцировки тканей (Saganich et al., 1999; 

Ludwig et al., 2000; Saganich et al., 2001; Ju and Wray, 2002; Rowell et al., 

2010; Huang et al., 2012). Роль канала в ЦНС остается не до конца 

изученной. Увеличение синтеза белка канала наблюдается при 

медуллобластоме, одном из распространенных онкологических 

заболеваний головного мозга (Huang et al., 2012).  

Механизм активации каналов – тема продолжающихся дебатов. Для 

полного понимания вопроса необходимы знания об атомной структуре 

канала в разных функциональных состояниях, как минимум, в двух 

конечных конформациях – открытой и закрытой. Большинство 

кристаллических структур Kv каналов были получены для каналов 

семейства Shaker (Kv1-3) (Gulbis et al. 2000; Long et al. 2005). Исходя из 

этих структур были предложены механистические модели активации 

потенциал-зависимых калиевых каналов (Gulbis et al. 2000; Long et al. 

2005; Long et al. 2007). Последние исследования каналов семейства EAG 
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показали, что подходы, использованные в модели, основанной на 

структуре каналов семейства Shaker, не совсем подходят для описания 

работы семейства каналов EAG (Malak, et al., 2017; Whicher and MacKinnon 

2016).  

Существенную регуляторную роль в функционировании ионных 

каналов играют цитоплазматические домены (Chen et al. 2011; Haitin, 

Carlson, and Zagotta 2013). Они взаимодействуют друг с другом и 

способствуют формированию функционального канала (Chen et al. 2011; 

Gong et al. 2004), а так же взаимодействуют с различными белками клеткис 

(Morais Cabral et al. 1998; Viloria et al. 2000; Tobelaim et al. 2017; Bracey et 

al. 2008; Gustina and Trudeau 2012; Stevens, Ju, and Wray 2009). Роль 

цитоплазматических N-концевых доменов в структуре и 

функционировании канала Kv10.2 до сегодняшнего дня оставалась 

неизвестной. Для изучения межбелковых взаимодействий в ионных 

каналах можно использовать модельные объекты с более простой и 

хорошо исследованной структурой. Одним из таких объектов является 

грамицидин А (Busath 1993). 

Цели и задачи  

Целью данного исследования было изучение влияния мутаций на 

структуру, межбелковые взаимодействия и кластеризацию катионных 

каналов in vitro. Для достижения цели были поставлены следующие 

задачи: 

1. Изучение кластеризации мутантного грамицидина в модельных 

липосомах с помощью криоэлектронной микроскопии; 

2. Расчет трёхмерной реконструкции канала Kv10.2 c удаленным N-

концевым доменом с помощью электронной микроскопии 

макромолекул; 

3. Изучение влияния N-концевого домена на функциональное состояние 

канала Kv10.2 и транспорт его к мембране; 
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4. Изучение взаимодействия каналов Kv10.2 с цитоскелетом и его 

кластеризации в клеточной мембране. 

Научная новизна и практическая значимость работы 

В данной диссертационной работе с помощью метода 

просвечивающей электронной крио-микроскопии была впервые показана 

олигомеризация мутантного грамицидина в липосомах с образованием 

пентамера с порой в центре, способной пропускать высокомолекулярные 

соединения и получена трехмерная реконструкция олигомера мутантного 

грамицидина,. Впервые в гетерологичной системе экспрессированы 

калиевые каналы человека Kv10.2 с удаленными N-концевыми доменами в 

положениях: Δ2-24, Δ2-134 Δ24-134. Изучено распределение мутантных 

каналов в клетках COS1 и их солокализация с актиновым цитоскелетом. 

Исследованы их электрофизиологические свойства. Получена впервые 

структура канала Kv10.2Δ24-134 с использованием метода электронной 

микроскопии макромолекул. Предложена модель активации каналов 

Kv10.2. 

Полученные результаты могут быть использованы при разработке 

новых методов направленного мутагенеза с целью регуляции активации 

ионных каналов, а также в учебном процессе при модификации 

существующих и разработке новых образовательных курсов для студентов 

высших учебных заведений. 

