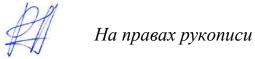
МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ФИЗТЕХ-ШКОЛА АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ



Акиньшин Роман Валерьевич

Новый тип неустойчивости тонкого вихревого кольца в идеальной жидкости

Специальность 01.02.05 – Механика жидкости, газа и плазмы

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре теоретической и прикладной аэрогидромеханики факультета аэромеханики и летательной техники Московского физико-технического института

Научный руководитель:

Копьев Виктор Феликсович — доктор физико-математических наук, профессор, Государственный научный центр Федеральное государственное унитарное предприятие «Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского», начальник НИО-9

Официальные оппоненты:

Петров Александр Георгиевич — доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт проблем механики имени А.Ю. Ишлинского Российской академии наук, ведущий научный сотрудник.

Куйбин Павел Анатольевич — доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт теплофизики имени С.С. Кутателадзе Сибирского отделения Российской академии наук, заместитель директора по научной работе.

Никитин Николай Васильевич — доктор физико-математических наук, научно-исследовательский институт механики МГУ имени М.В. Ломоносова, заведующий лабораторией общей аэродинамики.

Защита диссертации состоится 06.12.2019 г. в 15:00 часов на заседании диссертационного совета МГУ.01.03 Московского государственного университета имени М.В.Ломоносова по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ, д. 1, Главное здание, механикоматематический факультет, аудитория 1610.

E-mail: pelevina.daria@gmail.com

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: http://istina.msu.ru/dissertations/242283276

Pleuef

Автореферат разослан «31» октября 2019 г.

Ученый секретарь диссертационного совета, кандидат физико-математических наук

Д.А. Пелевина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Рассмотрение динамики вихревого кольца представляет большой интерес, поскольку это достаточно простой объект, который позволяет исследовать механизмы генерации шума в турбулентных течениях в чистом виде. Уникальность этого течения состоит в том, что оно легко может быть создано на опыте для экспериментального исследования, допускает теоретическое описание как стационарных, так и колебательных режимов в рамках основных уравнений механики сплошной среды, и не подвержено влиянию внешних границ.

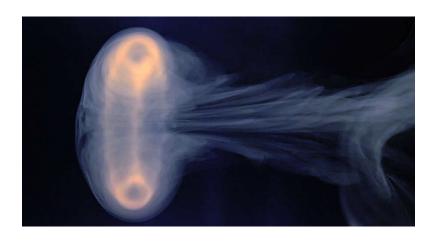


Рис. 1. Фотография вихревого кольца.

В то же время вихревое кольцо представляет собой 3-мерное течение, в котором проявляются эффекты, связанные с кривизной вихревых линий. Это позволяет исследовать с его помощью многие проблемы, связанные с взаимодействием собственных колебаний, которые являются несвязанными в случае двумерного вихря (вихрь Ранкина). Взаимодействие колебаний может приводить к новым явлениям с точки зрения устойчивости течений, динамики и акустики вихрей, поэтому исследование взаимодействия колебаний вихревого кольца является актуальным.

Степень ее разработанности. Имеется метод Френкеля для нахождения стационарного течения вихревого кольца с произвольным профилем завихренности и теория, описывающая динамику возмущенного течения для изохронного вихревого кольца в рамках главного приближения

линейной задачи. Имеющиеся решения задачи о колебаниях тонкого вихревого кольца в идеальной жидкости не позволяют исследовать взаимодействие возмущений в области слияния собственных частот и ответить, в том числе, на вопрос, является ли вихревое кольцо устойчивым по отношению к длинноволновым (длина волны порядка размера всего кольца) колебаниям. Это связано с вырождением собственных частот для колебаний разного типа, которое не может быть снято в рамках полученных решений. Для снятия вырождения должно быть получено решение, имеющее большее число членов разложения по малому параметру тонкости кольца.

Цель работы. Главной особенностью вихревого кольца как колебательной системы является наличие в спектре точек сгущения собственных частот, а также наличие возмущений различного типа, которые в силу кривизны могут взаимодействовать между собой. Основной целью настоящей работы является исследование устойчивости длинноволновых (длина волны порядка размера всего кольца) колебаний тонкого вихревого кольца в идеальной жидкости вблизи точек сгущения собственных частот.

Задачи исследования:

- Построение алгоритма решения задачи для стационарного изохронного вихревого кольца методом последовательных приближений.
- Определение базисных деформаций, представляющих собой отклик вихря на колебания его границы заданной формы и частоты.
- Определение скорости смещения границы вихря при заданной деформации области завихренности.
- Получение системы алгебраических линейных уравнений и получение дисперсионного уравнения.
- Исследование устойчивости колебательной системы вблизи точек сгущения собственных частот. Определение инкремента неустойчивости и определение диапазона параметров системы, в которой она является неустойчивой.

• Энергетический анализ колебаний и исследование взаимодействия мод с энергией разного знака вблизи точек сгущения.

