

На правах рукописи

Михалев Александр Валерьевич

ВЕТЕРИНАРНО-САНИТАРНАЯ ОЦЕНКА КАЧЕСТВА И БЕЗОПАСНОСТИ КОРМОВ ДЛЯ ВЫРАЩИВАНИЯ ПРУДОВОЙ РЫБЫ

Специальность 16.00.06 — Ветеринарная санитария, экология, зоогигиена и ветеринарно-санитарная экспертиза

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата встеринарных наук

- 3 ДЕН 2009

Работа выполнена на кафедре ветеринарно-санитарной экспертизы ГОУ ВПО «Московский государственный университет прикладной биотехнологии».

Научный руководитель:

доктор ветеринарных наук, профессор

Смирнова Ирина Робертовна

(ГОУ ВПО МГУПБ)

Официальные оппоненты:

доктор ветеринарных наук, профессор

Белоусов Василий Иванович

(ФГУ ЦНМВЛ)

доктор биологических наук, профессор Светличкин Вячеслав Владимирович

(ГНУ ВНИИВСГЭ)

Ведущая организация: ФГОУ ВПО «Московская государственная академия ветеринарной медицины и биотехнологии имени К.И. Скрябина».

Защита состоится «23 » дексору 2009 г. в 14.00 часов на заседании диссертационного совета Д 212.149.03. при ГОУ ВПО «Московский государственный университет прикладной биотехнологии», по адресу: 109316, г. Москва, ул. Талалихина, д. 33.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Московский государственный университет прикладной биотехнологии».

Автореферат разослан 200 » ного бы 2009 г.

Ученый секретарь диссертационного совета, кандидат ветеринарных наук, профессор

ИГ Сепегии

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В связи с изменением пищевого статуса населения России, связанного с дефицитом в продуктах питания эсенциальных органических веществ, особого внимания заслуживает проблема поиска и освоения новых биоресурсов гидросферы нашей планеты, которые являются важным источником белка животного происхождения, необходимого для укрепления здоровья и повышения работоспособности человека, профилактики старения и различных заболеваний (Смирнова И.Р., Субботина Ю.М., Мазур А.В., 1998).

Гидробионты занимают существенное место в обеспечении населения страны жизненно важными продуктами питания с биологически активными веществами, присущими только водным организмам. Мясо отдельных видов гидробионтов отличается оригинальными гастрономическими и пищевыми свойствами: оно является источником полноценного белка, жира, большого спектра необходимых человеческому организму витаминов и микроэлементов (Смирнова И.Р., Субботина Ю.М., 2001).

В России на протяжении последних десятилетий отмечается напряженное состояние запасов многих водных промысловых объектов.

Это в первую очередь связано с дефицитом полноценных и экономически выгодных кормов для всех возрастных групп гидробионтов.

В связи с изложенным, приоритетным направлением научнотехнического развития рыбной отрасли становятся дальнейшее развитие интенсивных форм рыбоводства и последовательное развитие современной кормовой базы. Решению этой важной задачи должно способствовать наличие четких представлений об объектах рыбоводства, их пищевых потребностях, особенностях пищеварения, о составе и питательности используемых кормов, методах их оценки, режимах и нормах кормления (Иванова Е.Е., 2003).

В товарном рыбоводстве главной задачей является обеспечение максимального выхода рыбной продукции в наиболее короткие сроки. Это значит, что необходимо иметь такие корма, энергия которых в максимальной мере обеспечивала бы пластический обмен у рыб.

Каждый объект выращивания, исходя из биологических особенностей, для своего нормального существования требует в составе кормов определенного количества и соотношения полноценного белка, жира, углеводов и минеральных веществ (Багров А.М., 1998; Белоусов В.И., 2005).

В кормлении рыб, наряду с получением полноценных в питательном отношении и дешевых кормов, большое значение имеет суточная ритмика и нормы внесения корма в зависимости от возраста рыб и условий их обитания, определение режима и нормы кормления в зависимости от массы рыб и условий развития (Микитюк П.В., 1989; Мамонтов Ю.П., 2005).

Несмотря на сравнительно большое число работ по данной проблеме, все еще недостаточное внимание уделяется изучению вопросов эффективности кормления, зависящей от качества кормов, способов их хранения.

В связи с этим данные по ветеринарно-санитарной оценке качества кормов для прудовых рыб весьма ограничены.

Цель и задачи исследований. Целью работы являлась ветеринарносанитарная оценка качества и безопасности кормов для выращивания прудовой рыбы.

В связи с этим перед нами были поставлены следующие задачи:

- дать физико-химическую и гидробиологическую характеристику прудов для выращивания трехлетков карпа;
- дать характеристику кормовой базы и особенностей питания трехлетков карпа;
- изучить показатели качества и безопасности кормов для выращивания трехлетков карпа;
- изучить влияние кормовых смесей растительного происхождения на изменение массы тела и среднесуточного прироста трехлетков карпа;
- изучить изменение химического состава тела и мышц трехлетков карпа, выращиваемых на искусственных кормах растительного происхождения;
- изучить динамику влаги, сухого вещества, жира, сырого протеина в мясе трехлетков карпа в зависимости от количества протеина в исследуемых кормах;
- определить пищевую ценность, качество и безопасность мяса трехлетков карпа при использовании растительных кормов.