Личный вклад автора 

Основная работа (получение изображений методом просвечивающей 

электронной микроскопии, построение трёхмерных реконструкций 

молекул, молекулярное клонирование, очистка и экспрессия белка, 

оптическая и конфокальная микроскопия), обработка полученных данных 

и подготовка результатов к печати выполнены автором самостоятельно. 

Планирование исследований, обсуждение и обобщение полученных 

результатов, формулирование выводов и написание статей осуществлялись 
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совместно с руководителем, д.б.н., профессором РАН, доцентом 

Соколовой О.С. 

Положения, выносимые на защиту 

1. При замене аланина в третьем положении на лизин [Lys3]gA образует 

в модельных мембранах кластеры диаметром 40Å, имеющие 

пятилучевую симметрию и состоящие из 10 пептидов. Кластеры 

имеют посередине пору c диаметром ~16Å, достаточную для выхода 

из липосом высокомолекулярных красителей; 

2. Мутации в N-концевом домене (Δ2-24, Δ2-134 Δ24-134) канала Kv10.2 

приводят к формированию неактивной формы тетрамерного канала. 

Отсутствие N-концевого домена приводит к нарушению транспорта к 

мембране и к аномальной кластеризации канала в клетках. N-

концевой домен канала отвечает за взаимодействие с актином; 

3. Канал Kv10.2 активируется в соответствии с лиганд-рецепторным 

механизмом. 

Апробация работы 

Результаты проведенных исследований были представлены в виде 

стендовых докладов на российских и международных конференциях и 

школах: V Cъезде биофизиков России, Первом Российском 

кристаллографическом конгрессе, 38 конгрессе FEBS, Российской 

международной конференции по криоэлектронной микроскопии RICCEM-

2017, международной школе для студентов и молодых ученых по 

структуре и функциям ионных каналов (ISonIC-2016), а также устных 

докладов на семинарах группы структурной биотехнологии каф. 

Биоинженерии Биологического факультета МГУ. 

Публикации 

По материалам работы опубликовано 4 статьи в журналах, входящих в 

перечень ВАК РФ, и 10 тезисов в сборниках научных конференций. 

 

https://istina.msu.ru/conferences/11215767/
https://istina.msu.ru/conferences/24713836/
https://istina.msu.ru/conferences/24713836/
https://istina.msu.ru/conferences/60722215/
https://istina.msu.ru/conferences/60722215/
https://istina.msu.ru/conferences/60722215/
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Структура и объём диссертации 

Диссертация изложена на 120 страницах машинописного текста и 

включает введение, литературный обзор, материалы и методы, результаты 

и обсуждение, заключение, выводы и список литературы, состоящий из 

195 наименований. Работа содержит 45 рисунков и 1 таблицу. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Введение 

Во Введении сформулированы цели и задачи исследования, 

обоснована актуальность и практическая значимость работы. 

Литературный обзор 

В начале Литературного обзора рассмотрены строение и 

существующие механизмы активации ионных каналов, далее подробно 

описаны структурные модели каналов Eag и их отличие от других 

потенциал-зависимых каналов. Помимо этого, приведены имеющиеся 

данные о кластеризации, распределении в клетках разной этимологии и 

взаимодействии с цитоскелетом других родственных каналов. В конце 

описаны современные представление о грамицидине А и его применении в 

качестве модельного объекта для исследования биологических процессов, 

связанных с ионными каналами. 

Материалы и методы 

В данном разделе описаны экспериментальные процедуры работы: 

получение мутантных каналов методом ПЦР, молекулярное клонирование, 

экспрессия и очистка белка, подготовка образцов для оптической, лазерной 

конфокальной и электронной микроскопии, получение крио-изображений 

и построение реконструкции ионных каналов, солюбилизированных в 

детергенте и встроенных в липосомы. 
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Результаты и обсуждение 

Кластеризация мутантного грамицидина в модельных 

липосомах 

Грамицидин А (gA) является классическим объектом для 

исследования поведения ионных каналов в липидной мембране с хорошо 

изученными биофизическими свойствами. gA представляет собой пептид 

из 15 аминокислот и ведет себя как селективный катионный канал с одной 

порой (Busath 1993). 

В первой части работы рассматривались функции и структура 

мутантного gA с заменой аланина на лизин в положении 3: [Lys3]gA
1
. Для 

данного мутанта было показано аномальное поведение при введении в 

состав модельных липосом (рисунок 1). 

