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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы. ​В последние годы у большого числа патогенов возрастает устойчивость к            

антибактериальным препаратам, что представляет угрозу для здравоохранения, увеличивается        

количество инфекций с множественной лекарственной устойчивостью. За последние два десятилетия          

значительно увеличилась устойчивость патогенных микроорганизмов к терапии первой линии . Кроме          1

того, наблюдается рост числа штаммов, устойчивых к препаратам второй и третьей линии терапии. Все              

это приводит к серьезным клиническим последствиям, неудачному лечению заболеваний, высокой          

смертности и длительным госпитализациям, а также увеличению расходов на здравоохранение.  

Многие крупные фармацевтические компании не инвестируют ресурсы в разработку новых          

антибактериальных молекул по ряду причин, одна из которых – слишком малая вероятность получить             

положительный результат в ходе клинических испытаний. Таким образом, ключевую роль в           

исследованиях по поиску новых антибактериальных препаратов начинают играть небольшие         

фармацевтические компании и академические учреждения. Повышение эффективности программ по         

поиску первоначальных активных молекул для дальнейшей оптимизации является важной задачей, и ее            

решение возможно с привлечением современных методов компьютерного моделирования. Тем не          

менее, доступные на данный момент компьютерные модели имеют множество недостатков и не            

применимы для прогнозирования антибактериальной активности молекул с высоким структурным         

разнообразием. С учетом этого главная цель настоящего исследования состояла в том, чтобы            

разработать эффективную компьютерную ​модель, которая бы учла недостатки уже опубликованных          

моделей и обладала бы достаточной прогностической способностью в отношении антибактериальной          

активности. 

 

Степень разработанности темы. ​За последнее время было опубликовано большое количество          

работ, посвященных применению методов компьютерного моделирования для прогнозирования        

антибактериальной активности малых молекул. Однако подавляющая часть из них сфокусирована на           

каком-либо одном химическом классе (хемотипе) молекул. Как правило, такие модели не применимы к             

библиотекам с высоким структурным разнообразием, поскольку диапазон значений признаков,         

описывающих обучающую выборку, очень узок и характеризует только конкретно заданный хемотип.           

Тем не менее, был опубликован и ряд работ с моделями, построенными с использованием выборок,              

включающих несколько разных хемотипов (химических классов). Однако, эти выборки были          

1 ​Fowler T., Walker D., Davies S.C. The risk/benefit of predicting a post-antibiotic era: Is the alarm working? // Annals of the New 
York Academy of Sciences. 2014. Т. 1323. № 1. С. 1–10. 

 

http://paperpile.com/b/B99Ru3/GYnh
http://paperpile.com/b/B99Ru3/GYnh
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подготовлены на основе ограниченных и недостаточно представительных источников данных . В          2

недавних работах были описаны модели, обученные на более качественных выборках , . К недостаткам            3 4

опубликованных моделей можно также отнести то, что в большинстве случаев их прогностическая            

способность не была оценена с помощью кросс-валидации или независимой тестовой выборки с            

высоким структурным разнообразием . И только небольшая часть этих моделей была протестирована в            5

экспериментальных условиях (биологическое тестирование), в результате чего были обнаружены новые          

молекулы, обладающие антибактериальной активностью. В настоящей работе большое внимание было          

уделено вышеупомянутым недостаткам: подготовке разнообразной обучающей выборки, хорошо        

покрывающей химическое пространство, изучению различных архитектур моделей и их         

экспериментальной валидации. 

 

Целью работы является разработка компьютерной модели для прогнозирования        

антибактериальной активности малых молекул с высоким структурным разнообразием с применением          

методов машинного обучения. Для достижения этой цели ставились следующие ​задачи​: 

1. Создание базы данных известных активных молекул и соединений, которые в ходе биологических             

тестов не продемонстрировали антибактериальную активность, для дальнейшего учета при отборе          

молекул. 

2. Отбор молекул, доступных в коммерческих коллекциях, на первый этап высокопроизводительного           

скрининга (ВПС) с использованием метода, позволяющего отбирать молекулы с высоким структурным           

разнообразием.  