Научная новизна:

- Впервые разработан алгоритм получения стационарного течения в ядре вихревого кольца при условии изохронности течения в ядре.
- Разработан метод нахождения базисных деформаций с использованием программ символьной математики.
- Получено дисперсионное уравнение для определения собственных частот колебаний в более высоком приближении по малому параметру, чем в предшествующих работах.
- Обнаружена новая неустойчивость вихревого кольца, которая реализуется в области длинноволновых колебаний.

В Теоретическая И практическая значимость работы. теоретическом плане изучение динамики вихревого кольца представляет собой одну из фундаментальных проблем гидродинамики. Многие процессы, происходящие в аэродинамических потоках, определяются эволюцией локализованных вихрей и их взаимодействием. Поэтому теоретические исследования в этой области служат основой для понимания широкого круга явлений в механике сплошной среды и могут оказать серьезное влияние на решение важных практических вопросов, связанных снижением co аэродинамического шума, создаваемого сдвиговыми турбулентными течениями. Принципиальным является вопрос, поставленный в работе, о связи колебаний вихрей вблизи точек сгущения спектра собственных частот. Исследование структуры спектра вблизи таких точек может приводить не только к обнаружению новых неустойчивостей, но и в перспективе к новому пониманию роли этих точек в динамике вихрей.

Методы исследования. При выполнении диссертационной работы применялись:

- теоретические методы: теория вихревых течений в идеальной жидкости, теория интегрального и дифференциального исчисления, тензорный анализ.
- использование программ символьной математики.

Положения, выносимые на защиту:

- Стационарное решение для тонкого изохронного вихревого кольца в идеальной жидкости получается с помощью модификации процедуры Френкеля.
- Базисные деформации находятся с помощью математического аппарата поля смещения и определяют внутреннее решение в области ядра вихревого кольца в задаче о малых вынужденных колебаниях.
- Длинноволновые собственные колебания изохронного вихревого кольца оказываются неустойчивыми. Данная неустойчивость является результатом взаимодействия мод с различным знаком энергии вблизи точки сгущения собственных частот.

Достоверность результатов.

Достоверность полученных результатов диссертационной работы обеспечена использованием современных и классических теоретических методов исследования, совпадением результатов в частных случаях с известными в литературе решениями и публикацией результатов в рецензируемых журналах.

Апробация результатов. Результаты работы докладывались на следующих конференциях:

- 1. 27-я научно-техническая конференция по аэродинамике, п. Володарского, 2016 г.
- 2. 59-я научная конференция МФТИ, Жуковский, 2016 г.
- 3. Конференция, посвященная 75-летию со дня основания СибНИА, Новосибирск, 2016 г.

- 4. Вторая Всероссийская конференция молодых ученых и специалистов «Акустика среды обитания» (Москва, МГТУ им. Н.Э. Баумана 2017).
- 5. Всероссийская конференция с международным участием "Современные проблемы механики сплошных сред и физики взрыва», посвященная 60-летию Института гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск, 2017 г.
- 6. 28-я научно-техническая конференция по аэродинамике, п. Володарского, 2017 г.
- 7. Пятая открытая всероссийская конференция по аэроакустике, Звенигород, 2017 г.
- 8. 60-я научная конференция МФТИ, Жуковский, 2017 г.
- 9. Третья Всероссийская конференция молодых ученых и специалистов «Акустика среды обитания» (Москва, МГТУ им. Н.Э. Баумана 2018).
- 10. Всероссийская конференция молодых ученых механиков, Сочи, 2018 г.
- Четвертая Всероссийская конференция молодых ученых и специалистов «Акустика среды обитания» (Москва, МГТУ им. Н.Э. Баумана 2019).
- 12. 12-ый Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, Уфа, 2019 г.
- 13. Шестая открытая всероссийская конференция по аэроакустике, Звенигород, 2019 г.

Публикации по теме диссертации. Основные результаты диссертационного исследования изложены в 13 научных публикациях, из них 3 статьи опубликованы в изданиях, индексируемых в базах данных Web of Science и Scopus.

Личный вклад автора. В диссертации приведены результаты, полученные автором лично или при его непосредственном участии. Научный руководитель принимал участие в формулировке постановок задач и обсуждении полученных результатов. Автором разработаны и реализованы

оригинальные методы для решения поставленных задач. Автор лично представлял полученные результаты на научных конференциях и готовил к публикации научные статьи.

Структура и объем диссертации. Диссертация состоит из введения, 3 глав и заключения. Общий объем диссертации 99 страницы, включая 8 рисунков и 5 приложений. Список литературы включает 109 наименований.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во Введении дана общая характеристика диссертационной работы: обоснована актуальность работы, сформулированы цели и задачи исследований. Кратко рассмотрено состояние вопроса на момент начала исследований, сформулированы защищаемые положения, научная новизна работы и ее практическая ценность, описаны основные результаты работы и вклад автора в решение поставленных задач.

