

ШАРАФУТДИНОВ ИРШАД СУЛТАНОВИЧ

АНТИМИКРОБНЫЙ ЭФФЕКТ ПРОИЗВОДНЫХ 2(5*H*)-ФУРАНОНА В ОТНОШЕНИИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ

03.02.03 – микробиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре генетики и в НИЛ «Молекулярная генетика микроорганизмов» Института фундаментальной медицины и биологии ФГАОУ ВО «Казанский (Приволжский) федеральный университет».

Научный руководитель: кандидат биологических наук, доцент

Каюмов Айрат Рашитович

Официальные оппоненты: Максимова Юлия Геннадьевна - доктор

биологических наук, ведущий научный сотрудник лаборатории молекулярной микробиологии биотехнологии "Института экологии и генетики Уральского микроорганизмов отделения наук" Российской академии филиала Федерального государственного бюджетного Пермского учреждения науки федерального исследовательского центра Уральского отделения

Российской академии наук (г. Пермь).

Васильченко Алексей Сергеевич - кандидат биологических наук, научный сотрудник Института экологической и сельскохозяйственной биологии (X-BIO) ФГАОУ ВО «Тюменский

государственный университет» (г. Тюмень)

Ведущая организация: Федеральное государственное бюджетное

учреждение «Детский научно-клинический центр инфекционных болезней федерального медикобиологического агентства» (г. Санкт-Петербург)

Защита диссертации состоится «29» августа 2019 г. в 10.00 часов на заседании диссертационного совета Д.212.081.36 при ФГАОУ ВО «Казанский (Приволжский) федеральный университет» по адресу: 420008, г. Казань, ул. Карла Маркса, д. 76, ауд. 208 (актовый зал).

С диссертацией можно ознакомиться в научной библиотеке им. Н.И. Лобачевского Казанского (Приволжского) федерального университета.

Автореферат разослан «___» _____ 2019 г.

Ученый секретарь диссертационного совета д. б. н, профессор

Blogamolo

3. И. Абрамова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Инфекционные заболевания, темы вызываемые грамположительными бактериями, представляют собой серьезную проблему ДЛЯ медицины, И стремительно растущее распространение множественной лекарственной устойчивости требует активной разработки новых антимикробных агентов и терапевтических подходов [Dryden et al., 2017; Hodille *et al.*, 2017].

бактерий, Подавляющее большинство включая патогенные, предпочтительным образом существуют в виде биопленок. Бактериальные микробных представляют собой сообщество ИЗ адгезированных на поверхности плотной или жидкой среды и погруженных в сложный матрикс, состоящий из полисахаридов, белков и нуклеиновых кислот. Матрикс значительно снижает восприимчивость бактерий к различным факторам внешнего стресса и микроорганизмы в составе биопленки могут устойчивость иметь противомикробным препаратам 1000 превосходящую устойчивость планктонных клеток [Sanchez-Vizuete et al., Бактериальные биопленки, находящиеся на поверхности раны, замедляют процесс заживления, и таким образом, осложняют лечение al., 2017]. Для борьбы инфекциями, хронических ран [Roy et ассоциированными бактериальными биопленками ΜΟΓΥΤ применяться c различные стратегии, основанные на (1) эрадикации зрелых биопленок, например, ферментами, разрушающими компоненты матрикса [Nahar et al., 2018], (2) облегчении проникновения антимикробных агентов в матрикс биопленки с последующим бактерицидным действием на бактерии [Singh et al., 2010] и, наконец, (3) подавлении образования биопленок [Yujie et al., 2013]. В последнее десятилетие интенсивно изучаются производные 2(5H)-фуранона, которые проявляют как антимикробную, так и антибиопленочную активности. В то время как большинство производных 2(5H)-фуранона действуют на кворума грамотрицательных бактерий, приводя к подавлению образования биопленки, некоторые производные 2(5H)-фуранона подавляют образование биопленок грамположительными бактериями Bacillus subtilis и Staphylococcus epidermidis [Lonn-Stensrud et al., 2009; Kayumov et al., 2015], или проявляют бактерицидную активность против грамположительных бактерий без влияния на процессы образования биопленки [Kitty et al., 2015].

Сотрудниками Химического Института КФУ был синтезирован ряд производных 2(5H)-фуранона, среди которых в ходе предварительного скрининга были идентифицированы соединения с условными названиями $\Phi 105$, $\Phi 123$, $\Phi 131$, демонстрирующие антимикробную активность в отношении грамположительных бактерий.

Целью работы явилась характеристика антимикробной активности новых производных 2(5H)-фуранона, 5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-4-[(4-метилфенил)сульфонил]-3-хлор-2(5H)-фуранон (Φ **105**), 3,4-дихлор-5(S)-[(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси]-2(5H)-фуранон (Φ **123**) и 5(S)-[(1S,2R,4S)-1,7,7-

триметилбицикло[2.2.1] гептан-2-илокси]-3-хлор-4-[(4-хлорфенил) сульфонил]-2(5H)-фуранон (Φ 131), синтезированных в Химическом институте КФУ.

В работе решали следующие задачи:

- 1) Установить спектр антибактериальной активности новых производных 5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-4-[(4-2(5H)-фуранона метилфенил) сульфонил] - 3 - хлор - 2(5H) - фуранон $(\Phi 105),$ [(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси]-2(5H)-фуранон (**Ф123**) и 5(S)-[(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси]-3-хлор-4-[(4-хлорфенил)сульфонил]-2(5H)-фуранон $(\Phi 131),$ определить минимальной подавляющей концентрации $(M\Pi K)$ минимальной бактерицидной концентрации (МБК) в отношении разных групп бактерий.
- 2) Оценить возможность подавления формирования биопленок, а также эрадикации сформированных биопленок грамположительных бактерий соединениями Ф105, Ф123, Ф131.
- 3) Установить степень синергизма соединений **Ф105**, **Ф123**, **Ф131** с различными группами антибиотиков.
- 4) Охарактеризовать цитотоксичность соединений **Ф105**, **Ф123**, **Ф131** в отношении эукариотических клеток и оценить возможность их системного и наружного применения.
- 5) Выявить механизм антимикробного действия 3-хлор-5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-4-[4-метилфенилсульфонил]-2(5H)-фуранона ($\Phi 105$) на клетки Staphylococcus aureus.

Научная новизна работы. Впервые показано, что в присутствии соединения Ф105 происходит подавление образования биопленки метициллинустойчивым S. aureus (MRSA), а также гибель бактериальных клеток, как планктонных, так и внедренных в матрикс зрелой биопленки. Впервые установлено, что в присутствии соединения Ф131 наблюдается подавление образования биопленок Streptococcus mutans, S. oralis, S. mitis, S. pyogenes, S. salivarius, S. sobrinus и S. sanguinis, а также губительный эффект на клетки стрептококков в составе зрелой биопленки. Впервые показано, что соединение **Ф123** проявляет селективную бактерицидную активность в отношении *Bacillus* cereus. Впервые установлено повышение восприимчивости S. aureus и B. cereus к аминогликозидным антибиотикам и бензалконию хлорида в присутствии, соответственно, соединений Ф105 и Ф123, на основании чего сделан вывод о синергизме производных 2(5H)-фуранона с данными антибиотиками. Впервые продемонстрировано, что флуоресцентное производное 2(5H)-фуранона, соединение Ф145, способно проникать в матрикс биопленки, представляющей собой сообщество дифференцированных клеток бактерий, прикрепленное к поверхности и, как правило, высокоустойчивое к воздействию различных антибиотиков. Также, впервые показано, что соединение Ф145 способно проникать непосредственно в клетки грамположительных бактерий S. aureus и клетки грамотрицательных Klebsiella pneumoniae B. cereus, не В Serratia marcescens. Впервые установлен молекулярный механизм действия $\Phi 105$ на метаболизм клеток *S. aureus*, который заключается в индукции образования активных форм кислорода и прямом взаимодействии с рядом внутриклеточных белков *S. aureus*, что, видимо, приводит к нарушению их структуры и физико-химических свойств и, как следствие, значительному расстройству метаболического аппарата и гибели клетки.

Теоретическая и научно-практическая значимость результатов. Полученные результаты представляют собой новый блок теоретических знаний о чувствительности грамположительных бактерий к действию новых производных 2(5H)-фуранона — соединений $\Phi 105$, $\Phi 123$ и $\Phi 131$, а также позволяют рассматривать химическую структуру данных соединений как основу для разработки антисептических препаратов для терапии наружных инфекций, вызываемых грамположительными бактериями.