3. Анализ полученных в ходе биологического скрининга результатов, описание и характеристика           

химического пространства и подготовка представительной обучающей выборки. Расчет и отбор          

молекулярных дескрипторов. 

4. Тестирование различных алгоритмов машинного обучения и разработка оптимальной         

прогностической модели. 

2 ​Yang X.-G. et al. Prediction of antibacterial compounds by machine learning approaches // J. Comput. Chem. 2009. Vol. 30, № 8. P.                       
1202–1211. 
3 ​Masalha M. et al. Capturing antibacterial natural products with in silico techniques // Mol. Med. Rep. 2018. Vol. 18, № 1. P.                       
763–770. 
4 ​Wang L. и др. Discovering new agents active against methicillin-resistant Staphylococcus aureus with ligand-based approaches // J.                  
Chem. Inf. Model. 2014. Т. 54. № 11. С. 3186–3197. 
5 ​Durrant J.D., Amaro R.E. Machine-learning techniques applied to antibacterial drug discovery // Chem. Biol. Drug Des. 2015. Vol.                   
85, № 1. P. 14–21. 

 

http://paperpile.com/b/N1U4qS/hVnO5
http://paperpile.com/b/N1U4qS/hVnO5
http://paperpile.com/b/N1U4qS/bMPeN
http://paperpile.com/b/N1U4qS/bMPeN
http://paperpile.com/b/B99Ru3/1RPt
http://paperpile.com/b/B99Ru3/1RPt
http://paperpile.com/b/SzkrRJ/PPEJ
http://paperpile.com/b/SzkrRJ/PPEJ


5 

5. Валидация построенной модели с использованием независимой тестовой выборки молекул, анализ           

полученных в ходе биологического тестирования результатов, оценка прогностической способности         

модели. 

 

Научная новизна. ​В ходе исследования был предложен и реализован метод рационального           

отбора малых органических молекул с высоким структурным разнообразием, позволяющий сохранить          

покрытие химического пространства. С помощью этого метода был отобран и протестирован большой            

набор молекул на предмет их антибактериальной активности. На основе результатов скрининга была            

сформирована обучающая выборка, состоящая из более чем 74 тыс. малых молекул с экспериментально             

определенной антибактериальной активностью по отношению к штамму ​E. сoli (ΔtolC) в единых            

условиях. Важно отметить, что аналогов такого представительного обучающего набора молекул в           

научной литературе не описано. Впервые был проведен анализ привилегированных подструктур,          

встречающихся в активных и неактивных молекулах, и обнаружены значимые закономерности.          

Впервые для решения задачи прогнозирования антибактериальной активности был применен метод          

генеративного топографического картирования. Многие найденные с помощью модели молекулы         

показали высокую антибактериальную активность и могут рассматриваться в качестве перспективных          

соединений для дальнейшей оптимизации. Некоторые обнаруженные молекулы ингибируют        

трансляцию и обладают низкой цитотоксичностью (CC​50​) по отношению к панели эукариотических           

клеточных линий, обеспечивая тем самым высокий индекс селективности (ИС). На основе           

предварительного патентного исследования, ряд молекул можно отнести к классу патентоспособных. 

 

Научно-практическая значимость. Разработанный метод рационального отбора потенциально       

активных и обладающих высоким структурным разнообразием молекул, позволяет снизить общее          

количество молекул для биологического тестирования, при этом сохраняя хорошее покрытие          

химического пространства. Разработанная компьютерная модель позволяет прогнозировать       

антибактериальную активность соединений (хит-рейт 24% на независимой тестовой выборке с высоким           

структурным разнообразием). В ходе экспериментов были обнаружены ранее не описанные молекулы с            

высокой антибактериальной активностью, в том числе соединение, активное в отношении клинически           

значимых штаммов (5'-[(4-бромбензоил)амино]-2,3'-битиофен-4'-карбоновая кислота). 