Структура работы состоит в следующем. Решение сложной трехмерной задачи разбивается на ряд более простых подзадач, имеющих в то же время и самостоятельный интерес. Сначала находится стационарное (выбирается среди возможных течений наиболее простое с точки зрения проведения аналитического исследования), затем в области интересующих частот строится внутреннее решение (полный набор базисных деформаций), далее для найденного в каждой базисной деформации движения границы вихря строится внешнее решение по Био-Савару, удовлетворяющее условию убывания на бесконечности, после чего нормальные скорости внешнего и внутреннего решений сшиваются на границе вихря, с тем, чтобы найти дисперсионное соотношение и набор собственных частот, при которых это возможно. Каждой из перечисленных подзадач посвящена отдельная глава.

Глава 1 посвящена исследованию стационарного решения в задаче о тонком вихревом кольце в невязкой, несжимаемой жидкости в безграничном пространстве. Для построения стационарных решений используется

процедура Френкеля, в которой проводится преобразование заданного распределения завихренности в плоском течении с круговыми линиями тока к стационарному вихревому кольцу в виде разложения по параметру тонкости кольца. Так, двумерный вихрь с постоянной завихренностью преобразуется в вихревое кольцо с однородным распределением, в котором модуль завихренности пропорционален расстоянию от оси симметрии. Для этой задачи найдены следующие, не полученные ранее, члены разложения.

В данной главе построен алгоритм нахождения течения изохронного вихревого кольца, в котором периоды обращения для всех жидких частиц в вихревом ядре одинаковы. Проблема состоит в том, что двумерное распределение, переходящее в соответствии с процедурой Френкеля в изохронное кольцо, заранее неизвестно. В частности, кольцо с однородным распределением не является изохронным, несмотря на изохронность исходного двумерного течения. В связи с этим процедура Френкеля существенно модифицирована так, что исходный 2-мерный профиль завихренности определяется как результат итерационной процедуры. Для построения изохронного решения в качестве первого приближения используется полученное в работе решение для вихревого кольца с однородным распределением, к которому на каждом шагу вычисляются необходимые поправки. Получение изохронного течения является ключевым шагом для исследования устойчивости 3-мерных колебаний вихревого кольца, поскольку спектр колебаний этого течения быть дискретный характер и может исследован имеет рамках аналитических методов.

В разделе 1.1 рассматривается постановка задачи нахождения стационарного решения. В работе используется система отсчета, движущаяся вместе с вихревым кольцом. В этой системе определяются цилиндрические координаты r, θ, z с осью, совпадающей с осью вихревого кольца, а также

полярные координаты ρ , ϕ в поперечном сечении вихревого кольца с центром в точке остановки течения (рис. 2).

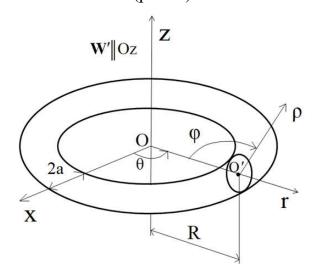


Рис. 2. Вихревое кольцо

Приводится выражение для функции тока и дается связь между полем скоростей и этой функцией в координатах r, θ, z . Вводится малый параметр ε , такой, что $\pi R^2 \left(\varepsilon^2 + \varepsilon^4 61/64 + O(\varepsilon^6) \right)$ соответствует площади сечения ядра вихревого кольца.

В разделе 1.2 описывается процедура последовательных приближений. Показывается, как можно определить преобразование координат, а, следовательно, и решение с любой заданной точностью, для любого заданного распределения завихренности.

В разделе 1.3 рассматривается получение стационарного движения для однородного вихревого кольца. Для однородного вихревого кольца распределение завихренности в ядре кольца задается до проведения итерационной процедуры и определяется как $\Omega(s) = \Omega_0$, где параметр s описывает линии тока внутри ядра вихревого кольца: $0 \le s \le 1$.. Для этого случая найдено преобразование координат с точностью до членов $\sim \varepsilon^3$.

В разделе 1.4 находится поле скорости для однородного вихревого кольца. Малый параметр задачи переопределяется так, что новый параметр

малости $\mu = a/R$ имеет геометрическую интерпретацию — отношение радиуса a круга, равного по площади поперечному сечению к радиусу вихревого кольца. В первых приближениях соотношение между малыми параметрами имеет вид

$$\mu = \varepsilon + \varepsilon^{2} 61/128 + \varepsilon^{4} \Big(137197 - 1152 \ln(8/\varepsilon) \Big) \Big(65 + 12 \ln(8/\varepsilon) \Big) + 27648 \Big(\ln(8/\varepsilon) \Big)^{2} \Big) / 98304 + O(\varepsilon^{6})$$

