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ОЕЩЛЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы и степень ее разработанности

Гликаны являются универсальным и необходимым компонентами жизни. Они 

имеют размеры от одного моносахарида до полисахаридов длиной в тысячу единиц и 

обнаруживаются в больших структурных полисахаридах, секретируемых компонентах 

слизи или в составе белковых и липидных конъюгатов [Ju et al., 2001; W ennekes et al., 

2009, Somerville, 2006]. Сахара покрывают клетки каждого организма и представляют 

собой широкий класс органических молекул на Земле [W einbaum et al., 2007]. Структуры 

моносахаридов впервые установлены Фишером в середине 1880-х годов [Fischer et al., 

1909], но прошло почти столетне, прежде чем ученые начали понимать сложные функции 

этих молекул в биологии [Bertozzi et al., 2001]. Отставание в понимании структуры и 

функции гликанов связано со сложностью, присущей регуляции и сборке этих 

биомолекул. Гликаны непосредственно не кодируются геномом и, таким образом, их 

биосинтез и структура диктуются метаболизмом, передачей сигналов и метаболическим 

статусом клетки [Dennis et al., 2009; Parker et al., 2010]. Кроме того, для них характерна 

конформационная изомерия [Cummings, 2009; Muthana et al., 2012].

В настоящее время человечество вей чаще сталкивается со следующим рядом 

проблем: снижение иммунного статуса человека, рост числа заболеваний вирусной 

этиологии и онкологических заболеваний и появление новых типов вирусов и 

заболеваний, возникновение у патологических микроорганизмов толерантности к 

антибактериальным препаратам, рост радиационного фона, загрязнение окружающей 

среды и многое другое. В связи с этим все более актуальными становятся меры защиты 

организма от лучевых поражений и восстановления клеточного баланса различных 

органов и тканей, для чего необходимо создание нетоксичных радиозащитных и 

регенерационных препаратов. Перспективным подходом в этом направлении является 

поиск полисахаридов, обладающих необходимой активностью.

В настоящее время хорошо известно, что гликаны играют важную роль в самых 

разнообразных биологических событиях, включая клеточную адгезию и миграцию, 

развитие организма, прогрессирование заболевания и модуляцию иммунологических 

реакций [van Kooyk et al., 2008; Ohtsubo et al., 2006].

В последние годы исследования подтвердили, что полисахариды из натуральных 

продуктов обладают разнообразными полезными терапевтическими эффектами и 

способствуют укреплению здоровья людей. В частности, морские водоросли, и 

полученные из них полисахариды, такие как альгинат, фукоидан, каррагинап, ламинаран и 

агар [Laurienzo et al., 2012], широко применяются для биомедицинских и биологических
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целей [Venkatesan et al., 2015; Valente et al„ 2012; Silva et al., 2012; l’opa et al., 2014], 

например, для тканевой инженерии, доставки лекарств, заживления ран и создания 

биосснсоров.

Одним из источников углеводов, разнообразных по структуре и обладающих 

широким спектром биологических активностей, является Helianthus tuberosus L. Изучение 

физико-химических свойств, биологических активностей и молекулярных механизмов 

действия этих полисахаридов, а также освоение способов их применения на практике 

может дать возможность создавать новые лекарственные средства.

До последнего времени полисахариды из Helianthus tuberosus L. их структурно- 

функциональные характеристики, а также рецепторы, взаимодействующие с 

полисахаридами, были слабо изучены. В ходе данной работы был выделен и 

охарактеризован новый биологически активный полисахарид из Helianthus tuberosus L  

Для изучения взаимодействия с клеточными рецепторами полисахаридов из Helianthus 

tuberosus L. использовался современный подход в гликохимии — выключение генов. 

Полисахариды из Helianthus tuberosus L. обладают нммуномодулирующнм, 

противоопухолевым, радиопротскториым действием и являются нетоксичными 

природными биополимерами, что может обеспечить их широкое применение в таких 

областях, как фармакология, ветеринария и медицина.

Цель диссертационной работы
Целью исследования является определение молекулярных механизмов 

биологической активности природных полисахаридов из Helianthus tuberosus L.

Задачи диссертационной работы
Выделение и очистка полисахарида из Helianthus tuberosus L. (11TLP) методами 

гельпроникающей хроматографии, ультра- и тангенциальной фильтрации.

Определение физико-химических характеристик полученного полисахарида, таких 

как тип гликозидной связи, спектральные характеристики (инфракрасный спектр, 

ультрафиолетовый спектр, ЯМР-спсктр), моносахаридный состав, молекулярная масса.

Изучение биологической активности выделенного полисахарида в 

противовирусной, противораковой, иммуномодулирующей и радиопротскторной моделях.

Отработка подходов для изучения рецепторного взаимодействия и определение 

возможных молекулярных механизмов действия полисахарида из Helianthus tuberosus L.

Построение биофизической модели для описания переключения состояния клетки 

при взаимодействии полисахарида с рецепторами Dcctln-1 и TLR -6 с точки зрения 

бифуркационного подхода.
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1 Полисахарид из Helianthus tuberosas L. обладает биологической активностью, которая 

проявляется в моделях: противораковой, радиозащитной, колониестимулирующей, 

противовирусной и иммуномодулирующей.

2. Полисахарид из Helianthus tuberosus L. обладает разветвленным строением, с боковыми 

цепями с ß-(I —»4) и ß-(l ►3)-гликозидпыми связями, которые определяют биологическую 

активность; относится к классу гетерогликанов и содержит 0,5% белка.

3. Биологическое действие полисахарида обусловлено взаимодействием HTLP с 

рецепторами Dectm-1, TLR -6 и активации их внутриклеточных каскадов.

4. В результате применения полисахарида из Helianthus tuberosus L. происходит запуск 

иммунологических процессов на клеточном и организменном уровнях.

5. Предложенная модель бифуркационных переключений в клетке, вызванных 

взаимодействиями полисахарида из Helianthus tuberosus L. с рецепторами Dectin-1 и TLR-

6. может быть использована в качестве основы для интерпретации экспериментальных 

данных.

Н аучн ая  н овизна диссертационной работы

Впервые получен биологически активный высокоочищенпый полисахарид из 

Helianthus tuberosus L. на основе глюкозы, галактозы и уроновых кислот. Установлено, 

что его биологическое действие зависит от наличия ß -глюкановой части в составе 

гетерополнсахарида.

Впервые определены биофизические характеристики HTLP: 

в ИК-спектрс присутствуют характерные для полисахаридов полосы поглощения; 

полоса в области 1148 см-1  и характерны для ß-гликанов;

в УФ-спектре присутствует пик поглощения в области 280 нм, характерный для 

белков. Определение количества белка методом Лоури показало содержание до 0,5% 

белка, что было подтверждено и другими методами исследования;

полисахарид имеет молекулярную массу 1-2 МДа со следующим моносахаридным 

составом: Glc -  30%, GalA -  23%, GlcA -  15%, Gal -  13%, Rha -  6%, Ara -  4%, Man -  3%, 

X y l-2 % ;

по данным ЯМ Р-аналнза структура HTLP сильно разветвлена и характеризуется 

наличием вставок экспонированных наружу ß-глюканов, обеспечивающих связывание с 

рецепторами, а также ß -( l—»3), так и ß -( l—*4) связей, критичных для проявления 

биологических активностей.