Результаты диссертационного исследования внесли значительный вклад в работу по гранту РНФ           

№17-74-30012 «Новый рациональный подход к разработке антибактериальных и противоопухолевых         

лекарственных молекул с применением технологии высокопроизводительного скрининга» 
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Положения, выносимые на защиту.  

1. Наибольший вклад в разделение активных и неактивных молекул вносят следующие химические           

группы: карбоксильная группа, α,β-ненасыщенные карбонилы и аллилы, имидазол, хинолин и          

бензимидазол (характерны для активных молекул); фуран, пиперазин, пропаноильная группа и          

бензодиоксольный фрагмент (характерны для неактивных молекул).  

2. Наибольший вклад в разделение активных и неактивных молекул вносят следующие          

молекулярные дескрипторы: HBD (количество потенциальных доноров водородной связи), Hy         

(индекс гидрофильности), RB (число свободно вращающихся связей), logS (логарифм         

растворимости в воде), и др.  

3. Наилучшую точность для прогнозирования антибактериальной активности на обучающей        

выборке в проведенном эксперименте показал алгоритм градиентного бустинга. 

4. При валидации прогностической способности на независимой тестовой выборке с высоким          

структурным разнообразием хит-рейт эксперимента составил 24%, что гораздо выше по          

сравнению с показателем в 2% при рандомном скрининге. 

5. Обнаруженные с помощью модели хемотипы соединений обладают активностью, сравнимой с          

известными лекарствами (левофлоксацин и эритромицин). Одно из соединений (соединение ​1 –           

5'-[(4-бромбензоил)амино]-2,3'-битиофен-4'-карбоновая кислота) показало активность в     

отношении клинически значимого штамма ​S. aureus​.  

 

Личный вклад автора и апробация работы.  

Автором были проведены работы по сбору данных и референсных баз молекул, их подготовке и              

обработке. Были реализованы оригинальные программные модули для отбора молекул и модели для            

прогнозирования активности. Был проведен анализ данных результатов биологического тестирования.  

Результаты, полученные в ходе проделанной работы, были представлены на всероссийских и           

международных конференциях: XXVIII Зимняя молодежная научная школа "Перспективные        

направления физико-химической биологии и биотехнологии"​, Институт Биоорганической Химии РАН,         

Россия, 8-11 февраля 2016; Международная конференция Chemical Biology 2016, EMBL Heidelberg,           

Германия, 31 августа - 3 сентября 2016; V Съезд физиологов СНГ, V Съезд Биохимиков России, Сочи,                

Россия, 4-8 октября 2016; Международная конференция FEBS 2018, Прага, Чехия, 7-12 июля 2018             

(итого – 4 научных конференции). 
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Публикации. ​По теме диссертации опубликовано 7 печатных работ, среди них: 6 в журналах,             

рекомендованных ВАК, 1 в тезисах международных научных конференций, 6 в международных           

журналах, индексируемых в базах данных Scopus и WoS. 

 

Структура и объем диссертации. ​Работа состоит из введения, трех глав, заключения, выводов,            

списка сокращений, и списка литературы. Общее количество страниц: 113. Работа содержит 17            

иллюстраций и 18 таблиц; список литературы включает 129 наименований. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении ​дается краткая характеристика работы, ее актуальность, научная новизна и           

практическая значимость. Рассмотрены цели и задачи работы, а также положения, выносимые на            

защиту. 

В первой главе приведен краткий обзор основных классов антибактериальных веществ, их           

механизмов действия и видов лекарственной устойчивости микроорганизмов. Также рассматриваются         

актуальные проблемы в сфере медицинской химии антибактериальных молекул. Приведен обзор          

опубликованных компьютерных моделей для прогнозирования антибактериальной активности,       

обозначены их основные недостатки. 

Во второй главе описана работа с базами данных (сбор, обработка, очистка и подготовка             

данных), расчет молекулярных дескрипторов, отбор соединений на стадию ВПС, методы          

компьютерного моделирования и методы биологического тестирования. 