Научная новизна. Дана комплексная оценка физико-химических показателей, пищевой ценности, качества и безопасности кормовых смесей растительного происхождения с различным содержанием используемых для выращивания прудовой рыбы. Определена возможность использования кормовых смесей для выращивания трехлетков карпа с наиболее продуктивными показателями качества мяса. Определена рыбопродуктивность прудов в зависимости от содержания протеина в кормовых смесях. Изучены ценности, ветеринарно-санитарные показатели пищевой безопасности рыбы, выращенной на кормовых смесях растительного происхождения с различным содержанием протеина. Установлено, что пищевая ценность мяса рыб напрямую зависела от кормовой базы и количества протеина в кормах.

Практическая значимость работы. Результаты исследований вошли в «Методические рекомендации по ускоренному определению токсичности продуктов, кормов и объектов окружающей среды», утвержденные Отделением ветеринарной медицины Россельхозакадемии 25.08.2009. Разработаны «Ветеринарно-санитарные методические гигиенические указания И мероприятия, направленные на профилактику болезней рыб и гидробионтов» (МГУПБ, 2009); учебно-методическое пособие «Ветеринарно-санитарная экспертиза и оценка кормов для прудовых рыб» (МГУПБ, 2009), лабораторно-практических предназначенные для занятий студентов ветеринарно-санитарного факультета, которые используются в учебном процессе.

Апробация работы. Основные результаты научных исследований доложены и обсуждены на IV, VI, VII Международных научных конференциях

студентов и молодых ученых «Живые системы и биологическая безопасность населения» (МГУПБ, 2005, 2007, 2008), Международной научной конференции студентов и молодых ученых «Экологически безопасные ресурсосберегающие технологии и средства переработки сельскохозяйственного сырья и производства продуктов питания» (2009), а также на расширенном заседании кафедры ветеринарно-санитарной экспертизы (2009).

Публикации. По результатам исследований опубликовано 9 научных работ, в том числе 2 статьи в журналах, рекомендованных ВАК РФ.

Основные положения, выносимые на защиту:

- результаты изучения физико-химического и гидробиологического состояния прудов для выращивания трехлетков карпа;
- результаты изучения кормовой базы, показателей качества и безопасности кормов растительного происхождения для выращивания прудовой рыбы;
- результаты использования искусственных кормов растительного происхождения с различным содержанием протеина и их влияние на рост, пищевую ценность, показатели качества и безопасности мяса трехлетков карпа.

Структура и объем работы. Диссертация изложена на 146 страницах компьютерного текста и состоит из введения, обзора литературы, собственных исследований, обсуждения результатов, выводов, практических предложений, списка литературы и приложений. Работа иллюстрирована 1 схемой, 7 рисунками, 29 таблицами. Список литературы включает 155 источников, в том числе 13 иностранных авторов.

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

1. Материалы и методы исследований

Работа выполнена на кафедре ветеринарно-санитарной экспертизы ветеринарно-санитарного факультета ГОУ ВПО «Московский государственный университет прикладной биотехнологии» в период с 2006 — 2009 гг.

Экспериментальная часть диссертационной работы проведена на опытных прудах Всероссийского научно-исследовательского института ирригационного рыбоводства (ГНУ ВНИИР) и в рыбхозе «Бисерово» Ногинского района Московской области.

Экспериментальные пруды ВНИИР были зарыблены двухгодовиками зеркального карпа в 2007 году из расчета плотности посадки 1000 шт./га, в 2008 году с плотностью посадки 1500 шт./га. Во время опытов заболеваний подопытных рыб не наблюдалось.

В период кормления проводили ежедневное трехразовое измерение температуры воды (8:00, 14:00, 20:00), газовый режим исследовали один раз в месяц. Минерализацию воды (нитриты, нитраты, фосфаты, сульфаты, соли аммония и аммиака, общее железо, хлориды, щелочность, общая жесткость, ионы Са, окисляемость) определяли 1 раз в месяц.

Два раза в месяц изучали развитие естественной кормовой базы: фито-, зоопланктона и зообентоса. Для взятия зоопланктона 30 л воды

профильтровывали через планктонную сетку из мельчайшего газа (№61). Количество организмов подсчитывали в камере Богорова. Биомассы зоопланктона и бентоса выражались в г/м³. Для взятия бентосных проб использовали пневматический дночерпатель с площадью захвата грунта 55 см². Планктонные и бентосные организмы определяли до рода. Сразу после взятия, планктонные и бентосные пробы фиксировали в 4%-м растворе формалина. Всего обработано 96 проб зоопланктона и 84 пробы зообентоса.

Санитарно-бактериологические исследования комбикормов и мяса трехлетков карпа в соответствии со схемой экспериментов, проводили по показателям: количество мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ), наличие бактерий группы кишечных палочек, сальмонелл, бактерий рода «протеус» и токсигенных анаэробов. При проведении исследований руководствовались методиками, изложенными в «Правилах бактериологического исследования кормов» (1975).

Показатели безопасности комбикормов и мяса трехлетков карпа определяли с учетом наличия токсичных элементов (ртуть по ГОСТ 26927-86, кадмий по ГОСТ 26929-86, свинец по ГОСТ 26932-86, мышьяк по ГОСТ 26930-86).

Определяли кислотное и перекисное число жира в соответствии с ГОСТ 13496.18-85 «Комбикорма, комбикормовое сырье. Методы определения кислотного числа» и ГОСТ Р51487-99 «Масла растительные и жиры животные. Метод определения перекисного числа».

Для исследования массы, химического состава мяса и соотношения съедобных и несъедобных частей в теле трехлетков карпа два раза в месяц проводили контрольные обловы, взвешивая их на технических весах, а также при весенней посадке и осеннем облове опытных прудов. Во время вегетационного периода для анализа брали по 10 шт. с каждого пруда.