О снопны е полож ения, вы носим ы е на защ иту

В результате исследований биологической активности установлено:
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полисахарид является нетоксичным и не аллергенным протектором, 

интерферон индуцирующим агентом, способен стимулировать выработку ТЫЬ-а и 1Ь-6, а 

также регулировать уровень 11. - 1 ;

при внутривенном введении полисахарида выживаемость подопытных мышей при 

летальном кратковременном лучевом воздействии в 800 рад составляла до 95%;

полисахарид является колониестимулирующим веществом, что установлено в тесте 

на колониеобразующие единицы в селезенке (КОИ-С) — колонисобразованис сплепоцигов 

во всех подопытных группах выросло в 2 ,0-2,3 раза по сравнению с контрольной группой;

применение полисахарида в модели герпетического мснингоэпцефалита у мышей 

приводило к выраженному профилактическому или терапевтическому действию как в 

сравнении с контролем, так и в сравнении с фармакопейным препаратом -  ацикловиром. 

При дозе вируса 10ЛД50 защитный эффект составлял 50-60% , а с ацикловиром -  15%; а 

при дозе ] 00ЛД50 -  57-63%  при отсутствии эффекта у ацикловира;

обнаружено влияние НТЬР на МК. клетки в виде стимуляции и увеличения 

цитотоксичсского индекса на 15% по сравнению с контролем;

установлено, что полисахарид проявлял свои противоопухолевые свойства и в 

антнмстастатичсской модели, и в модели торможения роста опухоли.

В экспериментах по инактивации целевых рецепторов показано, что полисахарид 

активирует клетки опосредованно, через взаимодействие с рецепторами ЭссИп-!, ТИ1-6.

Установлено, что оба рецептора необходимы для активации клеток с помощью 

ИТ1Л\ что подтверждается экспериментальными данными двух моделей: блокировки 

рецепторов антителами и инактивации генов целевых рецепторов.

М оделирование показало возможность возникновения в трансформированной 

клетке бифуркационого состояния выбора между апоптозом и пролиферацией, которое 

обусловлено взаимодействием полисахарида с рецепторами клетки Осс11п-1 и ТЬГ1*6.

Теоретическая и практическая значимость
Результаты исследований позволяют включить биологически активный 

полисахарид из ИеПатЬт шЬегозш I. в группу уже охарактеризованных полисахаридов, 

выделенных из различных источников. Разработана методика получения из растительною 

сырья полисахаридного препарата с противометастатической, противовирусной, 

радиопротскторной, колописстимулирующей и нммуномодулирующей активностями.

Модель бифуркационого изменения состояния трансформированной клетки и 

полученные новые данные о полисахаридах из НеНаш!т /нбегот* могут быть
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использованы для создания и тестирования in siíico на их основе новых лечебных и 

профилактических препаратов для медицины и ветеринарии.

Л и ч н ы й  вк лад  автора  состоял в планировании и проведении экспериментов, а 

также в анализе полученных данных, выборе и формулировании темы диссертационного 

исследования, подготовке публикаций и выступлений. Все изложенные в диссертации 

новые результаты получены автором лично или при его непосредственном участии в 

подготовке экспериментов.

А пробация результатов. Материалы диссертации докладывались на IV 

Международной междисциплинарной конференции «Современные проблемы системной 

регуляции физиологических функций» (г. Москва, 2015 г.) и VIII Международной 

Научной Конференции SCIENCE4HEALTH20I7 (г. Москва, 2017 г.).

С тепень достоверности и апробации результатов

По теме диссертации опубликовано 10 печатных работ, в том числе 7 статей, из 

которых 5 статей в рецензируемых научных изданиях, индексируемых в базах данных 

W eb o f Science, Scopus, RSCI, 2 тезисов и I монография.

С труктура  и объем работы

Диссертационная работа по структуре состоит из введения, трех глав, обсуждения, 

выводов и списка литературы. Объем диссертации составляет 192 страницы текста, 

включая_26 рисунков и 28 таблиц. Список использованной литературы содержит 308 

наименований.

С О Д Е РЖ А Н И Е  РА Б О Т Ы

Введение представляет собой общую характеристику темы работы, обоснование 

актуальности, определение цели и задач диссертационного исследования, положений, 

выносимых на защиту, научной новизны, практической и теоретической значимости, а 

также описание методологии и методов исследования.

О бзор литературы  состоит из четырех подразделов, описывающих углеводы и их 

место в живой природе. В первом разделе приведена общая характеристика, 

классификация и строение углеводов. Во втором разделе описаны различные функции и 

биологическая активность — нммуномодулирующая, противоопухолевая, 

антиоксидантная, обнаруженные к настоящему времени у полисахаридов: глюканов, 

глнкапов, пектиновых и арабиногалактановых полисахаридов, гиалуронанов. В третьем 

разделе изложен современный взгляд на проблему взаимосвязи физико-химических и

6



структурных характеристик полисахаридных молекул с их биологической активностью. В 

четвертом разделе представлены характеристики клеточных рецепторов, 

взаимодействующих с полисахаридными молекулами или их фрагментами, в том числе 

семейств рецепторов: TLR, NLR, SR, LacCer, CR и CTLR, а также краткое описание 

сигнальных каскадов, ассоциированных с ними.

Материалы и методы

Для выделения полисахаридов с молекулярной массой 1-2 МДа и их анализа был 

использован сорт Helianthus tuberosus L. Все использованные клеточные культуры были 

получены в ФГБУН ИМИ им. В.Л. Эпгсльгардта. Лабораторные животные, 

использованные в экспериментах, были приобретены в питомнике «Лндрссвка» ГУ НЦ 

биомедицинских технологий PA M II.

Полисахарид выделяли из клубней Helianthus tuberosus L.

Количественное определение карбогндратов проводили феполсернокислотным 

методом Дюбуа [Dubois, 1956]. Для измерения количества белка в составе полисахарида 

использовался метод Лоури [Lowry, 1951].

Фракцию с диапазоном молекулярных масс больше 300 кДа после 

ультрафильтрацин растворяли в дистиллированной воде, центрифугировали и разделяли 

па анионообменникс DEAE 650 S TSK. Элюцию проводили водой и растворами KCI. Для 

работы отбирали фракции по качественной реакции с фенолсерной кислотой. Полученные 

фракции обессоливали и концентрировали тангенциальной ультрафильтрацией, 

лиофильно высушивали и тестировали на наличие активности. Для разделения по 

молекулярным массам использовали оксклюзионную жидкостную хроматографию.