В разделе 1.5 выводится формула для вычисления периода обращения жидких частиц. Для этого удобно ввести новые криволинейные координаты $\sigma(\rho,\phi), \psi(\rho,\phi)$ такие, что контравариантные компоненты скорости $V_0^\sigma=0$ и $V_0^\psi=V_0^\psi(\sigma),$ а метрический тензор $|g|^{\frac{1}{2}}=\sigma$. Потребуем дополнительно, чтобы $\psi(\rho,0)=0,$ т.е. начало отсчета углов ψ и φ совпадало. Используя правила преобразования компонент скорости $V_0^\sigma=V_0^\rho\partial\sigma/\partial\rho+V_0^\varphi\partial\sigma/\partial\varphi,$ $V_0^\psi=V_0^\rho\partial\psi/\partial\rho+V_0^\varphi\partial\psi/\partial\varphi$ и метрического тензора $|g(\rho,\varphi,p)|^{\frac{1}{2}}=\partial(\sigma,\psi)/\partial(\rho,\varphi)|g(\sigma,\psi,p)|^{\frac{1}{2}},$ где $p=R\theta$ азимутальная координата вдоль линий завихренности (рис. 2), можно найти явные выражения для σ,ψ . Граница ядра стационарного изохронного вихревого кольца $\sigma_b=a(1-5\mu^2/16+\mu^4(-469+312\ln(8/\mu))/1024)+O(\mu^6)$ и компонента завихренности в вихревом ядре

$$\Omega^{s} = \Omega_{0} \left(1 + \mu^{2} \left(21\sigma^{2} \right) / \left(16a^{2} \right) + \mu^{4} 3 \left(75a^{4} + 960a^{2}\sigma^{2} + 3068\sigma^{4} \right) / \left(2048a^{4} \right) \right) - \mu^{4} \Omega_{0} \left(9 \left(5a^{2} + 32\sigma^{2} \right) / \ln \left(8 / \mu \right) \left(128a^{2} \right) - 9 \left(\ln \left(8 / \mu \right) \right)^{2} / 32 \right) + O(\mu^{6})$$

В этих координатах линии тока записываются в простом виде σ , p = const, а период обращения жидких частиц в ядре вихревого кольца оказывается

$$T = 2\pi / V_0^{\psi}(\sigma) \tag{1.1}$$

Показано, что для вихревого кольца с однородным распределением завихренности период обращения жидких частиц является переменным для

разных линий тока. Таким образом, течение с однородной завихренностью не является изохронным.

В разделе 1.6 находится течение в изохронном вихревом кольце. В отличие от однородного вихревого кольца, где заранее задается распределение завихренности $\Omega(s)$, необходимое в процедуре Френкеля, выражение для завихренности $\Omega(s)$ изохронного кольца само должно быть найдено из условия постоянства контравариантной компоненты скорости V_0^{ψ} на различных линиях тока с σ , p = const. В этом разделе показывается способ нахождения $\Omega(s)$ для изохронного вихревого кольца. Период (1.1) для изохронного вихревого кольца. Период (1.1) для

В разделе 1.7 проводится сравнение интегральных характеристик однородного и изохронного вихревых колец.

В главе 2 рассматривается задача о малых вынужденных колебаниях изохронного вихревого кольца. В этой главе выписывается основная система уравнений, и находятся решения (базисные деформации) для внутренней области вихревого кольца, при этом система базисных деформаций образует полный набор решений с произвольной формой возмущений границы ядра.

Главной целью данной главы является получение полного набора базисных деформаций в более высоком приближении по параметру μ , чем это было сделано в предшествующих работах. Это удается сделать с использованием решения для стационарного течения.

В разделе 2.1 находится основная система уравнений. Используется линеаризованное уравнение Гельмгольца для малого возмущения стационарного течения невязкой, несжимаемой жидкости

$$\frac{\partial \mathbf{\Omega'}}{\partial t} + \nabla \times (\mathbf{\Omega'} \times \mathbf{V_0}) + \nabla \times (\mathbf{\Omega} \times \mathbf{v}) = 0$$
 (2.1)

$$\mathbf{v} = \nabla \mathbf{A}, \quad \mathbf{A} = \frac{1}{4\pi} \int \frac{\mathbf{\Omega}'(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
 (2.2)

где Ω и V_0- завихренность и поле скорости стационарного течения, связанные соотношением $\Omega = \nabla \times V_0$. Ω , A и v — возмущения завихренности, векторного потенциала и скорости соответственно.

Подход, описывающий линейные возмущения в данной работе, основывается на использовании поля смещения $\mathbf{\epsilon}(\mathbf{r},t)$ в качестве основной функции. Для описания возмущений в потоке жидкости используется уравнение для поля лагранжевых смещений $\mathbf{\epsilon}$, эйлеровой переменной, которую можно формально определить соотношением связи с возмущениями скорости

$$\frac{\partial \mathbf{\varepsilon}}{\partial t} + \nabla \times (\mathbf{\varepsilon} \times \mathbf{V_0}) - \mathbf{v} = 0 \tag{2.3}$$

Поле смещения описывает преобразование стационарного поля завихренности Ω в возмущенное, связанное с лагранжевым смещением жидких частиц из точек \mathbf{r} в точки $\mathbf{r}+\mathbf{\epsilon}(\mathbf{r},t)$, где $\nabla\cdot\mathbf{\epsilon}=0$ при условии вмороженности поля завихренности. Из условия вмороженности для возмущений завихренности, возникающих при малом смещении $\mathbf{\epsilon}$ жидких частиц, следует:

$$\mathbf{\Omega}' = \nabla \times (\mathbf{\varepsilon} \times \mathbf{\Omega}) \tag{2.4}$$

Таким образом, система уравнений (2.1, 2.2) может быть заменена системой уравнений для поля смещений (2.3) и для возмущения скорости, которое с учетом (2.4) примет вид

$$\mathbf{v}(\mathbf{r}) = \nabla \times \frac{1}{4\pi} \int \frac{\nabla' \times (\mathbf{\epsilon} \times \mathbf{\Omega})}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$
 (2.5)

где $\nabla' = \partial / \partial \mathbf{r}'$.