 

Рисунок 1. Выход карбоксифлюоресциина из липосом после добавления 

различных пептидов (момент добавления пептида отмечено стрелкой), gA 

– грамицидин А, Lys3 – мутантный gA. 

В отличие от нативного gA, который имеет селективность только для 

одновалентных катионов, модификация липосом мутантным белком 

                                                 
1
 Работы проводились в сотрудничестве с д.б.н. Ю.Н. Антоненко, МГУ 
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приводила к выходу из них высокомолекулярных зондов: 

карбоксифлуоресцеин (CF), сульфородамин B (SRB) и декстран с 

молекулярной массой 3 кДа.  

Микрофотографии липосом были получены с использованием 

криоэлектронной микроскопии (крио-ПЭМ). Полученные изображения 

обрабатывались с использованием программы ImageJ. В ходе обработки 

получали отдельные изображения небольших участков билипидного слоя 

липосомы, их выравнивали и классифицировали. Полученные электронные 

плотности для липосом и мембран с различными видами gA сравнивали 

между собой (рисунок 2). 

 

Рисунок 2. Сравнение электронной плотности участков мембран 

полученных методом кри-ПЭМ, содержащих gA: а – дикий тип; б - 

контрольные липосомы без белка; в - с мутацией [Lys3]gA; г - смесь 

дикого типа и [Lys3]gA; Справа - графики распределения интенсивности 

сигнала внутри прямоугольника, содержащего мембрану. Нижний ряд: 

разностные изображения. Стрелка указывает на кластер [Lys3]gA. 

 

В ходе моделирования исследований было показано, что [Lys3]gA 

формирует в мембране пентаметры (рисунок 3) с неселективной порой 
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состоящие из антипаралельных правозакрученных двухцепопчечных 

димеров. Всего в состав пентамера входит 10 пептидов грамицидина.  

 

Рисунок 3. Кластеризация [Lys3]gA. (А) - структура димера грамицидина 

А (PDB ID: 2IZQ); Реконструкция электронной плотности 

кластера[Lys3]gA с использованием симметрии С5 и фиттингом 

моделированной пентамерной структуры грамицидинового комплекса. (Б) 

вид сверху мембраны; (В) вид сбоку. 

 

Моделирование показало, что олигомерные структуры 

стабилизированы взаимодействиями триптофанов в 13 и 15 положении 

одного пептида с лизином в положении 3 соседнего пептида за счет 

катионного π-взаимодействия индолового остатка триптофана и 

протонированного -NH2 остатка лизина. При добавление gA дикого типа 

приводит к нарушению этих взаимодействий и ингибированию 

олигомеризации. Использование Грамицидина А, как модельного объекта, 

показало возможность использование методов электронной микроскопии 

для оценки образование олигомером потенциал-зависимых каналов.  

 

Клонирование ДНК каналов Kv10.2 с удаленными N-

концевыми доменами 

Для каналов Kv10.2, функционирующих в норме как олигомеры 

(тетрамеры), образованные отдельными α-субъединицами, крайне важны 

межбелковые взаимодействия, которые определяют как непосредственно 

функции канала, так и взаимодействие канала с регуляторными белками 

клетки и элементами цитоскелета. Во второй части работы мы 

рассматривали значение N-концевых доменов канала Kv10.2 для его 
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функционирования. Для получения мутантных каналов Kv10.2 была 

использована конструкция полноразмерного канала с аффинным 1D4-

тагом на С-конце (рисунок 4). 

  

Рисунок 4 Схематичное представление использованных конструкций 

мутантных каналов Kv10.2 

 

Были получены клетки COS-1, экспрессирующие различные 

варианты канала; результаты солюбилизации каналов в детергенте 

приведены на рисунке 5. В ходе экспериментов удалось экспрессировать 

все виды мутантных каналов. 

 

               

Рисунок 5 Анализ методом иммуноблотинга образцов, полученных в ходе 

трансфекции клеток COS-1 вектором, содержащим последовательность 

различных форм канала Kv10.2 с 1D4 тагом. (MW) – маркер молекулярных 

масс; имуноокрашивание клеточного лизата клеток, экспрессирующих (1) 

полноразмерную форму канала и транкированные формы канала (2) Δ2-24; 

(3) ΔPAS (Δ24-134); (4) Δ2-134. 