Фракцию, полученную с использованием раствора 0,5 М KCI, после 

ионообмеиннка DEAE 650 S TSK разделяли с использованием колонки ХК 50/100 с 

Toyopcarl HW-75. Оценивали молекулярную массу полисахарида с использованием 

декстранов Т-серни и голубого дскстрана с молекулярной массой 1-2 МДа.

Молекулярную массу и гомогенность IITLP определяли также с помощью 

Prominence Series I1PLC system с фотодиодным детектором и колонкой TSKG6000PW. 

Контроль выхода полисахаридов проводили методом Дюбуа. Фракции различных пиков 

объединяли, диализовали и лиофильно высушивали. Все работы по изучению 

структурных характеристик и биологической активности проводили с фракцией, 

прошедшей все этапы очистки и названной I1TLP.

УФ-спсктры поглощения HTLP регистрировали на спектрофотометре UV-1800 

Shimadzu. Спектры снимали в диапазоне длин волн 190-1100 нм.
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Для снятия ИК-спектров использовался прибор IRAfïinity-1 FTIR System с ATR 

M IRacle-10. Разложение контура полос в спектре делали с использованием пакета 

ACDLabs/Spcctrus. Спектры регистрировались в диапазоне от 4000 до 400 см '1.

Для ЯМР-анализа использовался ЯМР-спектрометр Bruker Avance 400. 1 мг 

вещества растворяли в 0,5 мл DiO. М оделирование возможной структуры полисахарида 

проводили с использованием программ CASPER и NMRgraph.

Для определения моносахаридного состава проводили кислотный гидролиз. 

Конечные гидролизаты анализировали на хроматографе Prominence Series HPLC.

Тип гликозидной связи определяли путем обработки полисахаридных растворов 

литиказоЛ из Arthrobacter Lttteus, а также целлюлазой из Aspergillus niger в соответствии с 

методикой Стоуна и Кларка [Stone et al., 1992]. После чего проверяли активность в модели 

стимуляции аитителообразующих клеток (АОК).

Пирогенность HTLP проверялась на здоровых кроликах обоего пола. Раствор, 

содержащий полисахарид и 0,9% NaCl, вводился в ушную вену.

Стимуляцию АОК клеток исследовали на мышах РфСВАхСззШ/б). В качестве 

антигена для иммунизации применяли дефибринированные эритроциты барана (ЭБ). ЭБ 

вводили внугрибрюшинно. Уровень иммунного ответа у  мышей, иммунизированных ЭБ, 

определяли по количеству АОК, выявляемых в селезенке методом Ерне [Jeme et al, 1963].

Оценка цитотоксичности HTLP проводилась на линии клеток RAW 264.7. Оценка 

жизнеспособности клеток проводилось через 24 часа после добавления HTLP путем 

окрашивания культур клеток пропидий нодидом и бис-бензимидом с целью обнаружения 

ядер погибших клеток и общего количества клеток в культуре соответственно. 

Визуализация окрашивания проводилась с помощью инвертированного.

Оценку токсичности HTLP проводили спектрофотометрически после редукции 

(3,4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия (МТТ) бромида в формазановый 
пигмент под влиянием внутриклеточных дегидрогеназ.

Влияние HTLP на количество клеток линии RAW 264.7 оценивали через 4 и 24 часа 

инкубирования макрофагов с HTLP. Осуществляли подсчет клеток с помощью ручного 

автоматического цитометра Septer.

Иммуномодулирузощую активность проверяли в нескольких экспериментах -  

модулировании уровней цитокинов IL-1, IL-6 , TNF, IFN. Активность TNF в надосадочных 

жидкостях определяли методом Рафф и Гилфорд [R uff et al., 1981] на клетках L-929. 

Контролем служили клетки, инкубированные с LPS. Вторым способом оценки влияния 

полисахарида на выработку фактора некроза опухолей было определение экспрессии
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генов TN F-a на макрофагальной клеточной линии RAW 264.7 методом 

иммуиоферментного анализа с помощью набора Mouse TNF alpha Elisa Rcady-SET-Go!.

Для инактивации генов целевых рецепторов методом РНК-интерференции были 

использованы синтезированные олигонуклсотидные последовательности, 

комплементарные фрагментам целевых рецепторов — Dcctin-1, TLR-6 , CR3. Для 

получения рекомбинантного лснтивируса использовали клетки НЕК293Т, которые 

котрансфсцировались плазмидами pRSV-Rev, pMDLg/pRRE (ген/вставка IIIV-1 

GAG/POL), pCerulcan-VSVG и плазмидой, несущей shRNA гена интереса. Проводили 

заражение и селекцию клеток RAW 264.7, Проверка выключения рецепторов велась по 

свечению метки в генном конструкте RFP, GFP н BFP.

Блокировка целевых рецепторов проводилась антителами с концентрациями: CR3, 

TLR -6  и Dcctin-1. В дальнейшем клетки активировали LPS и 11TLP и тестировали 

выработку TN F-a с использованием 96-луночного планшетного ридера.

Для оценки противовирусной активности полисахарида использовали 

экспериментальную модель герпетического мепингоэнцефалита мышей. Использовали 

ВПГ-1 штамм Клейман. Титр вируса определяли на модели фибробластов эмбрионов кур 

и культуре клеток Vero. Белых мышей BALB/c инфицировали вирусом Клеймана 

внутрибрюшинно. Рефсрснц-прспаратом был выбран ацикловир. Раствор полисахарида 

вводили мышам в хвостовую вену.

Для изучения противораковой активности in vitro использовали линии клеток 

карциносаркомы гортани человека Нср-2 и мышиной ансуплоидиой фибросаркомы L-929. 

Противораковую активность оценивали подсчетом видимых раковых клеток, окрашенных 

трипаиовым синим, в сравнении с контрольными культурами. Исследование in vivo 

активности противораковых свойств полисахарида из Helianthus tuberosus L. и 

воздействия на метастазы проводили на карциносаркомс Уокера. Использовались самцы и 

самки крыс породы «Август». Аитиметастатичсскую активность HTLP изучали на 

экспериментальной модели карциномы легких Лыоиса.

Для оценки радиопротскторной активности фракции полисахарида использовали 

экспериментальные модели абсолютной выживаемости и выживаемости гсмопоэтических 

стволовых клеток.

Принципиальная схема модели передачи внутриклеточного сигнала при 

связывании полисахарида с рецепторами и формированием петли обратной связи с 

участием TNF и TNFR1 представлена на рисунке I.

В нормальном состоянии клетки уровень проапоптотичсского сигнала низок, 

вероятность перехода в предапоптотическое состояние мала, и клетка выживает, несмотря
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на присутствие НТГР. В трансформированной клетке ситуация другая. При воздействии 

НТЬР проапоп готический сигнал может превысить некий пороговый уровень, и 

происходит бифуркация: состояние клетки становится неустойчивым, и с большой 

вероятностью она может перейти не только в предапоптотическое состояние, но и к 

апоптозу. В связи с этим представляется возможным описание такого бифуркационного 

поведения клетки с помощью всего двух переменных, выбранных специальным образом.