В диссертации рассматривается ситуация с осесимметричным распределением завихренности, отличной от нуля лишь в области занятой вихревым кольцом (рис. 2). Как известно, векторное поле в ограниченной области M может быть определено по нормальной компоненте поля на границе G(M), ротору и дивергенции этого поля во всей области M. Будем понимать под векторным полем все выражение $\partial \epsilon / \partial t + \nabla \times (\epsilon \times \mathbf{V_0}) - \mathbf{v}$, а под областью M — область, в которой сосредоточена завихренность. Тогда уравнения(2.3), (2.5) эквивалентны системе уравнений

$$\frac{\partial}{\partial t} \nabla \times \mathbf{\varepsilon} + \nabla \times \left[\nabla \times \left(\mathbf{\varepsilon} \times \mathbf{V}_{\mathbf{0}} \right) \right] - \nabla \times \left(\mathbf{\varepsilon} \times \mathbf{\Omega} \right) = 0, \ \mathbf{r} \in M,$$
 (2.6a)

$$\nabla \cdot \mathbf{\varepsilon} = 0, \ \mathbf{r} \in M, \tag{2.6b}$$

$$\left(\frac{\partial \mathbf{\varepsilon}}{\partial t} + \nabla \times (\mathbf{\varepsilon} \times \mathbf{V}_{\mathbf{0}}) - \mathbf{v}\right) \cdot \mathbf{n} = 0, \ \mathbf{r} \in G(M), \tag{2.6c}$$

где n — вектор нормали к поверхности G(M). Преимуществом системы уравнений (2.6) над (2.3), (2.5) заключается в том, что при нахождении собственных колебаний возмущенную скорость \mathbf{v} надо вычислять только на границе вихревого кольца.

Решение системы уравнений (2.6) ищется в области частот, где происходит вырождение собственных частот с целью снять это вырождение в высших приближениях по малому параметру задачи. Было показано, что все собственные частоты колебаний тонкого вихревого кольца находятся вблизи частот $l\Omega_0/2$, где l — целое. В настоящей работе рассматривается случай l=1, который представляет наибольший интерес с точки зрения звукового излучения (именно моды с l=1 являются эффективными источниками звука).

В этой работе мы ограничимся областью частот $\omega = \Omega_0 (1/2 + \alpha)$, где $\alpha = O(\mu^2)$, поскольку именно для таких частот происходит вырождение

собственных частот и может возникать связанная с этим неустойчивость, рассматриваемая в настоящей работе.

В разделе 2.2 описывается метод решения для внутренней области вихревого кольца (2.6a), (2.6b), при этом используются криволинейные координаты σ, ψ, s , найденные в разделе 1.6.

Симметрия вихревого кольца относительно вращения вокруг оси z (рис. 2) позволяет искать решение для поля смещения в виде:

$$\varepsilon^{k}(\mathbf{r},t) = \varepsilon^{k}(\sigma,\psi) \exp(in\theta - i\omega t)$$

где ε^k — контравариантная компонента вектора поля смещения, ω — заданная частота колебаний, являющаяся на данном этапе параметром.

В разделе 2.3 находится решение системы уравнений (2.6а), (2.6b) (внутренняя область вихревого кольца) в виде полной, линейно независимой системы векторных полей $\varepsilon_{(m)}(\sigma,\psi)$ (базисные деформации), $m=0,\pm 1,\pm 2,...$ в области $\sigma=\sigma_b$, каждое из которых является решением системы (2.6a), (2.6b) с заданной частотой ω , где ω — параметр. Поле смещения, являющееся решением (2.6a), (2.6b), можно представить в виде линейной комбинации базисных деформаций $\varepsilon(\sigma,\psi)=\sum_{m=-\infty}^{\infty}C_m\varepsilon_{(m)}(\sigma,\psi)$

Базисные деформации ищутся в виде разложения в ряд Фурье

$$\varepsilon_{(m)}^{j}(\sigma, \Psi) = \sum_{p=-\infty}^{\infty} \varepsilon_{p}^{j}(\sigma) e^{ip\Psi}$$
 (2.7)

где j - контравариантная компонента: $\sigma, \, \psi, \, s$.

Это оказывается удобным в силу того, что метрический тензор также представляется в виде ряда Фурье, коэффициенты которого для гармоник $\exp(im\psi)$ имеют порядок $O(\mu^m)$.