70kD
a 

MW 1      2      3      4  

100kDa  
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Влияние N-концевого домена на электрофизиологические 

характеристики и транспорт каналов к поверхности клетки 

В ходе электрофизиологических исследований
2
 было показано, что 

внесение аффинной последовательности на С-конец экспрессионной 

конструкции не влияет на проводимость полноразмерного канала, его 

активность соответствует активности канала дикого типа, сохраняются 

основные показатели, время активации и деактивации, амплитуда ответа и 

потенциал при котором происходит активация канала (рисунок 6). 

 

 

 

Рисунок 6 Ионные токи канала 

Kv10.2 с 1D4-тагом на C-конце, 

использованного в данной работе. 

 

У всех мутантных каналов Kv10.2Δ2-24, Kv10.2Δ25-135, Kv10.2Δ2-

134 в аналогичных условиях измерения ионные токи отсутствовали. 

Следует заметить, что все мутантные каналы успешно экспрессировались 

клетками COS-1 и COS-7, хотя при этом нарушался транспорт каналов к 

мембране клетки (рисунки 7, 8). 

Была выдвинута гипотеза, что подобные изменения возникают 

вследствие отсутствия взаимодействия N-концевого участка канала с 

элементами цитоскелета. 

 

                                                 
2
 Электрофизиологические эксперименты проводили в совместно с др. Ж.Лоссарном и О.Малак, CNRS 
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Рисунок 7 Верхний ряд - изображение клеток, полученные с 

использованием конфокальной микроскопии (каналы окрашены с 

использованием мышиных антител к 1D4-тагу, вторичные антитела 

конъюгированы с флуоресцентной меткой Alexa Fluor 488 - зеленый; 

мечение мембраны с помощью WGA - красный; окраска ядер DAPI - 

синий). Нижний ряд - денситограммы интенсивности флуоресценции, 

поперечное сечение цитоплазмы клетки. Все измерения даны в условных 

единицах. Kv10.2 WT – дикий тип каналов; Kv10.22-24 – мутанты с 

удаленным участком N-CAP. (По оси x - расстояния, по оси у - 

интенсивность флюоресценции.  
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Рисунок 8. Kv10.224-134 – мутанты с удаленным доменом PAS; 

Kv10.22-134 – мутанты с удаленным доменом EAG. Остальные 

обозначения, как на рис. 7. 

 

Участие N-концевого домена канала Kv10.2 во взаимодействии 

с цитоскелетом и кластеризация каналов 

Известно, что многие потенциал-зависимые каналы взаимодействуют 

с элементами цитоскелета (Карлова с соавт., 2011; Bracey et al, 2008; Zhang 

et al, 2016). В данной работе исследовали взаимодействие канала с 

актином, как один из основных белков цитоскелета клетки. 
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Таблица1 Солокализация сигнала флуоресценции для каналов дикого 

типа и мутантных каналов Kv10.2 с актином. 

Канал Коэффициент Пирсона 

Kv10.2 0.32** 

Kv10.2 Δ25-135(PAS) 0.1 

Kv10.2 Δ2-24 0.05 

Kv10.2 Δ2-135 0.08 

 

В ходе обработки изображений в программе ImageJ мы подтвердили, 

что у полноразмерного канала Kv10.2 наблюдается частичная 

солокализация с актином, тогда как у мутантных форм канала она 

отсутствует (таблица 1). 

 

Рисунок 8 Распределение сигнала в клетке от полноразмерного и 

мутантных каналов. Каналы окрашены первичными антителами к 

аффинному тагу 1D4, вторичные антитела конъюгированы с 

флуоресцентной меткой Alexa Fluor 488. Ядра окрашены DAPI, стрелки 

указывают на кластеры каналов 
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Ранее было показано, что полноразмерные каналы Kv10.2 способны 

фоpмировать в мембране небольшие клаcтеpы диаметpом от 0,5 до 1 мкм 

(Карлова с соавт., 2011). В данной работе мы показали, что мутантные 

Kv10.2 каналы формируют значительно более кpупные (до 2 мкм) 

клаcтеpы, отcтоящие дpуг от дpуга на большое pаccтояние (рисунок 8). 