При химическом анализе комбикормов и мяса трехлетков карпа определяли следующие показатели, согласно ГОСТ 7636-85: массовую долю влаги исследовали методом высущивания навески до постоянной массы (ГОСТ 13496.3-92); массовую долю сырого жира определяли методом Сокслета (ГОСТ 13496.25); массовую долю сырого протеина методом Къелъдаля (ГОСТ 13496.4); массовую долю золы методом озоления навески в муфельной печи (ГОСТ Р 50852); аминокислотный состав методом ионообменной хроматографии на автоматическом аминокислотном анализаторе фирмы «Вескта 119 GL»; массовую долю триптофана исследовали после щелочного гидролиза навески по методу Wierbicki Е. в соответствии с ГОСТ 13496.21-87, 13496.22-90.

Определение съедобных и несъедобных частей проводили путем технологического анализа при осеннем облове. Массу мышц определяли вместе с кожей и мышечными косточками, массу внутренностей — с половыми продуктами и жировими прослойками, плавники отделяли вместе с плавниковыми косточками. Взветычание проводили на технических весах с точностью до e,1 г. Разница в массе, полученная до и после обвалки, распределям пропорционально на все отдельные составные части.

При вычислении калорийности мышц и кормовых смесей использовали коэффициенты: протеин -4,1; жир -9,3; углеводы -4,1 ккал/г.

При вычислении кормовых единиц исследуемых кормовых смесей использовали кормовые единицы, применяемые в практике животноводства и представленные в справочнике зоотехника.

Количественные показатели результатов исследований подвергали вариационно-статистическому анализу с использованием программного обеспечения РС Microsoft Excel 2003. Достоверность различий устанавливали по методу Стьюдента – Фишера (Плохинский Ш.А., 1970).

2. Результаты исследований

Физико-химическая и гидробиологическая характеристика прудов для выращивания трехлетков карпа

Существенное влияние на процесс пищеварения, питания и рост рыб оказывают физико-химические и гидробиологические показатели водной среды. От них зависит моторика пищеварительного тракта, активность пищеварительных ферментов, уровень обмена веществ и суточного рациона, интенсивность переваривания корма и сроки его пребывания в кишечнике рыб.

В период кормления рыбы средняя температура воды в прудах находилась в пределах 20-21 °C.

На питание и рост карпов большое влияние оказывает содержание кислорода в воде. Снижение уровня кислорода в воде до 2 мг/л O_2 вызывает падение уровня питания и увеличение кормового коэффициента вдвое. Критическое содержание кислорода для карпов составляет O_2 .

Результаты изучения газового режима в исследуемых прудах показали, что в начале вегетационного периода содержание кислорода в воде опытных прудов в 2007-2008 гг. было достаточно высоким, а колебание в течение суток невелико.

Повышение температуры воды в прудах способствовало развитию фитопланктона, зоопланктона и высшей растительности, что влияло на содержание растворенного в воде кислорода. При росте рыб увеличивалось количество выделяемых экскрементов и количество вносимого корма. Это уменьшало количество растворенного в воде кислорода, так как часть его использовалась на окисление этих продуктов. Количество растворенного кислорода во всех опытных прудах находилось в пределах 7,6-8,6 мг/л О2. Колебание в течение суток было невелико — 1,5-2,0 мг/л О2. К концу вегетативного периода из-за снижения температуры воды содержание растворенного в воде кислорода увеличивалось до 9,0 мг/л.

В проведенных опытах активная реакция воды (рН) во всех прудах была щелочной и находилась в пределах 7,5-8,3. Содержание нитритов от 0,14-0,18 мг/л в начале вегетационного периода увеличивается к августу до 0,96 мг/л в 2007 г. и до 1,26 мг/л – в 2008 г. К концу вегетационного периода их количество

несколько уменьшается. Количество аммиака и солей аммония увеличивается к середине вегетационного периода, достигнув максимума в начале августа (0,36-0,74 мг/л в 2007 г. и 0,66-1,26 мг/л в 2008 г.).

Содержание сульфатов, фосфатов и хлоридов во всех прудах было незначительным.

Окисляемость воды была наименьшая в начале вегетационного периода и незначительно возрастала в конце: в 2007 г. она составила 10,21-10,50 мг/л, в 2008 г. – 9,60-9,71 мг/л.

Таким образом, исследования гидрохимического режима воды в течение вегетационного периода 2007-2008 гг. показали, что опытные пруды по этим показателям мало различались между собой и полностью соответствовали требованиям, предъявляемых к воде рыбохозяйственных водоемов.

Естественная кормовая база прудов незначительная — 1 г/м³, была представлена фито-, зоопланктоном, зообентосом и высшей водной растительностью. Видовой состав зоопланктона представлен циклопами, копеподами, дафниями, биомасса зообентоса — в основном хирономидами и моллюсками.

Характеристика кормовой базы и особенностей питания трехлетков карпа

Для выращивания карпа использовали искусственные кормовые смеси растительного происхождения К111, К111а, Экоген, составленные из одних и тех же компонентов, но с различным процентным соотношением.

Кормовые смеси отличались друг от друга количеством сырого протеина и пополняющие один другого по лимитирующим аминокислотам.

Химический состав и пищевая ценность исследуемых кормовых смесей представлены в табл. 1, из которой видно, что соотношение лизина и метионина во всех вариантах почти одинаковое, хотя абсолютное их количество разное. Наибольшее количество сырого протеина (34,8 %) и незаменимых аминокислот – лизина (1,329 %), метионина (0,427 %) и цистина (0,566 %) отмечалось в кормовой смеси Экоген. При этом энерго-протеиновое отношение было наименьшим и составило 11,7 %. Отмечалось наименьшее количество жира – 2,2 %, наибольшее количество клетчатки – 9,8 % и минеральных веществ – 5,9 %.