Для того, чтобы не проводить тестирование молекул, для которых уже была описана            

антибактериальная активность, был проведен анализ баз данных ChEMBL и Thompson Integrity           

Database. На основе этого анализа была собрана выборка активных (>30 тыс. молекул) и             

протестированных, но неактивных молекул (>200 тыс.), которые были впоследствии исключены из           

рассмотрения. Отбор молекул на стадию ВПС осуществлялся с использованием доступных коллекций           

органических соединений, в частности компаний ХимРар и InterBioScreen (IBS). Для этого была            

подготовлена общая база данных, содержащая 2.2 млн. структур. В то время как коллекция ХимРар в               

основном содержит органические молекулы синтетического происхождения, коллекция IBS содержит         

большое количество природных молекул и их близких аналогов. Для отбора молекул на стадию ВПС из               

этих коллекций был предложен метод, позволяющий сохранить покрытие химического пространства          
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молекул с учетом их 3D формы (для расчета дескрипторов формы молекулы использовался метод USR –               

ultrafast shape similarity​). 

Биологическое тестирование на стадии ВПС проводилось с использованием уникальной         

платформы, описанной ранее в ряде научных публикаций . Эта платформа позволяет не только            6

измерить антибактериальную активность молекул, но и выяснить их механизм действия (ингибирование           

трансляции, повреждение ДНК или какой-либо другой). Антибактериальная активность была         

предварительно оценена тщательным визуальным анализом и измерением области ингибирования роста          

бактерий: 0-4 мм («-»), 4-7 мм («+/-»), 7-11 мм («+»), 11-16 мм («++»), 16-20 мм («+++»), 20-25 мм                  

(«++++»). При дальнейшем формировании обучающей выборки, соединения с незначительной зоной          

ингибирования роста («-», «+/-» и «+») были отнесены к классу неактивных, поскольку на этой стадии               

использовались относительно высокие концентрации соединений. Молекулы, которые вызывали        

сильное ингибирование роста бактерий («++», «+++», «++++»), были классифицированы как активные.           

Для наиболее активных молекул проводили изучение ингибирования трансляционной активности ​in vivo           

(​с использованием штамма ​E.coli ΔtolC) и ​in vitro ​(в бесклеточной системе на основе изолированных              

рибосом (S30 из ​E. coli​) и мРНК люциферазы светлячка).  

Обучающая выборка была сформирована на основе базы из 140 тыс. соединений, состоящей из             

результатов биологического тестирования, и дополненной активными молекулами из базы Thomson          

Reuters Integrity (12 тыс. структур). Структуры, которые не соответствуют наиболее общим критериям            

лекарственного подобия, были удалены. ​Затем база данных была кластеризована с использованием           

программы ChemoSoft: порог 2D подобия Танимото ≥0.5, количество структур в кластере ≥5. С целью              

увеличения общего разнообразия выборки и уменьшения количества похожих хемотипов, из каждого           

кластера отобрали по 30 структур с максимальным коэффициентом разнообразия, а также оставили            

уникальные соединения, не вошедшие ни в один кластер. В результате финальная база данных             

содержала 74567 структур (8724 активных и 65843 неактивных молекул). Для того, чтобы            

иллюстрировать покрытие химического пространства сформированным набором соединений, из каждой         

выборки было отобрано случайным образом по 1000 молекул, и для этих соединений было сделано              

отображение с помощью метода нелинейного снижения размерности и визуализации многомерных          

переменных (t-​distributed stochastic neighbor embedding​, t-SNE). Из рисунка 1 видно, что выборка            

равномерно покрывает коммерчески доступное химическое пространство. 

6 ​Osterman I.A. и др. Sorting Out Antibiotics’ Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput                  
Screening of Ribosome and DNA Biosynthesis Inhibitors // Antimicrob. Agents Chemother. 2016. Т. 60. № 12. С. 7481–7489. 

 

http://paperpile.com/b/B99Ru3/h94kT
http://paperpile.com/b/B99Ru3/h94kT
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Рисунок 1. Визуализация результатов, полученных с применением алгоритма t-SNE: из каждого           

подмножества было выбрано 1000 молекул случайным образом. 