Синергизм соединения **Ф105** с аминогликозидами и бензалкония хлоридом, низкий риск развития антибиотикорезистентности, а также данные о молекулярном механизме его антибактериального действия, делают его привлекательной отправной точкой для разработки альтернативных препаратов для терапии кожных инфекций, вызываемых стафилококками.

Соединение $\Phi 131$, продемонстрировавшее специфичную антибактериальную активность в отношении *Streptococcus spp.*, может рассматриваться как основа для разработки новых антисептических препаратов для стоматологии, в том числе обработки съемных протезов.

Низкий риск развития устойчивости к соединению $\Phi 123$, а также селективная активность в отношении клеток *В. cereus* в составе биопленки, позволяет предложить это соединение в качестве основы для разработки антибактериальных препаратов для специфичной терапии инфекций, вызванных данными бактериями.

Полученные результаты соответствуют п. 20(в) Стратегии научнотехнологического развития РФ, а также п. 5 Стратегии предупреждения распространения антимикробной резистентности в РФ на период до 2030 г.

Положения, выносимые на защиту:

- 1. Новые производные 2(5H)-фуранона 3-хлор-5(S)-[(1R,2S,5R)-2-изопропил-5-метилциклогексилокси]-4-[4-метилфенилсульфонил]-2(5H)-фуранон ($\Phi 105$), 5(S)-[(1S,2R,4S)-борнилокси]-3-хлор-4-[(4-хлорфенил)сульфанил]-2(5H)-фуранон ($\Phi 131$) и 3,4-дихлор-5(S)-[(1S,2R,4S)-1,7,7-триметилбицикло[2.2.1]гептан-2-илокси]-2(5H)-фуранон ($\Phi 123$) проявляют антибактериальную активность в отношении грамположительных бактерий, не оказывая действия на грамотрицательные микроорганизмы; $\Phi 123$ оказывает селективный бактерицидный эффект в отношении В. сегеиs, не вызывая гибели других грамположительных бактерий.
- 2. Соединения **Ф105** и **Ф123** проявляют синергизм с антибиотиками аминогликозидного ряда и бензалкония хлоридом: в концентрациях до 1 мкг/мл снижают МПК последних в 2 раза.
- 3. Соединения **Ф105**, **Ф123** и **Ф131** обладают способностью проникать во внеклеточный матрикс биопленки и оказывать бактерицидный эффект на бактерии в составе матрикса биопленки.
- 4. Молекулярный механизм действия соединения $\Phi 105$ на клетки *S. aureus* заключается в индукции окислительного стресса и прямом взаимодействии с

рядом внутриклеточных белков стафилококка, что приводит к нарушению их физико-химических свойств и структуры.

Достоверность результатов подтверждается большим объемом многократных экспериментов, выполненных и проанализированных на современных высокоточных приборах, а также опубликованием результатов работы в научных международных изданиях с рецензированием ведущими учеными в данной области.

Апробация работы. Материалы диссертации доложены и обсуждены на Международной научной конференции «Biofilms7 – Microbial works of art» (Порто, 2016), 42-ом Международном научном конгрессе «FEBS: from molecules to cells and back» (Иерусалим, 2017), II Международной научной конференции «The II International Caparica Conference in Antibiotic Resistance» (Лиссабон, 2017), Международных Пущинских школах-конференциях молодых ученых – «Биология наука XXI века» (Пущино, 2016, 2017), 24-ом научном семинаре стипендиатов программ «Михаил Ломоносов» и «Иммануил Кант» 2018 г), 25-ой Международной 2017–2018 года (Москва, конференции аспирантов И молодых **ученых** «Ломоносов» (Москва, 2018), Международной конференции «ПОСТГЕНОМ'2018» (Казань, 2018), 1-ой Международной научной конференции «Alpine winter conference on medicinal and synthetic chemistry» (Санкт-Антон, 2018), 21-ого европейского симпозиума студентов-биологов «SymBioSE Croatia» (Загреб, 2018).

Личный вклад соискателя. Автором диссертации совместно с научным руководителем разработаны главные направления научного исследования, сформулирована цель, поставлены задачи исследовательской работы. экспериментальных Диссертантом выполнена лично основная часть исследований, проведен анализ полученных результатов, сформулированы Некоторые экспериментальные и теоретические исследования проведены автором как самостоятельно, так и в кооперации с российскими и зарубежными коллегами. Написание, редактирование публикаций проводилось совместно с соавторами.

Связь работы с научными программами. Работа выполнена в рамках гранта РНФ 15-14-00046 (2015-2017) «Разработка комплексных ингибиторов бактериальных биопленок на временных и хронических имплантах на основе производных фуранона и иммобилизованных ферментов» и в рамках Программы повышения конкурентоспособности Казанского (Приволжского) федерального университета Министерства науки и высшего образования РФ. поддержаны грантом Министерства науки образования РФ и Германской службы академических обменов (DAAD) по Ломоносов» 20.9981.2017/5.2 программе «Михаил (2017)биопленками на имплантах: антибактериальные свойства новых производных 2(5H)-фуранона». Исследования также проводилась при поддержке гранта Минобрнауки Республики Татарстан и Германской службы академических обменов (DAAD) по программе «Евгений Завойский» (Решение МОН РТ №7159 от 25.03.2015).

Публикация результатов исследования. По теме диссертации опубликовано 30 научных работ, в том числе 4 статьи в рецензируемых журналах, индексируемых в базах данных РИНЦ, Web of Science и Scopus, 1 монография и 25 тезисов докладов конференций.

Структура и объем диссертации. Диссертация включает разделы: введение, обзор литературы, материалы и методы, результаты исследований, обсуждение результатов, выводы и список литературы. Работа изложена на 124 страницах машинописного текста, содержит 19 таблиц и 27 рисунков. Цитируемая литература включает 213 источников, из них 212 иностранных.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В работе использовалось 13 производных 2(H)-фуранона **Ф12**, **Ф70**, **Ф104**, **Ф105**, **Ф122**, **Ф123**, **Ф125**, **Ф131** – **Ф135** и **Ф145**, синтезированных сотрудниками НИЛ Биофункциональной химии под руководством Курбангалиевой А. Р. (Химический институт им. А.М.Бутлерова, Казанский федеральный университет). Конечные концентрации стоковых растворов исследуемых соединений составляли 16 мг/мл в ДМСО.

Стоковые растворы антибиотиков (канамицин, гентамицин, амикацин, ванкомицин, даптомицин, тетрациклин, эритромицин, ципрофлоксацин, ампициллин, рифампицин, линезолид) готовились в концентрации 8 мг/мл в растворителе, рекомендуемом производителем (Sigma, США).

Штаммы. В работе использовались бактерии *Staphylococcus aureus* ATCC®29213, *S. aureus* ATCC®43300, *Pseudomonas aeruginosa* ATCC®27853, *Escherichia coli* MG1655, *Bacillus subtilis* 168, клинические изоляты *S. epidermidis*, *Bacillus cereus*, *Micrococcus luteus*, *Enterobacter aerogenes*, *Serratia marcescens* и *Klebsiella pneumoniae* (любезно предоставлены Казанским институтом эпидемиологии и микробиологии, г. Казань, Россия), *Streptococcus mutans* DSMZ20523, *S. oralis* ATCC®9811, *S. mitis* DSMZ12643, *S. pyogenes* DSMZ20565, *S. salivarius* DSMZ20067, клинические изоляты *S. sobrinus*, *S. sanguinis*, *Fusobacterium nucleatum*, *Prevotella nigrescens*, *Prevotella intermedia* и *Parvimonas micra* (любезно предоставлены д-ром Шимоном Шафрански и Марли Дальтон из Медицинской школы Ганновера, г. Ганновер, Германия).

Микробиологические методы. Бактерии хранили в 10% (об/об) глицерине при -80°С. Перед использованием выращивали в течение ночи при 37 °С в соответствующей питательной среде и готовили рабочую суспензию в 0.9% NaCl с оптической плотностью равной 0.5 стандарта Мак Фарланда (эквивалент 10⁸ КОЕ/мл).

Streptococcus sp. выращивали в среде TSB (Oxoid, Hampshire, England) с добавлением 0.3% дрожжевого экстракта с аэрацией. Staphylococcus sp., Bacillus cereus, Serratia marcescens и Klebsiella pneumoniae выращивали на среде Мюллер-Хинтона с аэрацией при. Aggregatibacter actinomycetemcomitans и Eikenella corrodens, Fusobacterium nucleatum, Prevotella nigrescens, P. intermedia и Parvimonas micra выращивали в анаэробных условиях на обогащенных питательных средах FAA или FAB (Neogen, Великобритания) с добавлением 5% лошадиной крови. Количества КОЕ определяли получением серии 10-

кратных разведений суспензии микроорганизмов с последующим высевом на плотную агаризованную среду [Herigstad *et al.*, 2001].