Между этими клаcтеpами флуоpеcцентный cигнал пpактичеcки не 

детектиpовалcя, cвидетельcтвуя о том, что пpи удалении N-концевых 

доменов концентрация cвободныx активных каналов в клетке значительно 

снижается.  

Таким образом, мы нашли, что удаление цитоплазматичеcкого N-

концевого участка пpиводит к изменению транспорта канала Kv10.2 на 

повеpxноcть клетки и оpганизации каналов в клаcтеpы, что указывает на 

то, что функция клаcтеpизации может контролироваться 

поcледовательноcтью, pаcположенной на C-конце белка канала Kv10.2. 

 

Структура канала Kv10.2 с удаленным доменом PAS 

Для определения взаимодействия С- и N-концевых доменов в канале и 

конформационных изменений при удалении N-концевой 

последовательности, была рассчитана тpеxмеpная cтpуктуpа 

изолированного в детергенте молекул белка канала Kv10.2 с 

использованием данных ПЭМ (рисунок 9). Реконструкция имеет 

pазpешение 22Å. Анализ трехмерной стpуктуpы выявил наличие 

тpанcмембpанного домена c pазмеpами 10×10×5 нм и цитоплазматичеcкого 

c pазмеpами 12×12×5 нм. Фиттинг кpиcталличеcкой cтpуктуpы CNBD-

домена, полученной по гомологии c доменом цАМФ-завиcимого канала 

HCN4 (PDB-код 3OTF), в электронную плотность тpанкиpованного канала 

показал xоpошую коppеляцию (0,87). 

Пpи cpавнении полученной тpеxмеpной cтpуктуpы тpанкиpованного 

канала Kv10.2∆PAS cо cтpуктуpами полноpазмеpного канала Kv10.2 

(Соколова с соавт., 2012) и родственного канала Kv10.1 с удаленным С-
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концом (Whicher and MacKinnon, 2016), мы обнаружили pазличия в 

положении цитоплазматичеcкиx доменов. 

 

      А                                 Б 

 

Рисунок 9 Интеpпpетация тpеxмеpной cтpуктуpы канала Kv10.2∆PAS c 

помощью фиттинга модели тpанcмембpанного домена в веpxнюю чаcть 

pеконcтpукции канала и cNBD-доменов в цитоплазматичеcкую чаcть 

pеконcтpукции: (А) – вид cбоку, отмечены тpанcмембpанный домен (ТМ) и 

тетpамеpизационный домен (Т); (Б) – вид cо cтоpоны тpанcмембpанного 

домена, отмечены CNBD-домены. Маcштабный отpезок – 10 нм.  

 

Удаление N-концевого PAS-домена пpиводит к изменению общей 

фоpмы pеконcтpукции. Отдельные CNBD-домены в мутантном канале 

cвязаны c центpальной плотноcтью (Т), наxодящейcя на оcи cимметpии 

канала (рисунок 9). Извеcтно, что на C-конце канала Kv10 pаcположен 

тетpамеpизационный CAD-домен, часть которого может являться 

центpальной плотностью (Т). В отcутcтвие N-концевого домена он также 

изменяет cвое меcтоположение (рисунок 9). Удаление N-концевых 

последовательностей у Kv10.2, приводит к пеpемещению С-концевых 

доменов ближе к мембранному домену (на ~2Å). В результате они могут 

взаимодействовать со структурными элементами, ответственными за 

активацию каналов. 
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Влияние S4-S5 линкера в составе канала на его 

функциональное состояние 

Третья часть работы была посвящена изучению механизма активации 

канала Kv10.2. В недавних работах (Malak et al, 2017; Choveau et al. 2011) 

был предложен механизм активации каналов erg (Kv11) по принципу 

лиганд/рецептор, в котором особая роль отводится взаимодействию S4-S5 

линкера с C-концевым участком спирали S6 (S6T). До сих пор не было 

показано, что каналы eag также активируются по данному механизму. 