Молекулярные дескрипторы (всего: 1749) были рассчитаны для всего набора обучающих данных           

с использованием программных пакетов Dragon, ChemoSoft, MOE и SmartMining. Количество          

дескрипторов было уменьшено до 1243 за счет удаления постоянных, почти постоянных и            

высокоскоррелированных (R​2​>0.9) дескрипторов. Для всех дескрипторов был рассчитан t-критерий         

Стъюдента, и на основе него был отобран финальный список из 40 дескрипторов.  

Обучающий набор данных был разделен на выборку для кросс-валидации (80% от общего            

набора) и отложенную тестовую выборку (20% от общего набора). Кросс-валидация (с разделением на 4              

части) использовалась, чтобы избежать переобучения модели, а отложенная выборка использовалась          

для предварительной оценки прогностической способности разработанных моделей. 

В ходе экспериментов были исследованы следующие методы машинного обучения: градиентный          

бустинг, метод k-ближайших соседей, случайный лес, нейронная сеть прямого распространения,          

логистическая регрессия и генеративное топографическое картирование. Для построения моделей         

применялись алгоритмы, реализованные в библиотеках на языке ​Python​: ​xgboost​, ​sklearn​, ​ugtm​.  

В третьей главе ​описаны основные результаты, которые были получены в ходе компьютерного            

моделирования и экспериментальной валидации. 

В ходе ВПС было протестировано 139152 молекулы, из которых 106143 – из коллекции             

компании ХимРар и 33509 – из коллекции компании IBS. C помощью ранее описанной репортерной              

системы для этих соединений, помимо активности в отношении ​E. coli​, был также определен один из               

трех механизмов действия – ингибирование трансляции, синтеза ДНК, либо другой механизм действия,            

не связанный с двумя предыдущими. По результатам первого раунда скрининга был обнаружен ряд             
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соединений, активных в отношении ​E. coli ​(ΔTolC). Из 139152 молекул, 2024 показали заметный эффект              

(больше "+").  

Химическое пространство протестированных молекул было исследовано на предмет наличия         

привилегированных подструктур, различающих активные и неактивные соединения. Среди категории         

негетероциклических фрагментов метокси- (30.5% и 35% для активных и неактивных соединений,           

соответственно) и карбонильная группа (39% и 25%) являются наиболее представленными. Неактивные           

соединения содержат в 1.56 раза больше карбонильных фрагментов в отличие от активных, в то время               

как метоксигруппа не обеспечивает значимого разделения между двумя рассматриваемыми классами.          

Частота встречаемости пропаноильного фрагмента среди неактивных молекул в 3 раза выше, чем у             

активных. Карбоксильные, α,β-ненасыщенные карбонилы и аллилы являются наиболее характерными         

подструктурами для антибактериальных соединений: их частота в 3.75, 6 и 9 раз выше по сравнению с                

неактивным классом. Среди гетероциклических фрагментов индол является наиболее представленным         

(12%) в антибактериальных соединениях. Доля фрагментов имидазола, хинолина и бензимидазола          

значительно смещена в сторону антибактериальных соединений, в то время как фуран и пиперазин             

(~7%) в 2.3 раза чаще встречается в неактивных молекулах. Кроме того, 1,3-бензодиоксольный            

фрагмент является предпочтительным для неактивных молекул, в то время как изоксазол одинаково            

представлен в обоих классах.  

На основе данных биологического тестирования была подготовлена обучающая выборка из          

74567 тыс. структур, для которых были рассчитаны и отобраны молекулярные дескрипторы (на основе             

t-критерия Стъюдента). Следует отметить, что молекулярные дескрипторы, отобранные для процедуры          

обучения, отражают статистические наблюдения, приведенные выше, и тесно связаны с важными           

физико-химическими свойствами молекул. Например, общая полярность, представленная как S(-OH),         

S(-O-), S(=N-), S(>N-), HB2, a_acc, O-057/061, PEOE_VSA_FPOS и TPSA, соответствует метокси-,           

карбонил-, пропаноил-, карбоксил-, α,β-ненасыщенным карбонильным группам и гетероциклам.        