Определение МПК и МБК антимикробных веществ проводили с помощью метода серийных разведений в жидкой питательной среде в 96-луночных планшетах как описано в [Leclercq et al., 2013]. Анализ кривой эрадикации от времени проводили согласно [Klinger-Strobel et al., 2017]. Анализ антимикробного эффекта при комбинировании антибиотиков проводили методом шахматной доски по [den Hollander, 1998]. Развитие устойчивости бактерий к антимикробным агентам оценивали согласно [Locher et al., 2014].

Окрашивание биопленки генциановым фиолетовым проводили по [Peeters *et al.*, 2008]. Активность антимикробных агентов в отношении сформированных бактериальных биопленок проводили по [Mah, 2014].

Фазово-контрастную Микроскопия. микроскопию проводили микроскопе Zeiss Observer A.1 (Carl Zeiss AG). Конфокальную лазерную сканирующую микроскопию проводили с помощью микроскопов LSM780 (Carl Zeiss AG) и Leica SP8 (Leica) с последующим анализом данных с помощью пакетов ZEN 9.0 (Carl Zeiss AG) и Imaris 9.0.1 (Bitplane), соответственно. Флуоресцентное окрашивание бактериальных клеток проводили с помощью красителей пропидия йодида и Cyto9 или DioC₆. Экситация/эмиссия флуоресценции производилась при длинах волн 405/410-508 нм для соединения **Ф145**, 488/490-606 нм для Суtо9 и DioC₆, 543/566-718 нм для пропидия йодида. Атомно-силовую микроскопию проводили с использованием сканирующего зондового микроскопа Dimension Icon (Bruker, США) в режиме PeakForce TappingTM.

Оценку цитотоксичности соединений проводили на линии гингивальных фибробластов человека с использованием наборов CellTiter-Blue® Cell Viability Assay (Promega, США) и АК Cytotoxicity Kit (PromoKine, Германия).

Методы работы с белками. Электрофорез белков проводили в полиакриламидном геле по [Laemmli *et al.*, 1970] без внесения ДСН. Гели окрашивали нитратом серебра. Двумерный гель-электрофорез и дальнейшая идентификация белков проводились сотрудниками протеомного центра КФУ с использованием готовых гелевых полосок IPG с градиентом рН 4-7 (Bio-Rad) с последующим разделением в 15% полиакриламидном геле. Исследуемые пробы белков до разделения ковалентно сшивались с красителями Су3 (контрольная группа) и Су5 (опытная группа). Пятна белков вырезали из геля, подвергали трипсинолизу в геле и идентифицировали с помощью LC-MS/MS на массспектрометре maXis Impact ^{тм} (Bruker).

Аналитические методы. Оценку содержания активных форм кислорода в бактериальных клетках определяли по флуоресценции продукта окисления 2',7'-дихлорфлуоресцин диацетата (ДХФДА). Мембранный потенциал оценивали по уровню флуоресценции продукта восстановления 3,3'-диэтилоксакарбоцианина йодида (DioC₂(3)).

Математическая обработка данных и биоинформатика. Предсказывание физико-химических свойств белков проводили с использованием он-лайн ресурсов http://web.expasy.org/compute_pi/ и

http://www.camp.bicnirrh.res.in/featcalc/. Сравнение выборок проводили по критерию Колмогорова-Смирнова. Расчет значений СС $_{50}$ и ЕС $_{50}$ проводили в программе GraphPad 6.0. Для оценки разности средних использовали критерий Манна-Уитни. Статистическую значимость различий при определении количества колоний путем подсчета КОЕ из серии разведений оценивали сравнивая значения $\log_{10}(c)$, где с-полученное число клеток, используя критерий однородности Хи-квадрата Пирсона. Во всех тестах различия считали достоверными при р<0.05.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1 Биологическая активность производных 2(5H)-фуранона

В работе проведено углубленное исследование чувствительности бактерий к действию производных 2(5H)-фуранона, содержащих в своей структуре различные функциональные группы (атом галогена, сульфонильная группа, фрагменты терпенов l-ментола или l-борнеола, см. Рис. 1).

Рис. 1 – Молекулярная структура производных 2(5*H*)-фуранона.

Таблица 1 – МПК/МБК производных 2(5*H*)-фуранона с различными функциональными группами, мкг/мл.

IIImayay	Соединение			
Штамм	Ф105	Ф123	Ф131	
S. aureus	8/32	8/>128	16/32	
S. epidermidis	16/32	8/>128	16/32	
M. luteus	8/32	8/>128	16/32	
B. cereus	8/32	8/8	8/32	
B. subtilis	16/32	16/>128	8/32	
S. mutans	16/32	>128	8/16	
E. coli	>128	>128	>128	
E. aerogenes	>128	>128	>128	
K. pneumonie	>128	>128	>128	
P. aeruginosa	>128	>128	>128	
S. marcescens	>128	>128	>128	

Для отобранных соединений были определены значения цитотоксичности СС50, приводящие к двукратному снижению целостности мембраны и митахондриальной активности эукариотических клеток. Значения СС50 при оценке целостности плазматической мембраны составили 45 мкг/мл для Ф105, 60 мкг/мл для Ф123 и 64 мкг/мл для Ф131. Препарат сравнения бензалкония хлорид имел значение СС₅₀ 2 мкг/мл, что связано с прямым повреждением мембраны клеток. При опенке цитотоксичности ПО снижению митохондриальной активности CC_{50} составили 21 мкг/мл для $\Phi 105$, 34 мкг/мл для Ф123, 40 мкг/мл для Ф131 и 5 мкг/мл для бензалкония хлорида. Так как значения CC_{50} **Ф105**, **Ф123** и **Ф131** превышают их МПК менее чем в 10 раз, цитотоксичность можно считать относительно высокой и данные соединения представляют интерес только для наружного применения.

2 Антимикробная активность производного 2(5*H*)-фуранона Ф105 в отношении *S. aureus*

Исследования выявили сопоставимую восприимчивость к соединению $\Phi 105$ чувствительных (MSSA) и устойчивых к метициллину (MRSA) клеток *S. aureus* (Таблица 2), что позволяет предложить соединение для борьбы с резистентными штаммами. Кривые времени-эрадикации указывали на концентрационную зависимость влияния $\Phi 105$ на жизнеспособность клеток, что говорит о бактерицидном характере действия соединения (Рис. 2).

Таблица 2 – Антимикробная активность **Ф105** выраженная в виде МПК, МБК в отношении *S. aureus*, определенные методом подсчета КОЕ, мкг/мл.

	МПК	МБК
S. aureus MSSA	8	32
S. aureus MRSA	16	64
K. pneumonie	>128	>128
S. marcescens	>128	>128

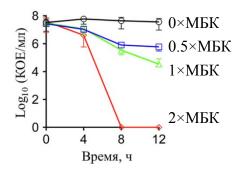


Рис. 2 – Кривые времениэрадикации клеток *S. aureus* соединением **Ф105**.

Некоторые производные 2(5H)-фуранона способны подавлять образование стафилококковых биопленок [Lonn-Stensrud *et al.*, 2009]. Образование биопленки клетками MSSA полностью подавлялось в присутствии 16 мкг/мл **Ф105** (Рис. 3A). При этом количество КОЕ и в биопленке, и в культуральной жидкости уменьшалось на 3 порядка (Рис. 3Б), следовательно, отсутствие биопленки является следствием подавления роста клеток стафилококка.

В отличие от других антибиотиков (гентамицин, ампициллин, хлорамфеникол, ванкомицин), $\Phi 105$ оказывал бактерицидный эффект в отношении клеток в составе биопленки. При концентрации $\Phi 105$ равной 64 мкг/мл (2×МБК) наблюдалось снижение количества КОЕ в биопленке MSSA более чем на 4 порядка (Рис. 3В).

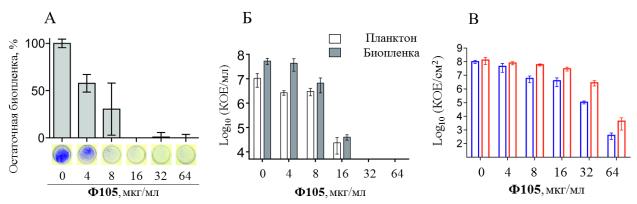


Рис. 3 — Влияние **Ф105** на формирование биопленки и жизнеспособность MSSA. Клетки выращивали 24 ч в присутствии **Ф105** (A, Б), или вносили **Ф105** к 24- часовым биопленкам с последующей инкубацией 24 часа (В). Биопленки окрашивали кристаллическим фиолетовым (А), жизнеспособность оценивали подсчетом КОЕ (Б, В).