В разделе 2.4 находится базисная деформация $\mathbf{\epsilon}_{(1)}$ в виде разложения по гармоникам (2.7). В свою очередь, $\mathbf{\epsilon}_p^j$ ищутся в следующем функциональном виде:

$$\varepsilon_{p}^{j} = \sum_{k=0}^{\infty} \mu^{k} \varepsilon_{p,k}^{j1}(\sigma) J_{1}\left(\frac{n\sigma}{\mu\omega' a}\right) + \sum_{k=0}^{\infty} \mu^{k} \varepsilon_{p,k}^{j2}(\sigma) J_{2}\left(\frac{n\sigma}{\mu\omega' a}\right)$$

Порядки величин членов в различных гармониках приведены на рис. 3:



Рис. 3. Последовательность вычисления гармоник, входящих в базисную деформацию $\mathbf{\epsilon}_{(1)}$ и оценка их величин

Приведем выражение для базисной деформации $\mathbf{\epsilon}_{(1)}$ в главном приближении

$$\varepsilon_{(1)}^{\sigma} = -\mu \frac{ia\omega'}{n\sigma} J_1 \left(\frac{n\sigma}{\mu\omega'a} \right) e^{i\psi} + O(\mu^2), \ \varepsilon_{(1)}^{\psi} = -\frac{1}{\sigma} J_2 \left(\frac{n\sigma}{\mu\omega'a} \right) e^{i\psi} + O(\mu)$$

$$\varepsilon_{(1)}^{s} = J_1 \left(\frac{n\sigma}{\mu\omega'a} \right) e^{i\psi} + O(\mu)$$

В разделе 2.5 ищется базисная деформация $\varepsilon_{(2)}$ в виде разложения по гармоникам (2.7). В свою очередь, ε_p^j ищутся в виде разложения по малому параметру μ : $\varepsilon_p^j = \sum_{k=0}^\infty \mu^k \varepsilon_{p,k}^j$ (рис. 4)

Порядки величин членов в различных гармониках приведены на рис. 4:

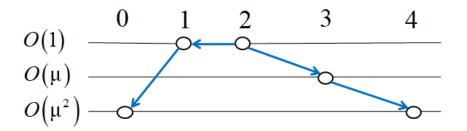


Рис. 4. Последовательность вычисления гармоник, входящих в базисную деформацию ${f \epsilon}_{(2)}$

Для базисной деформации $\mathbf{\epsilon}_{(2)}$ в главном приближении получим:

$$\varepsilon_{(2)}^{\sigma} = \frac{\sigma}{a} e^{i2\psi} + O(\mu), \ \varepsilon_{(2)}^{\psi} = \frac{i}{a} e^{i2\psi} + O(\mu)$$

$$\varepsilon_{(2)}^{s} = -i\mu \frac{n}{2} \left(\frac{\sigma}{a}\right)^{2} e^{i2\psi} - \frac{i5}{2n} \frac{\sigma}{a} e^{i\psi} + O(\mu^{2})$$

В разделе 2.6 описаны базисные деформации $\varepsilon_{(m)}$, $m \neq 1$, 2. Приведем здесь данные базисные деформации в главном приближении

$$\varepsilon_{(m)}^{\sigma} = \left(\frac{\sigma}{a}\right)^{m-1} e^{im\psi} + O(\mu), \ \varepsilon_{(m)}^{\psi} = i\frac{\sigma^{m-2}}{a^{m-1}} e^{im\psi} + O(\mu), \ \varepsilon_{(m)}^{s} = O(\mu), \ m \ge 3$$

$$\varepsilon_{(m)}^{\sigma} = \left(\frac{\sigma}{a}\right)^{|m|-1} e^{im\psi} + O(\mu), \ \varepsilon_{(m)}^{\psi} = -i\frac{\sigma^{|m|-2}}{a^{|m|-1}} e^{im\psi} + O(\mu), \ \varepsilon_{(m)}^{s} = O(\mu), \ m \le -1$$

$$\varepsilon_{(m)}^{\sigma} = \left(\frac{\sigma}{a}\right)e^{i0\psi} + O(\mu), \ \varepsilon_{(m)}^{\psi} = i\frac{2}{la}e^{i0\psi} + O(\mu), \ \varepsilon_{(m)}^{s} = i\frac{2}{\mu n}e^{i0\psi} + O(1), \ m = 0$$

В главе 3 описывается метод решения уравнения (2.6с), связывающего возмущения в областях внутри и вне вихря. Основная задача этой главы заключается в получении дисперсионного уравнения и выявлении возможных типов неустойчивости.

В разделе 3.1 вычисляется скорость v^{σ} на границе G(M) при заданном поле смещения ${f \epsilon}$.