Дескрипторы Hy и SlogP_VSA0 отражают липофильность молекулы, особенно в случае линейных и            

разветвленных алкильных фрагментов, а также ароматических фрагментов. Топология молекулярной         

структуры описывается, например, дескрипторами M1, SPI, EEig07x, Q', VEA2 и GATS1m. 

Для первоначальной оценки прогностической способности моделей были построены базовые         

классификаторы со стандартными параметрами: модель k-ближайших соседей, градиентного бустинга         

на решающих деревьях, случайного леса, логистической регрессии, нейронной сети и генеративного           

топографического картирования. Обучение и оценка классифицирующей способности моделей        

производилась на обучающей выборке с помощью кросс-валидации (с разделением на 4 части), а также              
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на отложенной выборке. В ходе экспериментов для всех шести моделей были рассчитаны значения ​ROC              

AUC (площадь под кривой ​ROC​), ​F1 (гармоническое среднее между точностью и полнотой), ​Precision             

(точность) и ​Recall (полнота) для активных молекул. Наилучшие показатели метрики ​Precision           

получились у градиентного бустинга (​Precision = 0.846) и случайного леса (​Precision = 0.866). Этот              

показатель важен в том случае, когда необходимо максимизировать долю активных молекул при            

биологическом тестировании. При этом, стоит также учитывать показатель ​Recall​, значение которого           

отражает долю найденных активных соединений из тех, которые в принципе можно было найти. Из              

базовых моделей, самый высокий показатель этой метрики получился у генеративного          

топографического картирования (​Recall = 0.678). Далее были проведены вычислительные эксперименты          

по поиску оптимальных гиперпараметров для каждой из моделей. Поиск производился с помощью            

модуля ​RandomizedSearchCV (из библиотеки ​sklearn​) на заранее заданном множестве гиперпараметров, с           

максимизацией метрики ​F1​. Результаты представлены в таблице 1. 

Таблица 1.​ Результаты обучения моделей после подбора гиперпараметров 

Градиентный бустинг 

Выборка ROC AUC F1 Precision Recall 

Кросс-валидация 0.934 0.928 0.970 0.891 

Отложенная 
выборка 

0.928 0.789 0.945 0.834 

Метод ближайших соседей 

Выборка ROC AUC F1 Precision Recall 

Кросс-валидация 0.774 0.549 0.596 0.510 

Отложенная 
выборка 0.761 0.6 0.641 0.564 

Случайный лес 

Выборка ROC AUC F1 Precision Recall 

Кросс-валидация 0.929 0.646 0.920 0.498 

Отложенная 
выборка 0.754 0.657 0.91 0.514 

Логистическая регрессия 

Выборка ROC AUC F1 Precision Recall 

Кросс-валидация 0.841 0.391 0.703 0.271 

Отложенная 0.628 0.391 0.707 0.27 
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выборка 

Нейронная сеть 

Выборка ROC AUC F1 Precision Recall 

Кросс-валидация 0.854 0.597 0.621 0.574 

Отложенная 
выборка 0.773 0.625 0.675 0.583 

Генеративное топографическое картирование* 

Выборка ROC AUC F1 Precision Recall 

Отложенная 
выборка 0.763 0.774 0.781 0.753 

Независимая 
тестовая выборка 0.751 0.753 0.764 0.742 

*обучение проводилось на выборке со сбалансированными классами 
 

Оценка прогностической способности построенных моделей была проведена с использованием         

независимой тестовой выборки из 5000 малых органических молекул, обладающих сравнительно          

низким структурным подобием – менее 0.5 (коэффициент Танимото) по отношению к обучающим            

примерам. Эти молекулы были также предоставлены компаниями ХимРар и IBS. Антибактериальная           

активность соединений была спрогнозирована с использованием разработанных моделей, а затем          

оценена в соответствии с биологическими протоколами, описанными ранее. На основе полученных           

результатов были рассчитаны метрики ​ROC AUC​, ​F1​, ​Precision и ​Recall для независимого тестового             

набора молекул (таблица 2). Это позволило оценить способность модели прогнозировать активность для            

молекул, отличающихся от тех, которые представлены в обучающей выборке. 