Нами изучено содержание витаминов и микро- и макроэлементов в кормах, что представлено в табл. 2, из которой видно, что все исследуемые корма (К111, К111а и Экоген) по содержанию этих компонентов были сбалансированными и не выходили за пределы установленных норм. Корм Экоген содержал большее количество этих ингредиентов.

Таблица 1

Химический состав и пищевая ценность исследуемых кормовых смесей для прудовых рыб

Показатели качества, %	Наименование кормовых смесей					
	K111	K111a	Экоген			
Влага	12,3	12,1	12,5			
Сырой протеин	16,5	24,5	34,8			
Сырой жир	2,4	2,3	2,2			
Минеральные вещества	4,6	5,5	5,9			
Клетчатка	6,7	9,3	9,8			
Гидролизуемые углеводы	57,5	48,3	35,2			
Протеиновое отношение	1:4,3	1:2,6	1:1,5			
Калорийность, ккал/кг	3545,3	3594,0	3491,6			
Кормовые единицы (в 1 кг)	0,91	1,02	1,02			
Энерго-протеиновое отношение	23,7	16,4	11,7			
Лизин	0,707	1,030	1,329			
Метионин	0,233	0,331	0,427			
Цистин	0,253	0,392	0,566			
Триптофан	0,221	0,360	0,531			
Аргинин	1,309	2,702	4,307			
Гистидин	0,438	0,712	1,038			
Лейцин	0,140	1,815	2,592			
Изолейцин	0,889	1,298	1,468			
Фенилаланин	0,796	1,307	1,967			
Треонин	0,543	0,811	1,008			
Валин	0,876	1,404	1,623			

Таблица 2

Содержание витаминов, макро- и микроэлементов в кормовых смесях для прудовых рыб

Наименование	Наименование кормовых смесей				
показателей	K111	KIIIa	Экоген		
	Витам	ины:	<u> </u>		
А, млн. ед.	8,0	8,0	7,5		
D ₃ , млн. ед.	1,8	1,5	1,5		
В ₁ , г/т	10,0	9,0	10,5 6,0 19,0 26		
В ₂ , г/т	6,0	6,0			
В ₃ , г/т	20,0	18,0			
В5, г/т	25,0	20,0			
B ₁₂ , r/T	0,0300	0,0320	0,0350		
	Макро- и ми	кроэлементы			
Медь, г/т	2,5	2,5	2,8		
Железо, г/т	10,0	10,0	12,0		
Кобальт, г/т 0,2		0,1	0,3		
Марганец, г/т	10,0	0,8	11,0		
Цинк, г/т	18,0	18,0	18,0		

Для определения безопасности кормовых смесей были проведены санитарно-бактериологические исследования кормов: КМАФАнМ составляло от 1.0×10^3 КОЕ/г (корм Экоген) до 4.5×10^4 КОЕ/г (корм К111а) и находилось в пределах МДУ, согласно ГОСТ 25311-82. БГКП, Е. coli, сальмонеллы и бактерии рода Proteus не выделялись.

Исследование кормов К111, К111а, Экоген на содержание в них токсичных элементов показало, что концентрации этих веществ во всех кормах были на фоновом уровне, (мг/кг): ртуть — 0,1; кадмий — 0,06; свинец — 0,14; мышьяк — 0,006 и находились в пределах МДУ. Радионуклиды цезий-137 и стронций-90 не превышали нормы; пестициды (ГХЦГ, ДДТ и его метаболиты) также находились в пределах нормы.

Таким образом, полученные нами данные указывают на высокую питательную ценность кормовой смеси Экоген по сравнению с двумя другими исследуемыми кормовыми смесями, так как она содержит значительное количество протеина, в составе которого имеются все незаменимые аминокислоты, витамины и микронутриенты.

Влияние кормовых смесей растительного происхождения на изменение массы трехлетков карпа

При изучении массы тела и ее прироста у карпов, выращиваемых на кормовых смесях К111, К111а, Экоген, использовали двухгодовиков карпа со средней штучной массой 264,0 г в 2007 г и 320,0 г – в 2008 г., что представлено на рис. 1, 2.

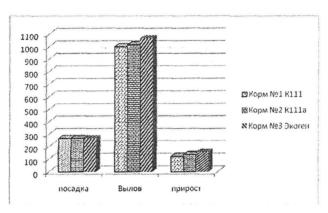


Рис. 1. Масса тела и ее прирост у карпа в зависимости от вида корма в 2007 г., г

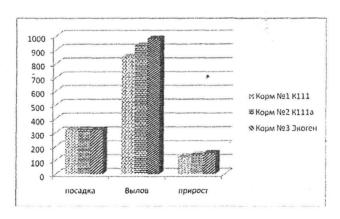


Рис. 2 Масса тела и ее прирост у карпа в зависимости от вида корма в 2008 г., г

На рисунках видно, что с началом кормления и повышением температуры воды карпы начали интенсивно питаться. Это отразилось на темпе роста, а значит, и на величине прироста массы. В 2007 г. максимальный суточный прирост колебался в пределах 8,64-10,28 г, в 2008 г. — 8,92-10,57 г. Среднесуточный прирост карпов повлиял на среднюю штучную массу карпов при осеннем облове. В 2007 г. карпы достигли средней массы 1000-1065 г, в 2008 г. — 847,0-980,0 г, причем в обоих случаях темп роста и прироста был лучше на корме Экоген, что связано с количеством протеина в испытуемых кормах.