Раздел 3.2 посвящен получению дисперсионного уравнения и нахождению собственных частот колебаний. В результате для дисперсионного уравнения было получено соотношение

$$\left(\omega' - \frac{23 - 16n^2}{192} - \mu^2 B + O(\mu^4)\right) \frac{J_1(c)}{J_2(c)} =$$

$$= -\mu^3 \left(\frac{\omega'}{192} \left(16n^3 + 73n\right) + \frac{{\omega'}^2}{n} \left(5 + n^2\right) + \frac{25{\omega'}^3}{2n^3}\right) + O(\mu^5)$$
(3.1)

где

$$B(n, \omega') = \frac{1}{73728n^2} \left(32n^6 \left(37 + 48S_n \right) + 18 \left(-253 + 18176\omega'^2 + 1468\omega' \right) \right) + \frac{n^2}{9216} \left(127 + 4752S_n + 384\omega' \left(-1 + 24S_n \right) \right) - \frac{1}{73728} \left(12895 + 73728\omega'^2 + 6720S_n + 4608\omega' \left(-15 + 16S_n \right) \right) - \frac{1}{1536n^2} \left(-69 + 576\omega' + 4n^2 \left(-127 + 4n^4 - 192\omega' + 3n^2 \left(33 + 64\omega' \right) \right) + 216n^2 \ln \frac{8}{\mu} \right) \ln \frac{8}{\mu}$$

$$S_n = \sum_{l=1}^n \frac{1}{2l-1}$$

$$c = \frac{n}{\omega'\mu} \left(1 + \mu^2 \left(\frac{103}{192} + \frac{21\omega'}{16n^2} \right) + O(\mu^4) \right)$$

Как видно, уравнение (3.1) является трансцендентным, корни которого позволяют найти собственные частоты. В случае, когда $J_1(c_j) = 0$, j = 1, 2, ... получим семейство частот вида

$$\omega = \Omega \left(\frac{1}{2} \pm \frac{\mu n}{c_i} \left(1 + O(\mu^2) \right) \right)$$

Такие частоты имеют точку сгущения. Колебания такого типа названы *бесселевскими* (рис. 5).

Еще собственные частоты найдем из условия равенства нулю коэффициента, стоящего при $J_1(c)/J_2(c)$:

$$\omega = \Omega \left(\frac{1}{2} + \mu^2 \frac{23 - 16n^2}{192} + O(\mu^4) \right)$$

Колебания такого вида названы изолированными (рис. 5)

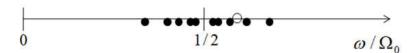


Рис. 5. Собственные частоты вихревого кольца, локализованные вблизи 1/2. Бесселевские моды (●); изолированная мода (○)

Будем искать корни дисперсионного уравнения в виде

$$\omega' = \frac{23 - 16n^2}{192} + \mu^2 \tilde{\omega}(n)$$

где $\tilde{\omega}$ в общем случае является комплексной величиной, то есть определяет наличие неустойчивости и ее количественные характеристики. В диссертации рассмотрен случай l=1 и было показано, что при n=1, возникает неустойчивость с инкрементом $\operatorname{Im} \tilde{\omega} \approx 6 \cdot 10^{-3}$, а при n>1 течение оказывается устойчивым. Форма возмущений границы вихря в случае неустойчивых колебаний схематически представлена на рис. 6.

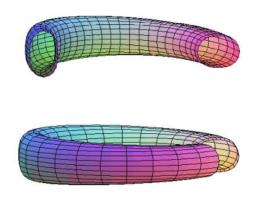


Рис. 6. Неустойчивые длинноволновые колебания, n = 1

В разделе 3.3 приводится энергетический анализ полученной в работе неустойчивости. Выше была рассмотрена задача устойчивости только для звукообразующих мод l=1 (было показано, что моды с l>1 неэффективно

излучают звук). Однако энергетический анализ указывает на возможность неустойчивости и для других значений l. Было показано, что энергия бесселевских колебаний, лежащих справа от точки сгущения $\Omega_0/2$ положительна, а слева отрицательна (рис. 7). Энергия же изолированного колебания всегда отрицательная и может находиться как среди бесселевских мод с положительной энергией, так и среди бесселевских мод с отрицательной энергией.

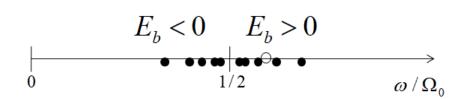


Рис. 7. Энергетический анализ возмущений вихревого кольца. E_b - энергия бесселевских колебаний, E_I - энергия изолированного колебания

Для возможности неустойчивости частота изолированного колебания должна лежать правее точки сгущения так, чтобы было возможно слияние частот колебаний с разными энергиями. Из выражений для частот собственных колебаний вихревого кольца, следующих из дисперсионного соотношения (3.1) следует, что неустойчивость возможна при следующих комбинациях чисел (l, n)

$$l = 1, 2, 3, 4; n = 1$$

 $l = 5, 6...11; n = 1, 2$
 $l = 12; n = 1, 2, 3$

Для того, чтобы установить, реализуется ли неустойчивость, возможная с точки зрения энергий колебаний, необходимо найти решение дисперсионного уравнения с точностью, достаточной для снятия вырождения частот. Чем больше l, тем больший порядок разложения по малому параметру μ требуется для решения задачи и тем меньший порядок величины инкремента следует ожидать. В настоящей работе рассмотрение ограничено наиболее важным с точки зрения излучения звука случаем l=1.

В Заключении подведены итоги работы и указаны ее основные результаты.