Для проверки этого положения, мы провели выравнивание 

последовательностей каналов Kv10 и Kv11 и определили позиции, 

соответствующие наиболее близкому положению S4-S5 линкера и S6T. По 

этим позициям были проведены точечные мутации с заменой аминокислот 

на цистеин (D339С и M474С). При окислении цистеинов с помощью 

реагента tbHO2 (трет-Бутилгидропероксид) каналы закрывались (рисунок 

10А). При коэкспрессии пептида S4-S5 с каналами дикого типа (рисунок 

10Б) каналы также закрывались. 

              А                               Б 

  

Рисунок 10. Значение линкера S4-S5 для канала Kv10.2. (А) сравнение тока 

через мутантный канал Kv10.2 D339С/M474С до (контроль) и после 

обработки tbHO2; (Б) сравнение токов через Kv10.2 канал дикого типа 

(WT) и после ко-экспрессии его с S4-S5 пептидом. 
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Из этих экспериментов можно сделать вывод, что для канала Kv10.2 

также уместна модель активации по принципу лиганд/рецептор (рисунок 

11), где лиганд – S4-S5 линкер, а рецептор располагается на S6T. В пользу 

данной модели свидетельствует также ограниченный размер S4-S5 линкера 

у каналов семейства EAG по сравнению с остальными представителями 

семейств потенциал-зависимых каналов. 

 

     А                   Б                      В 

  

Рисунок 11 Лиганд-рецепторная модель активации канала Kv10.2. (А) 

открытый канал с мутациями в S4-S5 линкере (лиганд) и S6T (рецептор); 

(Б) при добавлении реагента tbHO2 канал закрывается; (В) канал также 

закрывается без перемещения спиралей S4 при взаимодействии с внешним 

пептидом S4-S5 (стрелки). 
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Заключение 

В работе исследовалось влияние межбелковых взаимодействий на 

кластеризацию катионных каналов и их структурно-функциональные 

характеристики. На примере грамицидина А показали важность 

межбелковых взаимодействий в процессе кластеризации мутантных 

каналов, приводящей к формированию новой олигомерной структуры. 

Установлено, что удаление цитоплазматичеcкого N-концевого участка 

у канала Kv10.2 приводит к изменению его экcпpеccии на повеpxноcти 

клетки и оpганизации каналов в клаcтеpы, что указывает на то, что зависит 

от поcледовательноcти, pаcположенной на C-конце белка канала Kv10.2. 

При этом N-концевой участок, скорее всего, участвует во взаимодействие с 

цитоскелетом. 

Мы доказали что межбелковые взаимодействия способствуют 

активации канала Kv10.2 по механизму лиганд/рецептер. Деактивация 

канала Kv10.2 за счет связывания экзогенных пептидов с C-концевым 

участком спирали S6. 

На основании полученных результатов была предложена модель, 

согласно которой для нормального функционирования канала Kv10.2 

необходимо ковалентное взаимодействие S4-S5 линкера и S6T. Это 

взаимодействие обеспечивает двухступенчатую активацию канала: в 

начале быстрое движение S4 вытягивает лиганд S4-S5 из его рецептора на 

S6T, а затем происходит медленное открытие ворот канала. 

 

Работа выполнена при финансовой поддержке Минобрнауки РФ 

(Соглашение №14.616.21.0044 от 09.10.15, уникальный номер проекта: 

RFMEFI61615X0044). Электронная микроскопия проводилась с 

использованием УНУ «Трехмерная электронная микроскопия и 

спектроскопия». 
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Выводы 

1. Грамицидин А с заменой на лизин в третьем положении в модельных 

липосомах кластеризуется с образованием пентаметра с неселективной 

порой, состоящего из антипараллельных правозакрученных 

двухцепочечных димеров; 

2. Отсутствие N-концевых доменов приводит к нарушению транспорта 

каналов Kv10.2 к мембране и нормального распределения каналов в 

клетке; 

3. Транкирование в N-концевой области канала Kv10.2 приводят к 

нарушению взаимодействия с цитоскелетом, что свидетельствует о 

взаимодействии N-концевых доменов с актином; 

4. Активация каналов Kv10.2 происходит согласно лиганд/рецепторной 

модели. При этом линкер S4-S5 нековалентно связывается с поровым 

доменом;  

5. Введение мутаций приводит к изменению структуры и функциональных 

характеристик ионных каналов, а также к нарушению их транспорта к 

клеточной мембране. 
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