I исунок 1. Принципиальная схема формирования регуляторных сигналов в клетке 

при взаимодействии НТЬР с рецепторами ОесПп-1 и ТЬЯ-б.

Все реакции в регуляторных путях происходят самопроизвольно (имеются в виду не 

элементарные, а суммарные реакции, связанные с переносом сигнала между узлами 

регуляторной сети.), т.е. с понижением энергии Гиббса системы, поэтому клетку можно 

рассматривать как активную среду. В качестве обобщенной координаты х  будем 

использовать некую условную функцию состояния графа реакций в регуляторной сети, 

такую, что для реакций на клеточной мембране она равна нулю, а в «геноме» -  единице. 

Две переменные, описывающие поведение клетки, зависят от координаты и времени и 

сооз ветсз вулоз вероятностям формирования сигналов для выбора проапоптотического или 

противоапоптотического пути. Поскольку узлов в графе реакций много, перенос сигнала 

по обобщенной координате можно описать как диффузию [246]. В дальнейшем под 

диффузией понимается именно такой перенос сигнала.

Для описания поведения клетки предлагается использовать модифицированную 
систему уравнений ФитцХыо-Нагумо [2471:

е2 ^ - £2° и  ^ 7  =  -и (и -сх )(и -1 )  +  у т  ,
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сходную с использованной ранее при моделировании структурообразования в 

урбоэкосистемах 1248]. Система решается численно, при этом на границах области 

расчета задаются краевые условия Неймана.

Безразмерные переменные и и у соответствуют вероятностям формирования про- 

(«активатор») и противоапоптотического («ингибитор») сигнала (можно говорить и об 

интенсивностях соответствующих сигналов). Параметры Д , и А  -  безразмерные 

коэффициенты диффузии. ДО > 0 -  кинетический параметр взаимодействия активатора и 

ингибитора, а  -  параметр активации системы, у -  кинетический параметр затухания 

противоапоптотического сигнала, е -  кинетический параметр, позволяющий учесть 

различие в скоростях распространения про- и противоапоптотического сигнала. Более 

подробное описание параметров и их численные значения приведены в тексте 

диссертации.

Результаты

Из грубой вытяжки Н е 1 Ш к ю  ш Ь е г о я и  I .  была экстрагирована полисахаридная 

фракция. Дальнейшая экстракция, очистка и ультрафильтрация позволили увеличить 

степень чистоты и гомогенности фракции полисахаридов, а полученный острый пик на 

хроматограмме ЖХВД, последнего этапа очистки -  полисахарид НТ1.Р (рисунок 2). По 

оси у -  относительные единицы поглощении.
Рисунок 2. ВЭЖХ-ГПХ выделения 

фракции полисахаридов НТЬР. Детекция 

по поглощению при длине волны 220 нм. 

На оси ординат отложены относительные 

единицы поглощения, на оси абсцисс -  

минуты.

О I 2 )  4 $ (> Т Я 9  {О I I  12 и  14 15 гого

Физико-химические характеристики Н И Р  

Спектральные характеристики.

В УФ-спектре присутствует максимум в области 190-210 нм, характерный для 

полисахаридов и небольшой максимум в области 280 им, характерный для белков 

(рисунок 3).
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Рисунок 3. Характерный УФ-спектр HTLP.

В ИК-сиек1ре НТЬР (рисунок 4) отмечаются полосы поглощения около 1740 см"'1, 

которые соответствуют карбоксильной группе, указывающей на присутствие уроновых 

кислот в НТЬР, а сильные поглощения на 1074 и 1024 см 1 и среднее поглощение на 

1148 см , при наличии колеоаиий пиранозного кольца, означают наличие структуры, 

присущей Р-глюкану. Гаким образом, ИК-спектр НТЬР имеет характерные для 

полисахаридных структур полосы поглощения.

Рисунок 4. Характерный ИК-спектр для HTLP.

С и *Н ЯМР-спектры позволили смоделировать предположительную структуру 

полисахарида с использованием программного обеспечения CASPER и NMRgraph. 

Моносахаридный состав HTLP Методом ВЭЖХ было получено, что полисахарид HTLP 

имеет следующий моносахаридный состав. 01с -  30%, Gal А -  23%, GlcA -  15%, Gal -13%, 

Rha -  6%, Ara -  4%, Man -  3%, Xyl -  2%.

Совместная обработка ферментами литиказой из Arthrobacter Luteus и целлюлазой 

и i Aspergillus niget приводила к практически полной потере биологической активности 

полисахаридной фракции в модели стимуляции продукции АОК.

Биологическая активность
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Стимуляция антитслообразующих клеток (АОК) в селезенках мышей после 

совместного введения НТТР с эритроцитами барана (ЭБ). В эксперименте была выявлена 

стимуляция образования антител к ЭБ в клетках селезенок мышей (таблица 1).

Таблица 1. Стимуляция аититслообразующих клеток в селезенках мышей после 

совместного введения НТЬР и 2* 106 ЭБ.

Образец,

мкг/мышь

1 10 100 1000 Контроль

АОК 200 ± 16 502 ± 75 743 ± 80 927 ±94 47 ± 6

Кст* 4,3 10,7 15,8 19,7

* - отношение числа АОК в опыте к числу АОК в контроле

После обработки HTLP ферментами литнказой и целлюлазой его адъювантная 

активность практически полностью исчезала. Так, например, полисахаридный гидролизат 

после обработки литнказой (100 мкг/мышь) показал стимуляцию АОК до 68 ± 7, а 

контроль -  65 ± 7. После аналогичной обработки HTLP целлюлазой (100 мкг/мышь) 

стимуляция АОК составляла 104 ± 9 против 83 ± 9 в контроле.

Оценка цитотоксического действия I1TLP на клетки линии RA И 264.7.

При добавлении полисахарида (200 мкг/мл) в культуру клеток процент мертвых 

клеток составил 2,99 ± 0,54%, а в контроле -  2,76 ± 0,25%, что свидетельствует об 

отсутствии щгготокснчности у полисахарида I1TLP.

Определение МТТ-редуктаиюй активности при исследовании токсичности HTLP

на тетках линии RAW 264.7.
Культивирование клеток линии RAW 264.7 24 часа с 200 мкг/мл HTLP не 

приводило к достоверному увеличению процента мертвых или живых клеток в культурах 

клеток липни RAW 264.7 в модели но определению МТТ-редуктазной активности и 

окрашиванию культур клеток проиидий нодндом.