Таблица 2. Результаты валидации модели с применением независимого тестового набора          

молекул 

Градиентный бустинг 

Выборка ROC AUC F1 Precision Recall 

Отложенная выборка 0.934 0.928 0.970 0.891 

Независимая тестовая 

выборка 
0.651 0.362 0.243 0.791 
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*для построения модели использовались следующие параметры: ​booster = 'gbtree',         

colsample_bytree = 0.817, ​gamma = 0.463, ​learning_rate = 0.233, ​max_delta_step ​= 0, ​max_depth = 8,               

min_child_weight​ = 2, ​n_estimators​ = 950, ​objective ​= 'binary:logistic', ​subsample ​= 0.731 

 

В ходе биологического тестирования было обнаружено 105 активных соединений (доля          

найденных активных молекул в общем эксперименте = 2.1%). Из них верно спрогнозированными            

алгоритмом активными молекулами оказались 24%. Следует особо отметить, что среди всех активных            

соединений, обнаруженных в ходе первого раунда ВПС (молекулы, включенные в обучающую выборку)            

и из независимой тестовой выборки, только несколько соединений продемонстрировали значительную          

ингибирующую активность в отношении ​E. coli (дикий тип). Несколько молекул вызывали устойчивый            

SOS-ответ или ингибирование трансляции. Некоторые соединения индуцировали оба сигнала, но с           

относительно низкой интенсивностью. Наиболее активные молекулы, найденные в результате         

биологического тестирования представлены в таблице 3. 

Таблица 3. ​Примеры активных молекул, для которых была верно спрогнозирована          

антибактериальная активность 

ID Структура 
Актив

ность 

 МИК 

(мкг/мл, 

ΔtolC) 

Механизм 

действия 

In vitro 

трансляц

ия 

LVX 

 

++++ 
0.016±0.0

09 
SOS - 

ERY 

 

++++ 2.5±0.5 T + 

1 +++ 1.8±0.8 T + 
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2 

 

+++ 2±0.4 T + 

3 ++++ 3.9±1.4 S+T + 

4 

 

+++ 6.25±1.3 T + 

5 

 

++ 12.5±1.9 T ± 

6 

 

+ 42±5 T + 

7 +++ 0.8 SOS - 

 



15 

8 

 

+++ 20.8 SOS - 

9 

 

+++ <0.2 O - 

10 

 

+++ <0.2 O - 

11 

 

+++ 0.8 O - 

12 

 

+++ 0.8 O - 

* LVX – левофлоксацин; ERY – эритромицин; МИК – минимальная ингибирующая концентрация; ИС =            

индекс селективности = CC​50​(мкг/мл или %)/МИК(мкг/мл): H – высокий, ИС>100; M – средний,             

20<ИС<100; L – низкий, ИС<20; T – ингибирование трансляции, SOS – SOS-ответ, O – другой механизм                

действия. 

Как показано в таблице 3, среди представленных молекул наибольшая антибактериальная          

активность была выявлена ​​для аналога фторхинолона ​7 (МИК=0.8 мкг/мл),         

6​H​-тиазоло[4,5-d]пиримидинона ​9 (МИК<0.2 мкг/мл), (6-оксо-1​H​-пиримидин-2-ил)пиразола ​10      
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(МИК<0.2 мкг/мл), замещенного тиадиазола ​11 (МИК=0.8 мкг/мл) и гидроксипиразола ​12 (МИК=0.8           

мкг/мл). Cоединения ​1 и ​2 сильно ингибировали трансляцию при 16 мкг/мл и показали хороший индекс               

селективности. Кроме того, соединение ​2 продемонстрировало антибактериальную активность в         

отношении нескольких мутантных штаммов. Два соединения ​7 и ​8 вызывали значительный SOS-ответ            

(МИК=0.8 и 20.8 мкг/мл соответственно), однако соединение ​8 показало более низкий индекс            

селективности. Среди молекул, действующих по иным механизмам, соединение ​11 можно отнести к            

широкому классу ингибиторов дигидроптероат-синтетазы на основе сульфаниламидов.       