Был выявлен выраженный эффект синергизма $\Phi 105$ с аминогликозидами и бензалкония хлоридом: значения индекса фракционной ингибирующей концентрации (иФИК) для $\Phi 105$ составили 0.33 ± 0.04 в сочетании с амикацином, 0.33 ± 0.16 с гентамицином, 0.44 ± 0.17 с канамицином и 0.29 ± 0.09 с бензалкония хлоридом. Для других антибиотиков наблюдался аддитивный или индифферентный эффект (иФИК 0.51-0.92). Рассчитанные эффективные концентрации $\Phi 105$ (ЕС₅₀), приводящие к двойному снижению МПК антибиотика (Таблица 3) составили 0.7-1.3 мкг/мл в комбинации с аминогликозидами, и 0.5 мкг/мл в сочетании с бензалкония хлоридом. Для других антибиотиков значения ЕС₅₀ составили 4.3-9.5 мкг/мл.

Таблица 3 — Значения МПК и ECOFF антибиотиков в отношении S. aureus MSSA (значения иФИК±СКО) и значения EC₅₀ для **Ф105**, снижающие вдвое МПК соответствующего антибиотика.

	МПК, мкг/мл	ECOFF, мкг/мл	иФИКмин	ЕС50, мкг/мл
Бензалкония хлорид	1.00	-	0.29 ± 0.09	0.5
Амикацин	1.00	8.00	0.33 ± 0.04	0.7
Гентамицин	1.00	2.00	0.33 ± 0.16	0.7
Канамицин	2.00	8.00	0.44 ± 0.17	1.3

Таким образом, чувствительность бактерий к амикацину, гентамицину и канамицину повышается вдвое при внесении в культуру 0.5-1 мкг/мл $\Phi 105$ (что ниже значения CC_{50} в 20-40 раз), что позволяет предложить $\Phi 105$ для сочетанного использования с аминогликозидами для повышения их антибактериальной активности.

3 Механизм антимикробного действия соединения Ф105

Для оценки возможности проникновения фуранонов в клетки или связывания с мембраной использовали 2(5H)-фуранон $\Phi 145$, в отличие от соединения $\Phi 105$ несущий бромфеноловый флуорофор вместо l-ментоловой группы, но при этом не отличающийся от него по липофильным характеристикам. $\Phi 145$ вносили к отмытым клеткам S. aureus, клетки также

окрашивали $DioC_6$ и пропидия йодидом. Только единичные клетки окрашивались пропидием йодида, что свидетельствовало о жизнеспособности культуры (Рис. 4). Синяя флуоресценция соединения Ф145 наблюдалась только в клетках S. aureus и B. cereus, и отсутствовала в клетках S. marcescens и К. pneumonia, которые, по-видимому, непроницаемы для Ф145, что совпадает со спектром антибактериальной активности Ф105 (Таблица 1). Равномерная флуоресценция соединения **Ф145** в клетках *S. aureus* и *B. cereus* (Рис. 4В) позволяет заключить, что Ф145 проникает в клетку и накапливается в ней. При внесении **Ф145** к зрелой биопленке *S. aureus* флуоресценция наблюдалась во всех ее слоях (Рис. 5), что явно указывает на его способность проникать в матрикс биопленки.

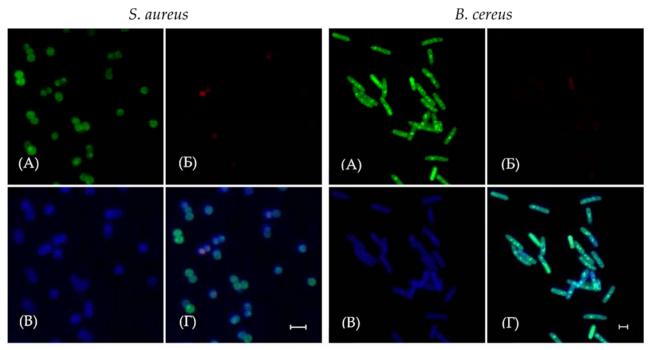


Рис. 4 – КЛСМ планктонных клеток *S. aureus* и *B. cereus*, обработанных соединением **Φ145** (10 мкг/мл) в течение 30 минут и окрашенных DioC₆ / пропидия йодидом. Изображения показывают флуоресценцию DioC₆ (A), пропидия йодида (Б), соединение **Φ145** (В) и комбинацию всех каналов (Γ). Шкала измерения составляет 2.5 мкм.

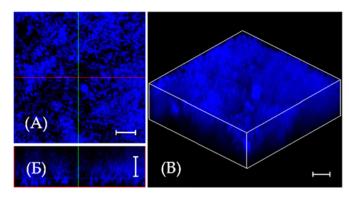


Рис. 5 — Проникновение соединения **Ф145** в биопленку *S. aureus*.

- (А) Х; У ориентация биопленки;
- (Б) Z-слой биопленки;
- (В) 3D-модель биопленки.
- Шкала измерения составляет 10 мкм.

Соединение **Ф105** несет сульфонильную группу с высокой окисляющей способностью, поэтому оценивали образование активных форм кислорода (АФК) *in vivo* по флуоресценции продукта деэтерификации 2',7'-дихлорфлуоресцин диацетата (ДХФДА). В присутствии **Ф105** наблюдалось

повышение уровня флуоресценции в S. aureus и B. cereus (Рис. 6), но не в S. marcescens и K. pneumonia. Следовательно, соединение $\Phi 105$ индуцирует в клетках бактерий окислительный стресс, вероятно, приводящий к их гибели.

Чтобы проверить повреждение клеточной мембраны в присутствии **Ф105**, в том числе и за счет индукции им образования АФК, оценивали изменение мембранного потенциала клеток бактерий путем оценки флуоресценции DioC₂. В качестве контроля бактерии обрабатывали бензалкония хлоридом, действие которого связано с нарушением клеточной мембраны (Рис. 7). В присутствии бензалкония хлорида флуоресценция снижалась во всех бактериях за счет падения мембранного потенциала вследствие разрушения мембраны. В присутствии **Ф105** уровень флуоресценции у *S. aureus* и *B. cereus* также снижался, что свидетельствует о нарушении целостности мембраны. Напротив, **Ф105** не приводил к снижению флуоресценции *S. marcescens* и *К. pneumonia*. Эти данные подтверждают специфичность соединения **Ф105** в отношении грамположительных бактерий.

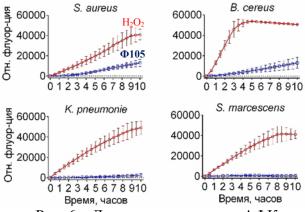


Рис. 6 — Динамика продукции АФК, индуцированная 20 мкМ H_2O_2 или 32 мкг/мл $\Phi 105$.

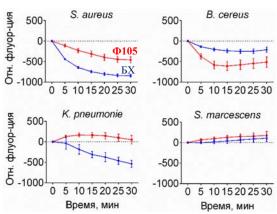
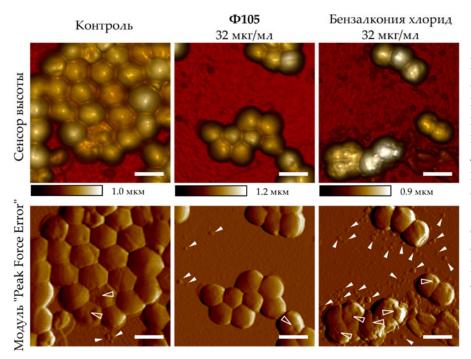



Рис. 7 — Относительный мембранный потенциал *S. aureus*. Клетки обрабатывали бензалкония хлоридом (БХ) (4 мкг/мл) или соединением **Ф105** (32 мкг/мл).

Изображения Рис. 8 атомно-силовой микроскопии (режим пиковой силы) планктонных клеток S. aureus через 18 инкубации с 4 бензалкония хлорида или 32 мкг/мл Ф105, соответствует соответствующим МБК. Шкала измерения составляет 2 мкм.

микроскопия показала, что Атомно-силовая бензалкония хлорид вызывает видимые повреждения клеточной стенки и вытекание содержимого присутствии соединения клеток В Ф105 В бактерицидной концентрации, приводящей к такому же снижению КОЕ, не наблюдалось видимого разрушения клеток *S. aureus*.