Влияние HTLP на продукцию TNF, l l - lß ,  1L-6 в культуре мононуклсарных клеток 

человека (МГ1К). Уровень продукции TNF мононуклсарами оказался сходным у 

различных допоров после 12-часовой инкубации с HTLP. Сравнительно с контрольными и 

LPS-индуцированпымн культурами добавление HTLP приводило к стимуляции 

продукции TNF у всех доноров до 8,4 раз. Выработка 1L-1 была изучена на МПК, 

выделенных от трех доноров, которые различались по начальному уровню продукции 1L-1 

без добавления и с добавлением LPS. При высокой продукции IL-1 (как спонтанной, так и 

LPS-индуцировашюй) внесение полисахарида HTLP в клеточные культуры доноров 

влекло за собой снижение количества, высвобождаемого 1L-1 (донор 1 и 3). Напротив, при
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низкой продукции цнтокина (донор 2) наблюдалась стимуляция высвобождения IL-1. При 

воздействии полисахарида на культуры МПК доноров подавлялся высокий уровень 

продукции IL-1 и стимулировался низкий уровень LPS-индуцированной продукции IL-1,

Внесение полисахарида в клеточные культуры доноров приводило к стимуляции 

выработки IL-6. Однако можно было наблюдать индивидуальные различия стимуляции 

продукции IL-6 в зависимости от доз углевода. Малые концентрации полисахарида (1—3 

мкг/мл) у двух доноров -  2 и 3 -  стимулировали выработку LPS-индуцированного IL-6. 

Подобная стимуляция наблюдалась после внесения в клеточную культуру МПК донора 3 

углевода в пределах диапазона доз 10—30 мкг/мл. Стимуляция продукции IL-6 в культурах 

МПК, не обработанных LPS, происходила только при добавлении к ним относительно 

высоких доз полисахарида (доноры 1 и 2).

Индукция интерферона in vivo и in vitro. Максимальная продукция сывороточного 

IFN через 6 часов после введения раствора полисахарида достигала 256 МЕ/мл, тогда как 

госсипол индуцировал 8—16 МЕ/мл IFN. Таким образом, титры IFN, синтезированного у 

мышеи в ответ на введение полисахарида, в 16-32 раза превышали уровень IFN в ответ на 

введение стандартного индуктора интерферона госсипола.

Стимуляция активности натуральных киллеров. Индекс цитотоксичности для 

модели с добавлением лимфоцитов периферической крови (ЛПК) составил 61 ± 3, а при 

добавлении ЛПК совместно с полисахаридом — 78 ± 3. При этом добавление только 

полисахарида не приводило к сильной цитотоксичности и индекс составил 4 ± 1. Таким 

образом, полисахарид усиливает активность натуральных киллеров in vitro, но при этом не 

является цнтотоксичсским агентом.

Противовирусная активность

Полисахарид обладает ярко выраженным протективным и терапевтическим 

(противовирусным) действием. Выживаемость мышей составила 80% и 70% при 

однократном введении HTLP за 5 дней и двукратном -  за 5 дней и через 3 часа после 

инфицирования ЮЛД^о, а при ЮОЛД50 — 57% и 63%, соответственно. При этом в контроле 

выживаемость составила 17%, что меньше в 3,4 и 3,7 раза, чем в опытных группах. При 

дозе вируса ЮЛД5о защитный эффект HTLP колебался в интервале 53-63% в сравнении с 

15% у ацикловира; а при дозе ЮОЛД50 — 57-63% при отсутствии эффекта у ацикловира и 

полном вымирании контроля. Средняя продолжительность жизни выросла в опытных 

группах HTLP и при 10ЛД5о, и при ЮОЛД50 с H TLP- почти в 3 раза.

Противоопухолевая активность in vitro

HTLP вызывал торможение роста опухолевых клеточных линий, при этом 

максимальное значение достигалось при 200 мкг/мл; около 81% для L-929 и 40% -  Нер-2.



Такое торможение роста культуры клеток связано, скорее всего, с запуском 

нроапоптотичсских каскадов в трансформированных клетках, поскольку HTLP не 

обладает прямым цнтотоксичсским действием, что было показано в одном из 

экспериментов. Лнтнмстастатичсская активность HTLP показана в экспериментальной 

модели каршшосаркомы Уокера in vivo, при этом максимальное ингибирование числа 

опухолевых клонов составило около 37% при ежедневном введении HTLP.

В экспериментальной модели карциномы легких Льюиса in vivo торможение роста 

опухоли достигало 15%. Другой важный показатель онкологического процесса -  

образование метастазов в легкие. Наибольшее торможение процесса мстастазирования, 

около 40%, наблюдалось к 20-ым суткам в группе животных, получавшей 0,5 мг/кг 

пятикратно. В то же время данные прямого подсчета количества метастазов в легочной 

ткани контрольных и опытных животных позволяют установить, что однократное 

введение полисахарида в дозах 25 и 5 мг/кг тормозит процесс мстастазирования на 60 и 

75%, соответственно, по сравнению с контролем. Отчетливый антиметастатичсскнй 

эффект прослеживается и в болсс поздние сроки развития процесса. На 17-ые сутки роста 

опухоли антиметастатичсскнй эффект наблюдается во всех группах животных. 

Ингибирующий эффект варьирует в зависимости от дозы в пределах 30-50%. Торможение 

процесса метастазирования к 20-ым суткам составляет 50-75%.

Экспериментальная модель выживаемости гемопоттических стволовых клеток

В модели определения количества КОВ-С в подопытных группах образуется в 2,0— 

2,3 раза больше колоний сплсноцитов, чем в контрольной группе. Эго свидетельствует о 

наличии у исследуемого полисахарида способности защищать гемоноэтичсскне стволовые 

клетки ог действия ионизирующего излучения.

Экспериментальная модель абсолютной выживаемости

HTLP обладает радионротскторнымп свойствами. Максимальная выживаемость 

при облучении в дозе 800 рад составила 95% при введении HTLP через 6 часов после 

экспозиции в дозе 100 мкг/живогное, что выше контрольных значений почти в 4,8 раза, а 

минимальная -  65%, что выше контрольных значений почти в 3,3 раза. Для дозы 850 рад 

значения составили -  40% и 0%, соответственно, в контроле -  0% (таблица 2).
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Т а б л и ц а  2 . Р езультаты  оценки  п ротиволучевой  активности  п оли сахари да  H TLP.

Время

введения

Доза

препарата,

мкг/мышь

800 рад 850 рад

Число

животных

Выжило Число

животных

Выжило

Лбе % Абс %

За 1 час 1 20 13 65 20 0 0,0

10 20 16 80 20 1 5,0

100 20 12 60 19 3 15,8 '
Через 1 

час

1 20 16 80 20 4 20,0
10 20 16 80 20 0 0,0

100 16 14 87.5 20 2 10,0
Через 6 

часов

1 20 19 95 20 2 10,0
10 19 17 85 20 2 10,0

100 19 16 84.2 20 1 5,0
Через 24 

часа

1 20 16 80 20 7 35,0
10 20 16 80 20 8 40,0

100 20 16 80 19 6 31,6

При этих дозах облучения выживаемость мышей в контрольных группах была равна 

20% и 0%, для 800 и 850 рад соответственно.