Изменение химического состава тела и мышц трехлетков карпа, выращиваемых на искусственных кормах растительного происхождения

Изучение динамики влаги и сухого вещества в теле трехлетков карпа

При изучении химического состава тела и мышц трехлеток карпа были изучены относительное содержание влаги и сухого вещества в теле карпа. Результаты этих исследований представлены на рис. 3 и 4.

На рисунках видно, что относительное содержание влаги в теле и мышцах трехлетков карпа при использовании всех видов кормов К111, К111а и Экоген подтверждают наличие обратной связи между количеством протеина, содержащимся в корме, и содержанием влаги в теле и мышцах карпа. Было установлено, что в корме Экоген с наибольшим содержанием протеина меньше всего влаги в теле и мышцах карпа.

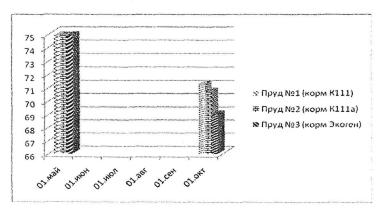


Рис. 3. Динамика относительного содержания влаги в теле трехлетков карпа в течение вегетационного периода 2007 г., %

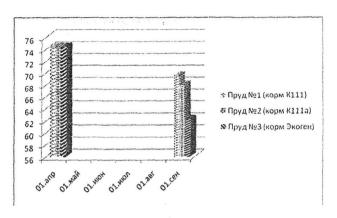


Рис. 4. Динамика относительного содержания влаги в теле трехлетков карпа в течение вегетационного периода 2008 г., %

Изучение динамики жира в мясе трехлетков карпа

Большое влияние на количество жира в организме рыб оказывает уровень кормления и качество корма. Динамика относительного количества жира в теле и мышцах карпа была одинаковой в оба года исследований и представлена на рис. 5.

Отмечено, что количество жира при посадке было меньше в мышцах по сравнению с телом карпа. Это связано с откладыванием резервного жира на внутренностях и голове.

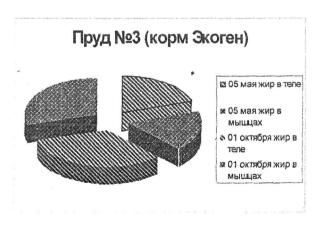


Рис. 5. Относительное содержание жира в теле и мышцах карпа в течение вегетационного периода, %.

После посадки рыбы на выращивание содержание жира в теле и мышцах карпов уменьшается, что связано со слаборазвитой естественной кормовой базой и быстрым расходованием резервного жира на обмен веществ: в 2007 г. с 7,55-5,24 % (корм К111A) и до 5,33 % (корм Экоген), в 2008 с 8,45 до 5,65 % (корм К111A) и до 6,27 % (корм Экоген).

С началом кормления и до конца вегетационного периода относительное количество жира в теле и мышцах карпа в пересчете на сырое вещество увеличивается: в 2007 г — в теле до 12,39-12,11 %, в мышцах — до 10,64-10,43 %. Это связано с подготовкой карпа к зиме.

При более плотной посадке в 2008 г. в теле и мышцах откладывается больше жира. Отмечено, что с увеличением количества протеина в исследуемых кормах, особенно в корме Экоген, увеличивается относительное количество жира в теле и мышцах карпов – в теле до 13 %, в мышцах до 11 %.

Таким образом, у трехлеток карпа, которых кормили Экогеном с более высоким уровнем протеина (34,8 %), отложилось меньше жира в теле и мышцах по сравнению с другими видами кормов (К111, К111а).

Изучение динамики сырого протеина в мясе трехлетков карпа

Белки играют важную роль в жизненных процессах. Увеличение массы тела связано в первую очередь с белковым синтезом. Содержание протеина в организме рыб сравнительно постоянное и его изменения, главным образом, связаны с изменением относительного количества влаги и жира.

С возрастом и повышением массы тела количество протеина в сухом веществе уменьшается, а в сыром – увеличивается.

На количество протеина у рыб одного вида и возраста главным образом влияет полноценность кормов. Карп, питавшийся естественной пищей и не получавший искусственных кормов, имел меньше протеина в своем организме по сравнению с рыбой, получавшей искусственные корма.

Динамика относительного содержания протеина в теле и мышцах карпов представлена на рис. 6, 7 и 8.

В 2007-2008 гг. с началом кормления у карпов, получавших корм Экоген с большим количеством протеина — 34,8 %, больше отложилось его в теле: в 2007 г. — 16,30 %, в 2008 г. — 17,07 %. При этом отмечалось снижение за вегетационный период относительного количества протеина в теле карпа на сухое вещество, что связано с увеличением относительного количества жира. При осеннем облове в 2007 и 2008 гг. наименьшее количество протеина на сухое вещество содержалось в теле карпов, выращенных в первом пруду на корме К111 (48,3-49,1). Относительное количество протеина в теле карпа на сухое вещество было наибольшим у рыб, выращенных в третьем пруду на корме Экоген.

Динамика содержания относительного количества протеина в мышцах карпа сходна с динамикой протеина в теле.