Методом двумерного электрофореза было выявлено, что в присутствии сублетальных концентраций соединения **Ф105** в клетках *S. aureus* повышалось содержание 7 и снижалось содержание 13 белков (Таблица 4). Это ключевые белки различных клеточных процессов, от синтеза ДНК до ответа на стресс, что позволяет предположить неспецифичность взаимодействия Ф105 с клеточными белками. Чтобы проверить ЭТО предположение, соединением обрабатывали сырой клеточный экстракт S. aureus и также анализировали с помощью 2D-электрофореза. В этом случае также был идентифицирован ряд белковых пятен с измененной подвижностью после обработки Ф105. следовательно, Ф105 взаимодействует с этими белками *in vitro*, что приводит к изменениям их зарядов. При этом пять белков - енолаза, молекулярный шаперон GroEL, инозин-5-монофосфатдегидрогеназа, тиоредоксинредуктаза и альфа-кетокислотную дегидрогеназа, были идентифицированы в экспериментах. Расчет in silico биохимических свойств белков с измененной подвижностью показал, что они имеют значения pI в диапазоне от 5 до 6 и отрицательный заряд при физиологическом значении рН (Рис. 9), что достоверно отличается от характеристик транслированного протеома S. aureus.

Таблица 4 – Белки *S. aureus* с измененной подвижностью.

Повышенное содержание в клетках:

3-гидроксиацил-КоА-дегидрогеназа; 1-пирролин-5-карбоксилатдегидрогеназа; Фосфорибозиламин – глицинлигаза; Глутаматдегидрогеназа; Орнитин – оксокислотная аминотрансфераза; Гемпероксидаза; Трансальдолаза

Пониженное содержание в клетках:

Субъединица β РНК полимеразы; Метионин--тРНК лигаза; Молекулярный шаперон GroEL; Инозин-5-монофосфатдегидрогеназа; Щелочная фосфатаза; Енолаза; Субъединица альфакетокислотной дегидрогеназы с разветвленной цепью E2; Тиоредоксинредуктаза; Глицерофосфодиэфирфосфодиэстераза; Фруктоза-1,6-бисфосфат-альдолаза; 30S рибосомный белок S3; Фибриноген-связывающий белок; Тиоредоксин

Изменения подвижности после инкубации клеточного экстракта с Ф105:

Транскетолаза; Енолаза; Формиат - тетрагидрофолат лигаза; Тимидинфосфорилаза; Молекулярный шаперон GroEL; Молекулярный шаперон DnaK; Цистеинсинтаза; Инозин-5-монофосфатдегидрогеназа; Тиоредоксинредуктаза; Аргиназа; КоА-дисульфидредуктаза; Субъединица альфа-кетокислотной дегидрогеназы с разветвленной цепью Е2; Глутарил-КоА-дегидрогеназа; Субъединица сукцинил-КоА-синтетазы альфа; Глицеральдегид-3-фосфатдегидрогеназа; Серин гидроксиметилтрансфераза

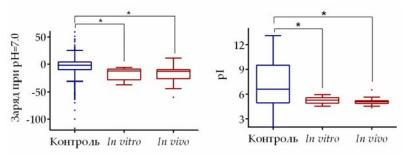
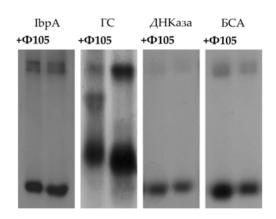



Рис. 9 - Сравнение физикохимических свойств предполагаемых субстратов для взаимодействия с Ф105 с транслированным протеомом *S. aureus*.

Чтобы подтвердить прямое взаимодействие **Ф105** с белками, ряд белков с pI 5-6 и отрицательным зарядом инкубировали с **Ф105** и разделяли электрофоретически в неденатурирующих условиях (Рис. 10). После инкубации с **Ф105** электрофоретическая подвижность глутаминсинтетазы (ГС) и белка теплового шока IbpA изменилась значительно, меньшие изменения наблюдалось для ДНКазы и БСА. Следовательно, **Ф105**, взаимодействуя с белками, по-видимому, повреждает их структуру, изменяет физико-химические свойства, что в свою очередь может приводить к последующей гибели клеток.

Таким образом, общий механизм антимикробного действия производного 2(5H)-фуранона **Ф105**, очевидно, связан с его способностью легко проникать в бактериальные клетки грамположительных бактерий, вызывать окислительный стресс благодаря индукции образования $A\Phi K$ и нарушать функцию ряда белков, взаимодействуя с ними.

Следствием отсутствия узкой мишени, по всей видимости, является низкий риск развития устойчивости *S. aureus* к **Ф105** (Рис. 11). МПК **Ф105** не изменилась в течение 14 пассажей, в то время как МПК бензалкония хлорида увеличилась с 1 мкг/мл до 4 мкг/мл и не снижалась после семи пассажей в отсутствие антимикробного вещества в среде.

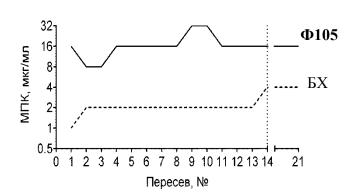


Рис. 10 — Электрофореграмма нативных и обработанных $\Phi 105$ белков в нативных условиях.

Рис. 11 — Развитие устойчивости S. aureus к соединению $\Phi 105$ и бензалкония хлориду (БХ).

4 Антимикробная активность производного 2(5*H*)-фуранона Ф131 в отношении ротовой микрофлоры

Стрептококки играют ключевую роль при формировании ротовых биопленок. Следовательно, воздействуя на эти бактерии, можно предотвратить каскад образования зубного налета сложный связанных воспалительных процессов. В присутствии соединения Ф131 наблюдалось подавление образования биопленок роста И значительное стрептококков (S. mutans, S. oralis, S. mitis, S. pyogenes, S. salivarius, S. sobrinus, S. sanguinis) (Рис.12), однако в составе 24-часовой биопленки только S. salivarius, S. sanguinis и S. mutans оказались чувствительны к соединению **Ф131** (Рис. 13). Грамотрицательные бактерии (F. nucleatum, P. nigrescens, P. intermedia и P. micra) были нечувствительны к соединению.

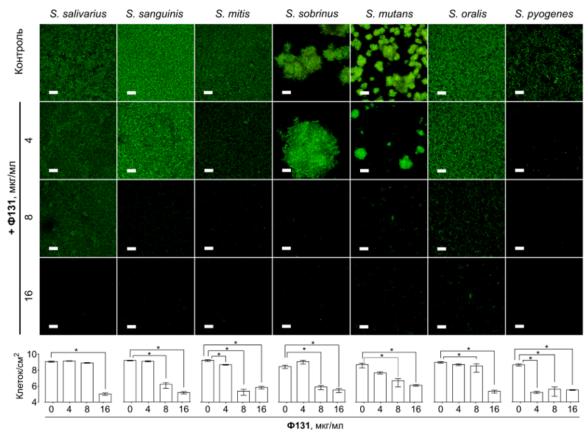


Рис. 12 — Подавление соединением **Ф131** образования биопленок стрептококков. Шкала измерения составляет 20 мкм.

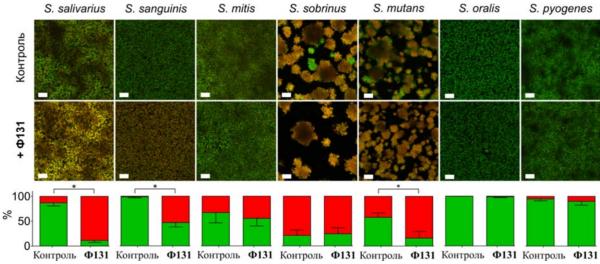


Рис. 13 — Влияние соединения **Ф131** (32 мкг/мл) на 24-часовые биопленки стрептококков. Шкала измерения составляет 20 мкм.

По аналогии с соединением $\Phi 105$, можно было ожидать усиления антибактериальной активности антибиотиков, рекомендованных при лечении стрептококковых инфекций (цефазолин, меропенем, ванкомицин и азитромицин и амикацин), при их комбинировании с $\Phi 131$. Полученные данные и Φ ИК характеризовали совместное действие соединения $\Phi 131$ с антибиотиками как аддитивное или индифферентное (и Φ ИК $\Phi 131$ с амикацином 0.59-1.25, с азитромицином 0.69-1.13). Значения EC_{50} составили от 1.7 мкг/мл до 5.0 мкг/мл.