Изучение рецепторного взаимодействия и молекулярных механизмов действия 

Инактивация генов целевых рецепторов и продукция TNF-a. HTLP, как и LPS 

является стимулятором выработки TNF-ct. В сравнении с контролем уровень выработки 

увеличился в 18,3 раза в случае HTLP и в 23,2 -  LPS на 4 час, а на 24 -  в 7,4 и 7,3 раза 

соответственно (рисунок 4 и 5). По оси у — количество TNF-a в культуральной жидкости в 

пкг/мл. Контрольные значения TNF-a в культурах с единичными выключенными 

рецепторами в пределах погрешности не отличатись от контроля без выключенных 

рецепторов. В свою очередь 11TLP не стимулирует выработку TNF-a в культурах с 

выключенными генами рецепторов TLR-6 и Dectin-1 в пределах погрешности, что может 

свидетельствовать о том, что для HTLP необходимы оба рецептора для корректной 

активации клеток и выработки TNP-a. Учитывая значительную молекулярную массу 

HTLP, можно предположить, что активация происходит путем одновременного 

связывания обоих рецепторов, TLR-6 и Dectin-1, что обуславливает действие HTLP на 

клеточные системы.



Рисунок 5. Диаграмма 

сравнения уровней

выработки TNF-a

клеточной линии RAW 

264.7 с инактивированными 

генами целевых рецепторов 

CR3, Dcctin-1 и TLR-6 

через 4 ч инкубации.

Блокирование рецепторов антителами и продукция TNF-a. Так же, как и в модели 

выключения генов, полученные данные демонстрируют, что HTLP стимулирует 

выработку TNF-a, при этом уровень стимуляции сравним с липополисахаридом. Более 

того, было подтверждено участие двух рецепторов -  Déclin-1 и TLR-6 -  в активации

Рисунок 6. Диаграмма 

сравнения уровней

выработки TNF-a клеточной 

линии RAW 264.7 с 

инактивированными генами 

целевых рецепторов CR3, 

Dectin-1 и TLR-6 через 24

часа инкубации.

Рисунок 7. Диаграмма 

сравнения уровней

выработки TNF-a клеточной 

линии RAW 264.7 после 

обработки антителами

целевых рецепторов TLR-6, 

CR3 и Déclin-1 через 4 часа

На рисунках 8-10 приведены рассчитанные зависимости интенсивностей противо- и 

проапоптотических сигналов от координаты для различных интервалов времени Значения 

м и у при А' = I определяют вероятности экспрессии факторов регуляторной сети, 

ответственных за переход клетки либо в предапоптотическое состояние, либо в состояние.

клеток при помощи HTLP (рисунок б).

Без
вы клю чения

CR-3 TIR-6

инкубации.
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соо тветствую щ ее  ее вы ж и ванию . М акси м ум ы  распределения I/ и v по  х с о о тв е тств ую т 

координатам  узлов се ти , н е сущ и х наибо льш ую  н а гр узк у  в формировании си гнало в в 

дан ны й  м о м ент времени.

Рисунок 8. Пространственное

распределение интенсивностей про- и 

противоапоптотических сигналов на 

начальных стадиях переноса. 

Вероятность выживания клетки выше 

вероятности перехода в

предапоптотическое состояние. 

Рисунок 9. Пространственное

распределение интенсивностей про- 

и противоапоптотических сигналов 

на промежуточных стадиях переноса. 

Вероятность перехода клетки в 

предапоптотическое состояние 

превышает вероятность выживания. 

Рисунок 10. Пространственное

распределение интенсивностей про- 

и противоапоптотических сигналов 

на больших временах. Вероятность 

выживания клетки снова превышает 

вероятность перехода в

предапоптотическое состояние, но в 

конце цикла эти вероятности 
практически совпадают.

На малых временах (/ < 0,18) интенсивность противоапоптотического сигнала, 

поступающего в геном, выше интенсивности проапоптотического сигнала, и вероятность 

выживания клетки больше вероятности гибели (рисунок 8). Передача проапоптотического 

сигнала в геном приводит к увеличению экспрессии TN F и TNFR1, что, в свою очередь, 

приводит к увеличению вероятности формирования каспазного проапоптотического 

комплекса и переключению клетки на путь к прсдапоптотичсскому состоянию или 

апоптозу. Миграции TNI и T N FR I к мембране и формированию их комплексов 

соответствует пространственное расширение проапоптотического сигнала на рисунке 10. 

Если связывание лиганда с рецептором, приводящее к наработке TN F и TNFR1,



достаточно продолжительно (( > 0,25), то вероятность перехода клетки в

прсдапоптотичсское состояние превышает вероятность выживания (рисунок 9). Если же 

клетка изменена недостаточно, и ее компенсаторные (регуляторные) механизмы работают 

нормально, то вероятна ситуация, при которой клетка выживет, нивелировав воздействие 

I1TLP. Такой ход событий наблюдается в экспериментах с нормальными клетками, 

например, монопуклсарах периферической крови доноров.

Но мере активации системы происходит частичное перераспределение 

интенсивностей противо- и проапоптотнчсских сигналов за счет связывания части 

ингибиторов адапторных белков, участвующих в передаче сигнала, приводящего к 

апоптозу клетки. Благодаря механизмам обратной связи и противоапоптотическим 

сигналам, передающимся в геном по пути через N F -кВ, возрастает вероятность обратного 

переключения клетки, т.е. ее выживания. На больших временах количество рецепторов, 

связанных с H TLP и TNF, уменьшается за счет деградации, что приводит ко второму 

переключению поведения клетки и ее выживанию. При этом переключение возможных 

форм поведения клетки -  выживание или переход к апоптозу - становится цикличным.

ОБСУЖДЕНИЕ

Очищенный полисахарид HTLP, выделенный из коркового слоя клубней Jlcliantlw s 

tuberosus L., является проявляющим свойства полиэлектролита р-гликаном с р-(1 >4) и [3- 

(1-»3) гликозидными связями и с молекулярной массой 1-2 МДа. Именно эти три фактора 

являются главными в определении его структурных особенностей и, как следствие, 

проявлениях биологических активностей. Разнообразные р-гликаны, как правило, 

обладают различными структурными характеристиками, различаясь степенью 

разветвленное™ молекулы, молекулярным весом (M W ) и конформацией (тройная 

спираль, однонитевая спираль, структура неупорядоченного клубка) [Sadahiro et а!.. 2007].

Уже в течение долгого времени, несмотря на некоторые исключения, M W  

признается критическим параметром, определяющим биологическую активность 

молекулы. Гликаны с высоким M W  обычно обладают более высокой биоактивностью [Е! 

Enshasy et al., 2013; Paterson ct al., 2014]. Для того чтобы вызвать биологический эффект, 

полисахарид должен первоначально провзаимодсйствовать с рецепторами клеточной 

поверхности. Полисахариды с высоким молекулярным весом (M W ) могут с большей 

частотой контактировать с рецепторами и вызывать внутриклеточные сигнальные 

каскады. Кроме того, крупные полисахариды обладают большим числом повторяющихся 

звеньев и, следовательно, большим набором свободных биологически активных связей.
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Па примере I1TLP также можно проследить ту же закономерность. АдыовантноЙ 

активностью к ЭЕ  обладал только высокомолекулярный пик, с M W  1-2 МДа.