В **Приложения** вынесены выражения для метрического тензора в криволинейных координатах (σ, ψ, s) , найдены необходимые векторные выражения для уравнений (2.6) в координатах (σ, ψ, s) , приведены выражения для базисных деформаций и для каждой найденной базисной деформации посчитаны скорости вне вихря по Био-Савару.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- Разработан поэтапный метод нахождения собственных колебаний путем последовательного решения трех более простых подзадач с помощью программ символьной математики: (i) получения стационарного решения для изохронного вихревого кольца; (ii) базисных деформаций нахождения как решений внутренней нестационарной задачи; (ііі) нахождение внешнего поля скорости (уравнение Био-Савара) при заданных колебаниях границы вихря; (iv) нахождение дисперсионного уравнения.
- Впервые разработан алгоритм получения стационарного движения для вихревого кольца при условии изохронности течения в ядре, основанный на модернизации метода Френкеля.
- Разработан метод нахождения базисных деформаций, представляющих собой отклик вихря на колебание его границы заданной формы и частоты.
- Получено дисперсионное уравнение для определения собственных частот колебаний вблизи точек сгущения в более высоком приближении по малому параметру, чем в предшествующих работах.
- Обнаружена новая неустойчивость вихревого кольца, которая реализуется в области длинноволновых колебаний.
- Проведен энергетический анализ обнаруженной неустойчивости.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых научных изданиях, индексируемых в базах данных Web of Science и Scopus:

- Акиньшин Р. В., Копьев В. Ф., Чернышев С. А., Юдин М. А. Стационарное вихревое кольцо с изохронным течением в вихревом ядре // Изв. РАН МЖГ. 2018. №2. С. 50–61. (WoS Impact Factor: 0.608)
- 2. Акиньшин Р. В., Копьев В. Ф., Чернышев С. А., Юдин М. А. Базисные деформации в задаче о возмущениях ядра тонкого, изохронного вихревого кольца // Изв. РАН МЖГ. 2018. № 5. С. 52–63. (WoS Impact Factor: 0.608)
- 3. Kopiev V. F., Chernyshev S. A., Akinshin R. V., Yudin M. A. The study of stationary flow in the core of thin vortex ring. Journal of Physics: Conference Series. 2017. 894. (Scopus SJR: 0.221)

Другие научные труды:

- 4. Акиньшин Р. В., Копьев В. Ф., Чернышев С. А., Юдин М. А. Стационарное течение для вихревого кольца с однородной завихренностью // В сборнике: Материалы XXVII научно-технической конференции по аэродинамике Центральный Аэрогидродинамический институт имени проф. Н.Е.Жуковского (ЦАГИ). 2016. С. 23–24.
- 5. Копьев В. Ф., Чернышев С. А., Акиньшин Р. В., Юдин М. А. Стационарное движение тонкого изохронного вихревого кольца // Тезисы докладов пятой открытой всероссийской (XVII научнотехнической) конференции по аэроакустике. 2017. С. 194.
- 6. Акиньшин Р. В., Юдин М. А., Копьев В. Ф., Чернышев С. А. Получение высших приближений в задаче о возмущении тонкого изохронного вихревого кольца // Тезисы докладов пятой открытой всероссийской (XVII научно-технической) конференции по аэроакустике. 2017. С. 196.

- 7. Акиньшин Р. В., Копьев В. Ф., Чернышев С. А., Юдин М. А. Алгоритм нахождения стационарного течения для изохронного тонкого вихревого кольца // Материалы XXVIII научно-технической конференции по аэродинамике. 2017. С. 23.
- 8. Акиньшин Р. В., Юдин М. А. Базисные деформации в задаче о возмущении изохронного вихревого кольца // Материалы XXVIII научно-технической конференции по аэродинамике. 2017. С. 24.
- 9. Акиньшин Р. В., Юдин М. А., Копьев В. Ф., Чернышев С. А. Базисные деформации в задаче о возмущении стационарного движения тонкого изохронного вихревого кольца в невязкой, несжимаемой жидкости // Акустика среды обитания. Сборник трудов Второй Всероссийской конференции молодых ученых и специалистов. 2017. С. 25–33.
- Акиньшин Р. В., Юдин М. А., Копьев В. Ф., Чернышев С. А. Исследование устойчивости вихревого кольца в невязкой, несжимаемой жидкости // Акустика среды обитания. Сборник трудов Третьей Всероссийской конференции молодых ученых и специалистов. 2018. С. 23–34.
- 11. Копьев В. Ф., Чернышев С. А., Акиньшин Р. В., Юдин М. А. О новой неустойчивости вихревого кольца в невязкой, несжимаемой жидкости // Тезисы докладов: «Всероссийская конференция молодых ученых механиков» (YSM-2018) 2018. С. 32.
- 12. Акиньшин Р. В., Копьев В. Ф., Чернышев С. А. О снятии вырождения собственных частот вихревого кольца с учетом кривизны вихревых линий // Акустика среды обитания. Сборник трудов Четвертой Всероссийской конференции молодых ученых и специалистов. 2019. С. 25–29.
- 13. Акиньшин Р.В., Копьев В.Ф., Чернышев С.А. Новая неустойчивость тонкого вихревого кольца в идеальной жидкости // Аннотации докладов: XII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики. 2019. С. 110.