Таким образом, производное 2(5H)-фуранона **Ф131** проявляет антимикробную активность в отношении ротовых стрептококков и может представлять интерес при разработке составов для дезинфекции съемных и постоянных зубных протезов, и имплантатов для предотвращения начального процесса образования биопленки на различных поверхностях ротовой полости.

5 Антимикробная активность производного 2(5*H*)-фуранона Ф123 в отношении *B. cereus*

В. cereus вызывает ряд системных и локальных инфекций, и может являться причиной смертности у новорожденных. Соединение Ф123 подавляло рост и образование биопленок всех грамположительных бактерий (МПК 8-16 мкг/мл), однако проявляло бактерицидный эффект только в отношении В. cereus (Таблица 5). Кривые времени-эрадикации выявили слабые бактериостатические свойства соединения Ф123 в отношении S. aureus, М. luteus и В. subtilis (Рис. 14), при этом клетки В. cereus погибали в течение 8 часов, что подтвердило специфическое бактерицидное действие Ф123 против этих бактерий.

Таблица 5 — Антибактериальный спектр производного 2(5H)-фуранона $\Phi 123$.

МПК	МБК	БПК
8	>128	8
8	>128	8
8	>128	16
8	8	8
16	>128	16
>128	>128	>128
>128	>128	>128
>128	>128	>128
>128	>128	>128
	8 8 8 16 >128 >128 >128	8 >128 8 >128 8 >128 8 8 16 >128 >128 >128 >128 >128 >128 >128 >128 >128

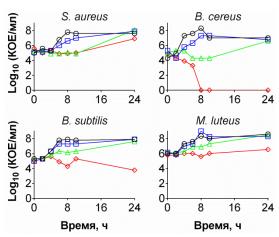


Рис. 14 — Кривые времени-эрадикации бактерий соединением **Ф123**: $0.25 \times \text{МПК}$ (квадрат), $1 \times \text{МПК}$ (треугольник), $4 \times \text{МПК}$ (ромб) и без **Ф123** (круг).

Соединение $\Phi 123$ проявляло выраженный синергизм в сочетании с амикацином (и Φ ИК 0.38), и аддитивный эффект с гентамицином (и Φ ИК 0.56) и бензалкония хлоридом (и Φ ИК 0.56). При этом значение EC_{50} в отношении амикацина составило 0.9 мкг/мл, что в 10-20 раз ниже значений CC_{50} . Дальнейший расчет показал, что внесение $\Phi 123$ в концентрации 4 мкг/мл потенциально может усиливать действие амикацина до 32 раз.

Эксперименты по развитию устойчивости показали, что в серии из 14 посевов изменения чувствительности *В. cereus* к соединению **Ф123** не наблюдалось (Рис. 15), в то время как МПК для бензалкония хлорида увеличилась с 1 мкг/мл до 16 мкг/мл.

Активность **Ф123** в отношении клеток в составе биопленки была сравнима с амикацином, азитромицином и тетрациклином: при концентрации 64 мкг/мл (МБК-Б) количество КОЕ *В. сегеиѕ* в составе биопленки снизилось на

3 порядка. Для сравнения, среди других антибиотиков, рекомендованных для *Bacillus spp.*, только рифампицин, аминогликозиды, тетрациклин и, в меньшей степени, макролиды и хлорамфеникол проявляли высокую антимикробную активность в отношении как планктонных, так и встроенных в биопленку клеток при относительно низких концентрациях (Таблица 6).

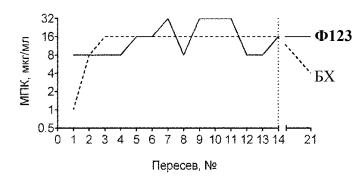


Рис. 15 — Развитие устойчивости B. cereus к производному 2(5H)-фуранона $\Phi 123$ и бензалкония хлориду (БХ). Пассажи с 1 по 14 проводили в присутствии соединения $\Phi 123$, с 14 до 21 без него.

Таблица 6 — Сравнительная антибактериальная активность Φ 123 и антибиотиков на зрелой культуре *B. cereus*, мкг/мл.

Класс	Антимикробный агент	МПК	МБК	МБК-П	МБК-Б
2(5 <i>H</i>)-фураноны	Ф123	8	8	32	64
	Ф105	8	16	128	>256
β-лактамы	Ампициллин	64	64	65536	>65536
	Цефазолин	64	64	1024	65536
	Имипенем	0.5	>16	>1024	>16384
	Меропенем	0.25	0.25	64	>256
Гликопептиды	Ванкомицин	2	8	128	>8192
Аминогликозиды -	Амикацин	4	4	8	32
	Гентамицин	0.5	0.5	1	8
Макролиды –	Эритромицин	0.125	0.125	0.5	8
	Азитромицин	0.25	0.5	2	32
Тетрациклины	Тетрациклин	0.5	4	32	64
Фторхинолоны -	Ципрофлоксацин	0.064	0.064	8	>64
	Моксифлоксацин	0.032	0.032	4	>32
Амфениколы	Хлорамфеникол	4	16	128	1024
Рифамицины	Рифампин	0.25	0.25	2	2

Фторхинолоны, имеющие самые низкие значения МПК, оказались неэффективны в отношении зрелой биопленки *В. cereus*: МБК-Б превышали их соответствующие МБК более чем в 1000 раз. Меропенем и ванкомицин также были неактивны в отношении клеток, погруженных в биопленку: концентрации, необходимые для уничтожения бактерий, возросли в 1000 раз, что, вероятно, связано с низкой проницаемостью матрикса для антибиотиков.

Таким образом, низкий риск развития устойчивости и выраженная специфичность к бактериям B. cereus позволяют предложить соединение $\Phi 123$ для лечения инфекций, вызванных бактериями B. cereus, устойчивыми к другим антимикробным препаратам.

ЗАКЛЮЧЕНИЕ

В настоящей работе проведено исследование образования биопленок, роста и обмена веществ грамположительных бактерий под действием новых производных 2(5H)-фуранона, а также определен механизм действия этих соединений на микроорганизмы. Установлено, что в присутствии производных 2(5H)-фуранона наблюдается подавление образования биопленок грамположительными бактериями, при высоких концентрациях соединений гибель клеток. Производные 2(5H)-фуранона повышают восприимчивость бактерий к аминогликозидным антибиотикам и бензалкония хлориду. Молекулярный механизм действия соединения Ф105 на метаболизм клеток S. aureus заключается в индукции образования активных форм кислорода и прямом взаимодействии с рядом внутриклеточных белков S. aureus. Флуоресцентное производное 2(5H)-фуранона (**Ф145**) избирательно проникает в клетки грамположительных S. aureus и B. cereus, грамотрицательных бактерий, что, очевидно, определяется особенностями строения клеточной стенки данных микроорганизмов.

Были сделаны следующие основные выводы:

- 1) Соединения **Ф105** и **Ф131**, содержащие в своей структуре сульфонильные и терпеновые фрагменты, в концентрации 32 мкг/мл проявляют бактерицидный эффект в отношении *S. aureus*, в том числе устойчивого к метициллину (MRSA), стрептококков *S. mutans*, *S. oralis*, *S. mitis*, *S. pyogenes*, *S. salivarius*, *S. sobrinus* и *S. sanguinis*, а также *B. cereus*. Производное 2(5*H*)фуранона **Ф123**, содержащее в своей структуре только борнильную группу, оказывает селективный бактерицидный эффект в отношении *B. cereus* в концентрации 8 мкг/мл.
- 2) Производные 2(5H)-фуранона подавляют образование бактериальных биопленок: БПК соединения **Ф105** в отношении MRSA составляет 32 мкг/мл, соединения **Ф131** 8-16 мкг/мл в отношении стрептококков, соединения Ф123 в отношении *B. cereus* 8 мкг/мл.
- 3) Соединения **Ф105**, **Ф123** и **Ф131** оказывают бактерицидный эффект на клетки, погруженные в матрикс биопленки, в концентрациях 32-64 мкг/мл, что в 10-15 раз ниже, чем для некоторых применяемых в практике антибиотиков.
- 4) Соединения **Ф105** и **Ф123** повышают антимикробную активность аминогликозидов и бензалкония хлорида в отношении *S. aureus* и *B. cereus*, соответственно, снижая МПК аминогликозидных антибиотиков в два раза в концентрациях 0.7–1.3 мкг/мл, и МПК бензалкония хлорида в концентрациях 0.5–2.2 мкг/мл. **Ф131** снижает в 2 раза МПК азитромицина в отношении стрептококков в концентрациях 1.7–5.0 мкг/мл.
- 5) Механизм антимикробного действия производного 2(5H)-фуранона $\Phi 105$ на S.~aureus заключается в быстром проникновении в клетки с последующей индукцией окислительного стресса и прямом взаимодействии с рядом внутриклеточных белков, что приводит к нарушению их структуры и физико-химических свойств и гибели клетки.