Следует обратить внимание и на тот факт, что молекула 1ITLP  является заряженной 

молекулой, что, безусловно, сказывается и на характере взаимодействия с рецепторами. 

Так, фракции H TLP после нонообменника D EA E  650 S T SK  проявляли совершенно 

разную адъювантную активность. Фракция нейтральных полисахаридов таковой 
активностью не обладала вовсе.

Очищенная полисахаридная фракция, HTLP, представлена гстерополисахаридом, 

состоящим в основном из глюкозы, галактозы, глкжуроновой и галактуроновой кислот с 

небольшим количеством рамнозы. арабинозы, маннозы, что видно как из В Э Ж Х  анализа, 
так и ЯМ Р, с 0,5% содержанием белка.

Тип гликозидной связи является еще одним важным фактором для 

противоопухолевой и иммуностимулирующей активности. В  этом смысле молекулу H TLP 

можно назвать уникальной. Наиболее изучены (1-*3)- и (1->6)-р-0-глюканы. 

Полисахарид HTLP, в свою очередь, характеризуется наличием как ß-(l-*4), так и ß- 

(1 >3) связей, которые необходимы для проявления им биологической активности, что 

было установлено с помощью ферментативной обработки. H T LP  помимо глюкозы 

содержит много галактозы и уроиовых кислот. Поэтому можно провести аналогию с 

каррагииаиами, структурное разнообразие которых обусловлено присутствием 

биологически активных ß-(l—»4)-остатков в виде 3,6-ангидрогалактозы.

Полисахаридная субстанция H TLP проявляла антиметастатическую активность в 

широком диапазоне концентрации: и в 1,5 мкг на животное, и в 100 мкг в 

экспериментальной модели карциносаркомы Уокера in vivo. Учитывая наличие 

иммуномодулнрующен активности у полисахарида из Helianthus tuberosas L „ можно 

утверждать, что полисахарид обладает прямым и непрямым противоопухолевым 
действием.

Если сравнивать две выбранные экспериментальные модели, то модель 

метастазирующси карциномы легких Льюиса является наиболее адекватной, 

приближенной к реальным событиям в организме для изучения оитимстастатической 

активности полисахарида. Поскольку карцинома Уокера проявляет свойства 

органотропности к легким, то развивающиеся опухолевые узлы, возможно, правильнее 

рассматривать как первичную опухоль, а не как истинные метастазы. На основании этого 

допущения мы предполагаем, что эта разница является определяющей в объяснении 

антиметастатнческой активности HTLP. Из литературных данных известно, что процесс 

метастазирования включает сложный каскад процессов, включая клеточную адгезию,
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миграцию, инвазию, межклеточные взаимодействия и взаимодействие клетки с 

внеклеточным матриксом. Адгезия между опухолевыми клетками и эндотелиальными 

клетками сосудов является одним из важнейших факторов метастазирования раковых 

клеток [Wan ct al., 2013]. В  субпопуляции метастатических раковых клеток по сравнению 

с доброкачественными или нормальными клетками высоко экспрессируется галсктин-3 

[lurisci et al., 2000]. Галсктин-3 участвует в различных биологических процессах, таких 

как межклеточные взаимодействия, пролиферация, дифференцировка, апоптоз [Liu et al., 

2005; Thijsscn et al., 2007]. Галектин-3 способствует прогрессии опухоли и маскированию 

трансформированных от иммунокомпетентных клеток путем связывания с рецепторами Т- 

клсток, что приводит к ингибированию активации Т-клсток и апоптозу Т-клеток

[Fukumori et al., 2003].
Предполагается, что одним из возможных объяснений аптимстастатичсской 

активности H TLP является ингибирование им рецептора галсктина-3. В работе Ксяогс Гао 

[Gao et al., 2013] описана структура молекулы галсктина-3, которая имеет С-концевую 

область, распознающую углеводы (CRD ), специфически связывающуюся с бета- 

галактозидами и N -концсвую область, обогащенную пролипом и глицином, которая имеет 

центр связывания линейного тетрасахарида в виде канавки [Scetharaman ct al., 1998].

Полученные данные по инактивации генов целевых рецепторов TLR-6, CR3 и 

Dectin-1 макрофигов и блокировании их моноклональными антителами однозначно 

свидетельствуют об участии двух рецепторов -  Dectin-I и TLR-6 -  в активации 

макрофагальных клеток R A W  264.7 полисахаридом IIT LP , поскольку при выключении 

генов хотя бы одного рецептора выработка цитокипа TNF-a в пределах погрешности не 

отличается от значений в контрольной культуре клеток. Таким образом, для проявления 

биологической активности (активации клеток и выработки цитокинов) H TLP необходимы 

оба рецептора - Dectin-I и TLR-6. В  связи с этим возможно несколько способов 

взаимодействия полисахаридной молекулы и клеточных рецепторов и передачи

внутриклеточного сигнала.
Во-первых, за счет большой молекулярной массы возможно связывание H1LI 

сразу с двумя рецепторами, что приводит к активации сразу двух сигнальных каскадов, 

которые обладают эффектом синергизма при участии транскрипционного фактора NF-kB. 

Активация NF-kB  при связывании с Dcctin-1 происходит при участии Src, Syk и CARD9- 

MALT1-Bcl-10. TLR-6, скорее всего, не участвует в связывании с полисахаридом отдельно 

от TLR-2, что показано в нескольких работах [Gillaux ct al., 2011; Zhang ct al., 2008]. 

Рецепторный комплекс TLR-6/TLR-2, взаимодействуя с HTLP, приводит к передаче 

сигнала на NF-kB  по пути через TIRAP-Myd88,1RAK4, IRAK1/2 и TRAF6 (рисунок 11).
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Во-вторых, возможно первичное связывание с одним из рецепторов, Dectin-I или 

I LR-6, после чего происходит димеризация рецепторов или вторичное связывание с 

другим рецептором. При этом первичное связывание, наиболее вероятно, происходит с 

рецептором Dectin-1, а не TLR-6, по той причине, что активация комплекса Т1^-6Я1^-2 

приводит к запуску проапоптогического каскада по CASP8 пути, что должно приводить к 

гибели клеток. Гем не менее, гибели клеток в модели колониестимулирующей активности 

не наблюдается, наоборот, I I I L P  является стимулятором колониеобразования, что связано 

с совместной активацией TLR-6 полисахаридом и TNF-R1 лигандом. Такое 

взаимодействие приводит к смещению внутриклеточного сигнального пути в сторону 

противоаполтотичеекого сигнального каскада TRA D D  посредством TIRAP-Myd88 и 

мобилизации R IPK  и TRAF2. Последняя, взаимодействует с протеинкиназой 1КК, что 

позволяет серин-треониновой киназе R JPK  активировать N F-кВ. Белок 1кВа, находящийся 

в комплексе с NF-кВ, ингибирует его транслокацию, происходит фосфорилирование IKK  

и последующая деградация с высвобождением N F-кВ, который транслоцируется к ядру и 

опосредует транскрипцию множества белков, участвующих в выживании и пролиферации 

клеток, воспалительной реакции и антиапоптотических факторов. В  дополнение к этому 

TNF-a может усиливать пролиферацию клеток по сигнальному пути JN K  с активацией 

AI - I. Однако, учитывая совместную активацию I I.R-6 и Déclin-1, следует предположить, 

что она, скорее всего, идет по сигнальному пути NF-кВ (рисунок 11 ).