Патентоспособность молекул оценивали с использованием баз данных SciFinder и Integrity Database. 

Соединение ​1 ​было изучено на предмет активности по отношению к клинически значимым            

штаммам: ​E. coli (ATCC 25922), ​K. pneumoniae (181210171-2), ​P. aeruginosa (ATCC 27853), ​S. aureus              

(ATCC USA 206) и ​C. albicans (181210169-1) (таблица 4). Молекула продемонстрировала умеренную            

активность в отношении грамотрицательных бактерий ​K. pneumoniae ​и незначительно ингибировала          

рост бактерий кишечной палочки. Аналогичный эффект наблюдался в случае мультирезистентного          

штамма ​C. albicans​. Активности по отношению к ​K. pneumoniae обнаружено не было​. ​Высокая             

антибактериальная активность соединения ​1 была выявлена в тестах на грамположительных штаммах           

золотистого стафилококка. Зона ингибирования роста бактерий превышала 20 мм. 

Таблица 4. Антибактериальная активность соединения ​1 в отношении выбранных клинически          

значимых бактериальных штаммов 

Вид ID штамма Коллекция Активность 

Escherichia coli ATCC 25922 ATCC* ± 

Klebsiella pneumoniae 181210171-2 Клиника БГМУ + 

Pseudomonas aeruginosa ATCC 27853 ATCC - 

Staphylococcus aureus ATCC USA 206 Клиника БГМУ ++++ 

Candida albicans 181210169-1 ATCC ± 

*ATCC – Американская коллекция типовых культур; **Башкирский Государственный 

Медицинский Университет 

 

 

 



17 

ВЫВОДЫ 

1. При анализе химического пространства активных и неактивных антибактериальных молекул         

были обнаружены характерные структурные особенности для обоих классов молекул: среди          

активных чаще всего встречаются карбоксильная группа, α,β-ненасыщенные карбонилы и         

аллилы, имидазол, хинолин и бензимидазол. Среди неактивных молекул чаще всего встречаются           

фуран, пиперазин, пропаноильная группа и бензодиоксольный фрагмент.  

2. Обнаружены молекулярные дескрипторы, которые вносят наибольший вклад в разделение         

активных и неактивных молекул, среди них: HBD (количество потенциальных доноров          

водородной связи), Hy (индекс гидрофильности), RB (число свободно вращающихся связей), logS           

(логарифм растворимости в воде), и др.  

3. Наилучшую точность для прогнозирования антибактериальной активности на обучающей        

выборке в проведенном эксперименте показал алгоритм градиентного бустинга (​Precision =          

97%). Также довольно высокую точность показали случайный лес (​Precision = 92%) и            

логистическая регрессия (​Precision​ = 70%).  

4. На независимой тестовой выборке была показана хорошая способность построенной модели          

прогнозировать активность для новых соединений, структурно отличающихся от молекул в          

обучающей выборке (общий хит-рейт составил 24% по сравнению с 2% при рандомном            

скрининге).  

5. В результате экспериментальной валидации модели были найдены ранее не описанные в научной            

литературе хемотипы соединений (6​H​-тиазоло[4,5-d]пиримидинон,    

6-оксо-1​H​-пиримидин-2-ил)пиразол и др.), обладающие активностью, сравнимой с известными        

лекарствами (левофлоксацин и эритромицин, средний MIC~1-2 мкг/мл). Одно из соединений          

(соединение ​1 – 5'-[(4-бромбензоил)амино]-2,3'-битиофен-4'-карбоновая кислота) показало      

активность в отношении клинически значимого штамма ​S. aureus​.  
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