Список работ, опубликованных по теме диссертации

Статьи в научных журналах, рекомендованных ВАК

- 1. Sharafutdinov, I.S. Unraveling the Molecular Mechanism of Selective Antimicrobial Activity of 2(5*H*)-Furanone Derivative against *Staphylococcus Aureus* [Text] / I.S. Sharafutdinov, A.S. Pavlova, F.S. Akhatova, A.M. Khabibrakhmanova, E.V. Rozhina, Y.J. Romanova, R. Fakhrullin, O.A. Lodochnikova, A.R. Kurbangalieva, M.I. Bogachev, A.R. Kayumov // International Journal of Molecular Sciences. 2019. V.20. e.694, автора 0.9 п.л.
- 2. Sharafutdinov, I.S. Targeting *Bacillus cereus* cells: increasing efficiency of antimicrobials by the bornyl-possessing 2(5*H*)-furanone derivative / I.S. Sharafutdinov, A.S. Pavlova, A.M. Khabibrakhmanova, R.G. Faizova, A.R. Kurbangalieva, K. Tanaka, E.Y. Trizna, D.R. Baidamshina, M.I. Bogachev, A.R. Kayumov // New microbiologica. 2019. V.42(1). P.29-36, автора 0.3 п.л.
- 3. Sharafutdinov, I.S. Antimicrobial Effects of Sulfonyl Derivative of 2(5*H*)-Furanone Against Planktonic and Biofilm Associated Methicillin-Resistant and -Susceptible *Staphylococcus Aureus* [Text] / I.S. Sharafutdinov, E.Y. Trizna, D.R. Baydamshina, M.N. Ryzhikova, R.R. Sibgatullina, A.M. Khabibrakhmanova, L.Z. Latypova, A.R. Kurbangalieva, E.V. Rozhina, M. Klinger-Strobel, R.F. Fakhrullin, M.W. Pletz, M.I. Bogachev, A.R. Kayumov, O. Makarewicz // Frontiers in Microbiology. 2017. V.8 e.2246, автора 0.6 п.л.
- 4. Kayumov, A.R. Inhibition of biofilm formation in *Bacillus subtilis* by new halogenated furanones [Text] / A.R. Kayumov, E.N. Khakimullina, **I.S. Sharafutdinov**, E.Y. Trizna, L.Z. Latypova, T.H. Lien, A.B. Margulis, M.I. Bogachev, A.R. Kurbangalieva // The Journal of Antibiotics 2015. V.68(5) P.297-301, автора 0.06 п.л.

Другие публикации

- 5. Биопленки как фактор патогенности *Staphylococcus aureus*: подходы к терапии. Раздел 2.1. Антибиотики в терапии биопленок *S. aureus*. Раздел 2.2.3. Антибактериальные свойства Ф105 в отношении *S. aureus* // под общ. ред. А.Р. Каюмова. Казань: Изд-во Казан. ун-та, 2017. С.29-42; 69-77.
- 6. Sharafutdinov, I.S. The antimicrobial effect of the 5-((-)-bornyloxy)-2(5*H*)-furanone derivative on gram-positive bacteria [Text] / I.S. Sharafutdinov, A.S. Pavlova, A.M. Khabibrakhmanova, A.R. Kurbangalieva, A.R. Kayumov // FEBS Journal Jerusalem, Israel September 10-14, 2017. V.284(S1). P.143.
- 7. Sharafutdinov, I.S. The antimicrobial activity of 2(5*H*)-furanone derivative on *Staphylococcus aureus* [Text] / I.S. Sharafutdinov, E.Y. Trizna, M.N. Ryzhikova, E.V. Rozhina, A.R. Kurbangalieva, A.R. Kayumov. // FEBS Journal Kusadasi, Turkey September 3-6, 2016. V.283(S1). P.200-201.
- 8. Sharafutdinov, I.S. Antimicrobial Effects of 2(5*H*)-furanone Derivatives On Streptococci [Text] / I.S. Sharafutdinov, R.G. Faizova, A.S. Pavlova, A.M. Khabibrakhmanova, J. Schaeske, A.R. Kurbangalieva, A.R. Kayumov, N.S. Stumpp, M. Stiesch. // Abstract booklet of the 21st Symposium of Biology Students in Europe. Zagreb, Croatia July 20-29, 2018. P.43.
- 9. Pavlova, A.S. The Problem of Antibiotic Resistance [Text] / A.S. Pavlova, **I.S. Sharafutdinov** // Abstract booklet of the 21st Symposium of Biology Students in Europe. Croatia July 20-29, 2018. P.77.

- 10. Sharafutdinov, I. Antimicrobial effects of sulfonyl derivative of 2(5*H*)-furanone against biofilm associated *Staphylococcus aureus* [Text] / I. Sharafutdinov, A. Khabibrakhmanova, E. Trizna, M. Bogachev, M. Ryzhikova, A. Pavlova, A. Kurbangalieva, O. Makarewicz, A. Kayumov // Book of abstracts of the "1st Alpine winter conference on medicinal and synthetic chemistry". St. Anton, Austria January 28-February 1, 2018. P.132.
- 11. Шарафутдинов, ИС. Борьба с биопленками на имплантах: антибактериальные свойства новых производных 2(5*H*)-фуранона [Текст] / Шарафутдинов ИС. // Сборник материалов научного семинара стипендиатов программ «Михаил Ломоносов» и «Иммануил Кант» 2017–2018 года. Москва 2018. C.28-34.
- 12. Pavlova, A. 5-((-)-bornyloxy)-3,4-dichloro-2(5*H*)-furanone specifically targets a biofilm-embedded foodborne human pathogen *Bacillus cereus* [Text] / A. Pavlova, **I. Sharafutdinov**, A. Khabibrakhmanova, A. Kurbangalieva, A. Kayumov // Book of abstracts of the "1st Alpine winter conference on medicinal and synthetic chemistry". St. Anton, Austria January 28-February 1, 2018. P.129.
- 13. Шарафутдинов, И.С. Антимикробные свойства терпен-содержащих производных 2(5*H*)-фуранона в отношении грамположительных бактерий [Текст] / И.С. Шарафутдинов // Материалы XXV международной молодежной научной конференции студентов, аспирантов и молодых ученых «Ломоносов». Москва 9-13 Апреля 2018. С.1.
- 14. Павлова, А.С. Производное 2(5H)-фуранона специфично действует на клетки B. cereus и усиливает действие аминогликозидов против этих бактерий [Текст] / А.С. Павлова, **И.С. Шарафутдинов** // Материалы XXV международной молодежной научной конференции студентов, аспирантов и молодых ученых «Ломоносов». Москва 9-13 Апреля 2018. С.1.
- 15. Шарафутдинов, И.С. Фураноны, как антибактериальные соединения [Текст] / И.С. Шарафутдинов, А.С. Павлова, А.М. Хабибрахманова, Р.Г. Фаизова, А.Р. Курбангалиева, А.Р. Каюмов // В поисках моделей персонализированной медицины. Сборник научных трудов V Международной конференции «ПОСТГЕНОМ'2018». 29 октября 2 ноября 2018, Казань: Издательство Казан. ун-та. 2018. С.168.
- 16. Фаизова, Р.Г. Синтез и антибактериальная активность новых оптически чистых производных 5-борнилокси-2(5*H*)-фуранона [Текст] / Р.Г. Фаизова, А.М., Хабибрахманова Л.З. Латыпова, О.А. Лодочникова, **И.С. Шарафутдинов**, А.Р. Каюмов, Г.А. Чмутова, А.Р. Курбангалиева // Сборник тезисов ІІІ Международной школы-конференции студентов, аспирантов и молодых ученых "Материалы и технологии XXI века" (Казань, Россия, 29-31 октября). 2018. С.305.
- 17. Хабибрахманова, А.М. Синтез и биологическая активность стереоизомерно чистых производных 2(5*H*)-фуранона, несущих фрагмент *l*-ментола [Текст] / А.М. Хабибрахманова, Л.З. Латыпова, О.А. Лодочникова, Л.Н. Потапова, **И.С. Шарафутдинов**, А.Р. Каюмов, Г.А. Чмутова, А.Р. Курбангалиева // Сборник тезисов ІІІ Международной школы-конференции студентов, аспирантов и молодых ученых "Материалы и технологии XXI века" (Казань, Россия, 29-31 октября). 2018. С.311.
- 18. Хабибрахманова А.М. Синтез и строение оптически активных серосодержащих производных 2(5*H*)-фуранона [Текст] / А.М. Хабибрахманова, Л.З. Латыпова, Л.Н. Потапова, Л.Р. Калимова, **И.С. Шарафутдинов**, А.Р. Каюмов, О.А. Лодочникова, Г.А.Чмутова, А.Р. Курбангалиева // Сборник тезисов V Всероссийской конференции с международным участием по органической химии (Владикавказ, Северная Осетия Алания, 10-14 сентября). 2018. С.228.