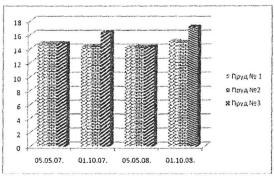


Рис. 6. Динамика относительного содержания протенна в теле карпов на сырое вещество в течение вегетационного периода 2007-2008 гг., %

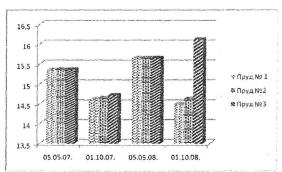


Рис. 7. Динамика относительного содержания протеина в мышцах карпа в течение вегетационного периода 2007-2008 гг., %

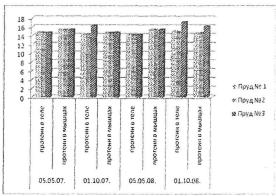


Рис. 8. Соотношение относительного содержания протеина в теле и мышцах карпа в течение вегетационного периода в 2007-2008 гг., %

Анализ динамики относительного содержания протеина в мышцах карпа на сухое вещество показал, что как в 2007 г., так и в 2008 г. количество протеина уменьшается во всех вариантах опыта от посадки до начала кормления. С начала кормления до середины вегетационного периода происходит увеличение относительного количества протеина во всех прудах. При облове оно меньше в 1 и 2 прудах по сравнению с исходными данными, в 2007 г. на – 14,5 %, в 2008 г. – на 14,0 %, кроме 3 пруда.

Анализ динамики относительного содержания протеина в мышцах карпа на сухое вещество показал, что в 2008 г., при более плотной посадке — (1500 шт./га) относительное количество протеина в мышцах увеличивалось. Наибольшее количество протеина отмечено у карпа, выращенного на корме Экоген в течение всего вегетационного периода.

Относительное количество протеина в мышцах карпа на сырое вещество за время вегетационного периода в 2007–2008 гг. в 1 и 2 прудах уменьшалось, в 3 пруду – увеличивалось.

Обобщая полученные данные динамики содержания относительного количества протеина в теле и в мышцах подопытных карпов, можно сделать вывод, что она тесно связана с динамикой изменения жира и влаги.

Относительное количество протеина на сырое вещество уменьшается в период от посадки до начала кормления. Это связано с увеличением относительного количества влаги, так как относительное количество протеина на сухое вещество в этот период увеличивается. В первой половине вегетационного периода происходит быстрое увеличение массы карпов. Главным образом, это происходит из-за прироста относительного количества протеина, что отмечается во всех вариантах в это время года. Во второй половине вегетационного периода снижается прирост карпов, что связано с уменьшением синтеза протеина. В третьем пруду, где наблюдается наименьший прирост жира, относительное количество протеина увеличивалось в течение всего вегетационного периода.

Особенно хорошо заметна эта связь между относительным количеством протеина и жира у подопытных карпов на сухое вещество, так как в этом случае исключается количество влаги. Как в теле, так и в мышцах относительное количество протеина и жира находится в обратно пропорциональной зависимости.

Интересно отметить, что относительное количество протеина выше в мышцах, чем в теле. Это связано с меньшим количеством жира в мышцах карпа и с тем, что главной тканью, где откладывается синтезированный протеин, являются мышцы.

В прудах, где рыбе задавался корм с наименьшим количеством протеина, отмечено наименьшее его количество как в мышцах, так и в теле карпов. При увеличении количества протеина в корме увеличилось относительное количество отложенного протеина и в мышцах, и в теле.

Определение пищевой ценности, качества и безопасности мяса трехлетков карпа при использовании растительных кормов

Самая ценная часть рыбы — съедобная, которую человек использует в пищу. Основную ее массу составляют мышцы. Соотношение съедобных и несъедобных частей зависит от вида рыбы, породы, генетической группы, возраста. С увеличением массы и возраста трехлетков карпа уменьшается удельная масса несъедобных частей и увеличивается масса мышц.

Кроме соотношения съедобных и несъедобных частей тела карпа, его пищевую ценность характеризует калорийность и биохимический состав мяса, которые находятся в тесной связи с качеством корма, получаемого рыбой.

Соотношение основных частей тела трехлетков карпа от общей массы, в течение вегетационного периода 2007-2008 гг., представлено в табл. 3.

Из табл. 3 видно, что в 2007-2008 гг., во всех вариантах опыта с увеличением массы рыбы больше всего уменьшается относительная масса головы.

Масса скелета, чешуи и плавников уменьшается незначительно. Масса внутренностей к середине вегетационного периода несколько увеличивается, что связано с количеством корма в пищеварительном тракте у подопытных карпов.

При облове относительная масса внутренностей меньше по сравнению с моментом зарыбления. Наивысшая масса внутренностей при осеннем облове наблюдалась у карпов в 2007 г. Это связано с тем, что карпы накопили больше жира на внутренних органах.

Относительная масса мышц карпа во всех трех прудах за время вегетационного периода увеличивалась — в 2007 г. на 15,0 %, в 2008 г. — на 7,7 %. Причем масса мышц была больше у рыб с большей массой тела, при кормлении кормом Экоген.

Полученные данные позволяют сделать вывод, что относительная масса мышц находится в прямой зависимости от массы рыб и количества протеина в корме. При использовании корма Экоген с содержанием протеина 34,8 % относительная масса мышц увеличивалась. Это связано с более интенсивным синтезом протеина в теле карпов при приеме кормов с повышенным содержанием протеина.

Показатели качества мяса трехлетков карпа при осеннем облове представлены в табл. 4.