В-третьих, существует вероятность наличия некоего стороннего рецептора, для 

которого H TLP является лигандом, но при этом и Dectin-1, и TLR-6 необходимы для 

активации внутриклеточного каскада. Однако четырехкомпонентная система активации 

клеток даже молекулой с большой молекулярной массой представляется маловероятной в 

силу того, что многокомпонентные системы менее устойчивы. С другой стороны, 

учитывая время наработки INF-a (4 часа) и скорость миграции рецепторов на примере Т-
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клеток с  одного полюса клетки к другому (3,6-18 мкм/час) [M oss ct al., 2002], можно 

предположить, что происходит быстрая активация клетки полисахаридом, после чего 

комплекс полисахарид-рецепторы распадается и молекула полисахарида постепенно 

деградирует в растворе.

Любой из описанных выше путей взаимодействия полисахарида с рецепторами 

приводит к повышенной выработке TNF-a, что и было показано на двух различных 

моделях. Кроме того, модуляция уровня IL -lp  и стимуляция выработки 1L-6, позволяют 

высказать предположение о наличии стабилизации динамического равновесия системы 

между про- и противовоспалительным ответом клетки при наличии воспалительных 

факторов. Совместное же действие IL-1 и TNF-a, а также р50-р65 приводит к образованию 

петли положительной обратной связи по NF-кВ сигнальному пути. При этом 1L-6 

совместно с  TN F-a может вызывать как апоптоз, так и пролиферацию клеток в 

зависимости от активности АКТ, которая ингибирует ASK1 и МКК4. TN F-a может 

активировать АКТ киназу при этом происходит ингибирование аиоптоза. Другой способ 

внутриклеточного регулирования активности АКТ происходит посредством CR3, который 

при наличии патогена способствует ингибированию АКТ, что приводит к подавлению 

активности ASK1 и М КК4 и запуску проапоптотического сигнального пути.

Интерфсрониндуцирующая активность HTLP, по-видимому, также связана с 

активацией Dcctin-1 и TLR-6 рецепторов, которые при активации на миелоидных и 

плазмацитоидных дендритных клетках приводят к их трансформации в T-reg с 

повышенной продукцией IL-17 [Osorio ct а!., 2008], на CD4 Т-клетках — запуску 

выживаемости и активации противогрибкового иммунитета, на плазматических клетках -  

созревание до В-клсток, а их в свою очередь до плазмобластов, с повышенной выработкой 

антител, а также на NK-клстках -  активации противоопухолевого действия иммунной 

системы [Chiba ct al., 2014]. Болес того в макрофагах и пейгрофнлах IFN-y активирует 

NADP-оксндазы, повышенную продукцию N 0  и лизосомальиых ферментов. При участии 

этих рецепторов происходит не только увеличение выработки цитокииов, но и активация 

макрофагов, нсПтрофилов, моноцитов, Т-клсток и дендритных клеток, что, в итоге, 

приводит к повышенной противомикробной и противовирусной активности [Schroder ct 

al., 2004], что и было обнаружено в опыте по противовирусной активности HTLP.

Применение I ITLP при метастазировании предположительно активирует 

иммунный ответ и стимулирует действие NK- и Т-клсток, ответственных за 

противораковый иммунитет. NK-клетки действуют на трансформированные клетки с 

повышенным содержанием N-гликанов на поверхности, которые запускают активацию 

1RF5 транскрипционного фактора через Dcctin-1, который стимулирует полноценное
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онколитическое действие NK-клеток [Chiba et al., 2014]. Поэтому совместная активация 

NK-клсток через Dectin-1 и TLR-б будет приводить к торможению роста первичной 

опухоли и метастазов, который наблюдается прн использовании HTLP. При этом 

цнтокнны TNF-a, а также 11,-1 и IL-6, стимулируют дифференцировку или апоптоз 

трансформированных клеток. Вместе с тем INP-y стимулирует миграцию иммунных 

клеток к месту воспаления -  трансформированным клеткам, за счет повышения выработки 

хемокинов и факторов адгезии, а в месте воспаления расширяя сосуды вместе с N 0 . 

Повышенные концентрации последнего при этом приводят к лизису онкологических 

клеток. Такая активность INF-y обладает синергизмом с цитокинами IL -lß  и TNF-a. В in 

vitro моделях также наблюдалось торможение роста опухолей, что предположительно 

связано с повышенной выработкой IL -lß , IL-6, а также IFN-y, экспрессию которых 

запускал HTLP через взаимодействие с рецепторами. Выработка этих цитокинов может 

приводить к апоптозу онкологических клеток.

О С Н О В Н Ы Е  РЕ ЗУ Л Ь Т А Т Ы  И В Ы В О Д Ы

1. Впервые экстрагирована, очищена и охарактеризована биологически активная 

нспирогепная фракция полисахаридов из Helianthus tuberosus L.. которая 

содержит reTcpo-ß-гликан HTLP с молекулярной массой 1-2 МДа, содержащий 

0,5 /о белка и боковые вставки ß -( l—>4)- и ß-( 1 —►3)-глюканов, определяющих 

биологическую активность молекулы.

2. Показано, что 1ITLP -  иммунологически активный полисахарид, который 

активирует клеточный иммунитет, цитотоксическне Т-лимфоциты, макрофаги и

естестве   киллеры, стимулирует выработку TN F-a и IL-6 и модулирует -  1L-1.

При этом он не обладает цитотоксичностыо, проявляет адъювантные свойства, 

является индуктором интерферона, обладает радиопротекторными и 

колописстимулирующими свойствами.

3. Установлено, что 11TLP не стимулирует выработку TN F-a в культурах с 

выключенными генами рецепторов TLR-6 и Dcctin-L Инактивация гена целевого 

рецептора CR3 не сказывается на выработке TN F-a макрофагальными клетками. 

Аналогичные данные получены в модели блокировки целевых рецепторов CR3, 

TLR-6 и Dectin-1 пысокоспецифнчнымн моноклональными антителами. HTLP 

проявляет свою биологическую активность посредством взаимодействия с 

обоими рецепторами Dcctin-I и TLR-6, но не с CR3.

4. Построена биофизическая модель формирования бифуркационного состояния 

клетки при воздействии полисахарида на клеточные рецепторы Dcctin-1 и TLR-6
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иа основе уравнения ФитцХыо-Пагумо. Показана возможность цикличности 

переключений между различными формами клеточных ответов на внешнее 

воздействие.
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