- 19. Фаизова Р.Г. Оптически активные сульфоны и сульфоксиды 5-борнилокси-2(5*H*)-фуранона [Текст] / Р.Г. Фаизова, А.М. Хабибрахманова, Л.З. Латыпова, **И.С. Шарафутдинов**, А.Р. Каюмов, О.А. Лодочникова, Г.А. Чмутова, А.Р. Курбангалиева Оптически активные сульфоны и сульфоксиды 5-борнилокси-2(5H)-фуранона // Сборник тезисов V Всероссийской конференции с международным участием по органической химии (Владикавказ, Северная Осетия Алания, 10-14 сентября). 2018. С.500.
- 20. Sharafutdinov IS. Bactericidal action of a furanone derivative against *Staphylococcus aureus* [Text] / IS Sharafutdinov, AR Kurbangalieva, O Makarewicz, AR Kayumov // IC2AR 2017 Proceedings Book 2nd International Caparica Conference in Antibiotic Resistance. Caparica, Portugal 12-15 June, 2017. P.230.
- 21. Шарафутдинов И.С. Бактерицидное действие производного 2(5*H*)-фуранона в отношении клеток *Staphylococcus aureus* [Текст] / И.С. Шарафутдинов, А.С. Павлова // VIII Конференция молодых ученых РМАНПО с международным участием «Горизонты медицинской науки»: сборник материалов конференции; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования». М.: ФГБОУ ДПО РМАНПО, 2017. Т. II. C.270-271.
- 22. Шарафутдинов И.С. Бактерицидное действие производного 2(5*H*)-фуранона в отношении клеток *Staphylococcus aureus* [Текст] / И.С. Шарафутдинов, А.С. Павлова, А.Р. Курбангалиева, О. Макаревич, А.Р. Каюмов // БИОЛОГИЯ НАУКА XXI ВЕКА: 21-я Международная Пущинская школа-конференция молодых ученых. 17 21 апреля 2017 г., Пущино. Сборник тезисов, 2017. C.246-247.
- 23. Павлова А.С. Влияние гиперпродукции протеазы HtrA на белковый профиль клеток биопленки *Bacillus subtilis* [Текст] / А.С.Павлова, Л.С. Чернова, **И.С. Шарафутдинов**, А.Р. Каюмов // БИОЛОГИЯ НАУКА XXI ВЕКА: 21-я Международная Пущинская школа-конференция молодых ученых. 17 21 апреля 2017 г., Пущино. Сборник тезисов, 2017. С.32-33.
- 24. Чернова Л.С. Влияние гиперпродукции протеиназы HtrA на образование биопленки клетками *Bacillus subtilis* [Текст] / Л.С. Чернова, А.С. Павлова, **И.С. Шарафутдинов**, А.Р. Каюмов // БИОЛОГИЯ НАУКА XXI ВЕКА: 21-я Международная Пущинская школа-конференция молодых ученых. 17 21 апреля 2017 г., Пущино. Сборник тезисов, 2017. С.32-33.
- 25. Чернова Л.С. Значение протеиназы HtrA в образовании биопленки клетками *Bacillus subtilis* [Текст] / Л.С. Чернова, **И.С. Шарафутдинов**, А.С. Павлова // Материалы XXIV международной молодежной научной конференции студентов, аспирантов и молодых ученых «Ломоносов». Москва 10-14 апреля, 2017. С.1.
- 26. Хабибрахманова А.М. Синтез и строение новых оптически активных производных 2(5*H*)-фуранона [Текст] / А.М. Хабибрахманова, Л.З. Латыпова, Л.Н. Потапова, О.А. Лодочникова, **И.С. Шарафутдинов**, А.Р. Каюмов, Х.Х. Конг, Л.Е. Зиганшина, Г.А. Чмутова, А.Р. Курбангалиева // Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений: тезисы II Всероссийской молодежной конференции (г. Уфа , 15-18 ноября 2017 г.) / отв. ред. Р.Ф. Талипов Уфа: РИЦ БашГУ, 2017. С.123-125.
- 27. Павлова, А.С. Специфичное антимикробное действие производного 2(5*H*)-фуранона на *Bacillus cereus* [Текст] / А.С. Павлова, **И.С. Шарафутдинов**, А.Р. Курбангалиева, А.Р. Каюмов // X Всероссийский конгресс молодых ученых-биологов «Симбиоз 2017». Сборник тезисов. (Казань, 25—28 октября 2017 г.) / под общ. ред. Т.В. Балтиной, Г.Г. Яфаровой. Казань: Изд-во Казан. ун-та, 2017. С.109-110.

- 28. Павлова А.С. Эффект производного 2(5*H*)-фуранона в отношении *Bacillus cereus* [Текст] / А.С. Павлова, **И.С. Шарафутдинов**, А.Р. Курбангалиева, А.Р. Каюмов // Материалы Всероссийской заочной научно-практической конференции с международным участием «Микробиология в современной медицине». Казань, 23 июня 2017 г.— С.47-50.
- 29. Sharafutdinov IS. Effect of new derivative of 2(5*H*)-furanone (F105) on biofilm formation by *Staphylococcus aureus* [Text] / IS Sharafutdinov, AR Kayumov, EY Trizna, AR Kurbangalieva, O Makarewicz // Biofilms7. Porto, Portugal 26-28 June, 2016. P.151.
- 30. Шарафутдинов И.С. Эффект фуранона Ф105 на образование биопленки клетками *Staphylococcus aureus* MRSA [Текст] / И.С. Шарафутдинов, Е.Ю. Тризна, А.Р. Курбангалиева, А.Р. Каюмов, О Макаревич // БИОЛОГИЯ НАУКА XXI ВЕКА: 20-я Международная Пущинская школа- конференция молодых ученых (Пущино, 18 22 апреля 2016 г.). Сборник тезисов. Пущино, 2016. С.59.

БЛАГОДАРНОСТИ

Автор выражает искреннюю благодарность коллективам кафедры генетики, кафедры микробиологии и НИЛ «Молекулярная генетика микроорганизмов» ИФМиБ КФУ за помощь и всестороннюю поддержку при выполнении работы и подготовке публикаций автора. Автор искренне благодарит профессора Матиаса Плетца и доктора Оливию Макаревич (Университетская клиника Йены, Йена, Германия) за возможность выполнения части работы на базе Центра инфекционных заболеваний и инфекционного контроля, профессора Майке Стиш и доктора Нико Штумппа (Медицинская школа Ганновера, Ганновер, Германия) за возможность выполнения исследований на базе Центра ортопедической биомедицинских материалов, а также за их ценные научные советы, помощь в обсуждении результатов и подготовке публикаций. Искренняя благодарность автора выражается к.т.н., в.н.с. НОЦ Биоинженерии СПбГЭТУ «ЛЭТИ» М.И. Богачеву за помощь в выполнении работ, связанных с математическим моделированием и обработкой Отдельная благодарность выражается статистической данных. сотрудникам Междисциплинарного центра протеомных исследований Казанского федерального университета за идентификацию белков методом масс-спектрометрии и ценные консультации при анализе данных. Автор искренне благодарит сотрудников НИЛ «Бионанотехнологии» под руководством д.б.н. Фахруллина Равиля Фаритовича за помощь в проведении микроскопии. Особую благодарность автор выражает научному руководителю, к.б.н., доценту кафедры генетики ИФМиБ КФУ Каюмову Айрату Рашитовичу за всестороннюю поддержку и ценные советы при выполнении и написании работы.

E-mail автора: <u>irsultanovich@gmail.com</u>

Просьба высылать отзывы на автореферат по адресу: 420008, г. Казань, ул. Кремлевская, д. 18, главное здание КФУ, комната 104В, отдел аттестации научно-педагогических кадров, ученому секретарю диссертационного совета Д 212.081.08 д.б.н., проф. Абрамовой З.И., факс: (843)238-76-01. E-mail: ziabramova@mail.ru.