Таблица 3 Соотношение основных частей тела трехлетков карпа от обще й массы, %

			2007 г.					
№ пруда , Название корма	Дата	Средняя масса тела, г	Голова	Скелет	Чешуя	Плавники	Внутренности	Мышцы
Пруд№1	05.05.	264,0	26,3	4,0	3,2	4,4	13,0	49,4
КормК111	15.07.	629,0	23,3	3,9	3,3	4,2	13,1	52,2
	18.09.	1017,0	23,5 3,8 3,1 4,1 11,7 26,3 4,0 3,2 4,4 13,0	11,7	56,9			
Пруд№2	05.05.	264,0	26,3	4,0	3,2	4,4	13,0	49,4
КормКІ11а	15.07.	667	20,3	4,0	3,1	4,2	13,3	53,8
	18.09	1043,0	20,7	3,9	3,0	4,0	11,6	57,7
Пруд№3	05.05	264,0	26,3	4,0	3,2	4,4	13,0	49,4
КормЭкоген	15.07.	700,0	20,3	3,8	3,0	4,0	13,5	54,0
-	18.09.	1100	19,4	3,7	2,9	3,9	11,2	59,0
			2008 г.					
Пруд №1	05.05.	320,0	26,3	4,0	3,2	4,4	13,0	49,4
КормК111	15.07.	579,0	23,3	3,9	3,3	4,3	13,1	52,2
	18.09.	888,0	23,5	3,8	3,1	4,2	11,0	56,9
Пруд№2	05.05.	320,0	26,3	4,0	3.2	4,4	13,0	49,4
КормКП1а	15.07.	632,0	20,3	3,9	3,3	4,2	13,6	51,8
-	18.09	941,0	20,7	3,9	3,0	4,1	11,0	56,7
Пруд№3	05.05	320,0	26,3	4,0	3,2 .	4,4	13,0	49,4
КормЭкоген	15.07.	610,0	20,3	3,9	3,1	4,0	11,1	53,5
	18.09.	938,0	20,0	3,8	2,9	3,9	11,0	59,0

№ пру-	Ср. Вы- мас- ход са мяса, рыб, %	Выра- щено рыбы, кг/га	ход	Содержание в сыром мясе, %				Калорий- ность	Калорий ность	
дов				Вла -ги	Жира	Золы	Про- теина	мяса, ккал/г	мяса тыс. ккал/га	
					20	Ю7год				
1	1017	56,7	930,0	527,3	73,8	10,43	1,02	14,62	1587	827,3
2	1043	56,9	951,2	541,2	73,6	10,64	0,95	14,65	1569	858,9
3	1100	58,4	1025,7	597,4	74,2	9,96	1,08	16,37	1597	953
					20	08 год				
1	888	56,1	1245,7	698,8	72,6	10,70	0,99	15,12	1634	1128,6
2	938	56,5	1170,0	661,0	73,0	11,20	0,97	14,63	1615	1084,7
3	941	58,2	1390,0	809,0	71,1	10,02	1,07	17,13	1641	1321,9

Качество мяса трехлетков карпа при осеннем облове

Из табл. 4 видно, что наименьшая калорийность мяса была у рыб, выращенных в 2007 г. – 1569-1597 ккал. Однако наибольшая калорийность мяса отмечалась как в 2007 г., так и в 2008 г. на корме Экоген.

Наименьшее количество мяса в 2007-2008 гг. выращено в 1 пруду на корме К111 с наименьшим содержанием протеина. В 2008 г. из-за большей плотности посадки увеличилось количество рыбопродукции, тем самым выход мяса составил по сравнению с 2007 г. в 1 пруду – 698,8 кг/га, 2 пруду – 661,0 кг/га, в 3 пруду – 809,0 кг/га на корме Экоген.

Как показывают данные биохимического анализа мышц, наивысшее количество жира содержится в мясе карпов, выращенных в 1 пруду: в 2007г. – 10,43 %, в 2008 г. – 10,7 %. Наивысшее количество протеина в мышцах карпа отмечалось на корме Экоген в 3 пруду: в 2007 г. – 16,37 %, в 2008 г. – 17,13 %.

Критерием доброкачественности рыбы, выловленной в конце вегетационного периода, согласно действующим «Правилам ветеринарносанитарной экспертизы пресноводной рыбы и раков» (1989) и ГОСТ 7631-08, служили органолептические показатели.

Выловленные образцы рыбы (10 экз.) проявляли все признаки жизнедеятельности, имели нормальное движение жаберных крышек. Поверхность рыбы была чистая, имела естественную окраску, присущую данному виду рыбы, с тонким слоем слизи. Чещуя блестящая, плотно прилегала к телу. Рыба без механических повреждений и признаков заболеваний. Цвет жабр красный, глаза светлые, выпуклые, без повреждений. Запах — свойственный свежей рыбе, без посторонних запахов. Во всех выловленных образцах гельминтов и их личинок в лабораторных условиях выявлено не было.

Санитарно-бактериологические исследования мяса рыбы показали, что количество КМАФАнМ находилось в пределах от 7,0×10² КОЕ/г. БГКП, S. aureus, сальмонеллы, L. monocytogenes не обнаруживались.

При токсикологическом исследовании мяса рыбы было установлено следующее: токсичные элементы (свинец, мышьяк, кадмий, ртуть) не превышали МДУ; радионуклиды цезий-137 — менее 10 Бк/кг, стронций-90 — менее 20 Бк/кг, что не превышало нормы; пестициды ГХЦГ — 0,01мг/кг, ДДТ и его метаболиты — 0,0015 мг/кг, что также находилось в пределах нормы.

выводы

- 1. Термический, гидрохимический и гидробиологический режимы работы прудов в период эксперимента были пригодными для выращивания карпа: температура воды 20-21 °C, содержание растворенного кислорода 7,2-8,6 мг/л O₂, рН 7.5-8,3, при незначительном количестве нитритов.
- 2. Комплексная оценка используемых в опыте кормовых смесей растительного происхождения по химическому составу, пищевой ценности и калорийности показала, что наибольшее количество протеина (34,8 %), незаменимых аминокислот: (лизина 1,329 %, метионина 0,427 % и цистина 0,566 %), минеральных веществ 5,9 % при наименьшем количестве жира (2,2 %) отмечалось в кормовой смеси Экоген. Энерго-протеиновое отношение составило 11,7 %.
- 3. Санитарно-бактериологические и токсикологические исследования кормовых смесей растительного происхождения показали, что КМАФАнМ составляло $10.0 \times 10^3 4.5 \times 10^4$ КОЕ/г; содержание токсичных элементов (ртути, кадмия, свинца, мышьяка) находилось в пределах МДУ для данных показателей.
- 4. При использовании кормовых смесей с более высоким содержанием протеина трехлетки карпа потребляли меньше естественной пищи и имели большую массу до 1000,0-1065,0 г, и больший среднесуточный прирост 9,5-10,6 г.
- 5. Повышенное содержание протеина в растительных кормовых смесях влияло на увеличение выхода мяса (809 кг/га) и его калорийности (1630 ккал) у трехлетков карпа.
- 6. У трехлетков карпа, получавших искусственные корма растительного происхождения с более высоким количеством протеина, в течение вегетационного периода в теле и мышцах уменьшается относительное количество влаги, протеина и минеральных веществ, а жира увеличивается. При осеннем облове относительное количество жира и влаги уменьшается, протеина в теле и мышцах увеличивается.
- 7. Определены безвредность и пищевая ценность трехлетков карпа, выращенных на искусственных кормах растительного происхождения.
- 8. Кормовые смеси растительного происхождения, рекомендуемые для выращивания трехлетков карпа должны содержать оптимальное количество протеина, около 34,8 %, что позволяет гарантировать высокое качество мяса трехлетков карпа, а также отвечать необходимым ветеринарно-санитарным требованиям качества и безопасности.

ПРЕДЛОЖЕНИЯ ДЛЯ ПРАКТИКИ

На основании проведенных исследований разработаны «Методические рекомендации по ускоренному определению токсичности продуктов, кормов и объектов окружающей среды», утвержденные Отделением ветеринарной медицины Россельхозакадемии (25.08.2009)

По материалам исследований изданы: методические указания «Ветеринарно-санитарные и гигиенические мероприятия, направленные на профилактику болезней рыб и гидробионтов»; учебно-методическое пособие «Ветеринарно-санитарная экспертиза и оценка кормов для прудовых рыб» (М.: МГУПБ, 2009), которые используются в учебном процессе и предназначены для проведения лабораторно-практических занятий магистров по направлению подготовки 110500 — ветеринарно-санитарная экспертиза.

Для выращивания трехлетков карпа в прудовых хозяйствах рекомендуется использовать искусственные корма растительного происхождения с содержанием протеина не мене 34,8 %.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Михалев А.В. К ветеринарно-санитарной оценке комбикормов / А.В. Михалев // Живые системы и биологическая безопасность населения: материалы 4-й Международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2005. С. 189-190
- 2. Михалев А.В. Контроль за токсичностью комбикормов основа получения биологически безопасной продукции / А.В. Михалев // Живые системы и биологическая безопасность населения: материалы 6-й Международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2007. С. 270-271.
- 3. Михалев А.В. К вопросу ветеринарно-санитарной оценки кормов для прудовых рыб / А.В. Михалев // Живые системы и биологическая безопасность населения: материалы 6-й Международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2007. С. 267-268.
- 4. Михалев А.В. Ветеринарно-санитарная оценка особенностей выращивания прудовых рыб при интенсифнкации рыбоводства / А.В. Михалев // Живые системы и биологическая безопасность населения: материалы 7-й Международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2008. С. 211-212.
- 5. Михалев А.В. Механизм иммунобиологической реактивности животных и рыб на воздействие кормовых стрессоров / А.В. Михалев, Т.В. Аль-Кейси // Живые системы и биологическая безопасность населения: материалы 7-й Международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2008. С. 255-257.
- 6. Михалев А.В. Характеристика кормов и требования при ветеринарно-санитарной оценке / А.В. Михалев // Живые системы и биологическая безопасность населения: материалы 7-й Международной

научной конференции студентов и молодых ученых. – М.: МГУПБ, 2008. – С. 317-318.

- 7. Михалев А.В. Ветеринарно-санитарная оценка методов определения витаминов для птицеводства / И.Р. Смирнова, А.В. Михалев, Л.П. Сатюкова, В.С. Борисова // Ветеринария. 2008. №6 С. 41-46.
- 8. Михалев А.В. Применение комбинированных кормов для прудовых рыб (тезисы) / А.В. Михалев // Экологически безопасные ресурсосберегающие технологии и средства переработки сельскохозяйственного сырья и производства продуктов питания: материалы международной научной конференции студентов и молодых ученых. М.: МГУПБ, 2009. С. 268-270.
- 9. Михалев А.В. Ветеринарно-санитарная характеристика основных видов кормов для прудовых рыб / И.Р. Смирнова, А.В. Михалев, Л.П. Сатюкова, В.С. Борисова // Ветеринария. 2009. №5 С. 30-36.

Подписано в печать 19.11.09. Усл. печ. л. 1,5. Тираж 100 экз. Заказ 10/03. МГУПБ. 109316, Москва, ул. Талалихина, 33 ООО «Полисувенир», 109316, Москва, ул. Талалихина Тел. 677-03-86