На правах рукописи

Мельников Владлен Владимирович

СТРУКТУРА И СПЕКТРАЛЬНЫЕ СВОЙСТВА МАЛЫХ МОЛЕКУЛ И ПРИМЕСНЫХ ЦЕНТРОВ МОЛЕКУЛЯРНОГО ТИПА В КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛАХ: ТЕОРИЯ И ПРИЛОЖЕНИЯ

01.04.02 — Теоретическая физика

Автореферат диссертации на соискание учёной степени доктора физико-математических наук Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский государственный университет».

Научный консультант: доктор физико-математических наук, профессор **Потекаев Александр Иванович**

Официальные оппоненты:

Поплавной Анатолий Степанович, доктор физико-математических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет», кафедра теоретической физики, заведующий кафедрой

Бехтерева Елена Сергеевна, доктор физико-математических наук, доцент, федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет», Исследовательская школа физики высокоэнергетических процессов, профессор

Магазев Алексей Анатольевич, доктор физико-математических наук, федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет», кафедра «Комплексная защита информации», доцент

Ведущая организация: Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Защита состоится 17 октября 2019 г. в 14 ч. 30 мин. на заседании диссертационного совета Д 212.267.07, созданного на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет», по адресу: 634050, г. Томск, пр. Ленина, 36 (Главный корпус СФТИ ТГУ, аудитория 211).

С диссертацией можно ознакомиться в Научной библиотеке и на официальном сайте федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» http://www.tsu.ru

Материалы по защите диссертации размещены на официальном сайте ТГУ: http://www.ams.tsu.ru/TSU/QualificationDep/co-searchers.nsf/newpublicationn/MelnikovVV17102019.html

Автореферат разослан «_____» сентября 2019 г.

Учёный секретарь диссертационного совета Meet

Киреева Ирина Васильевна

Общая характеристика работы

Актуальность работы. Проблема развития теоретических методов описания квантовых систем, состоящих из большого количества частиц, не утрачивает своей актуальности. В первую очередь это многоатомные системы, определяющие широкий класс явлений как в микроскопическом, так и в макроскопическом масштабах. Особый фундаментальный и практический интерес представляют малые молекулы и примесные центры молекулярного типа в кристаллических полупроводниковых (диэлектрических) материалах.

Современное аналитическое оборудование вкупе с методами спектрального и структурного анализа представляют собой развитый инструментарий для определения состава, структуры и свойств различных объектов и сред. Однако, наиболее полная и эффективная реализация подобных экспериментальных методик достижима только в комплексе с теоретическими исследованиями, включающими построение адекватной модели физической системы, прогнозирование и объяснение результатов измерений, выявление механизмов наблюдаемых явлений и анализ их закономерностей. В ряде случаев теоретические результаты и выводы являются единственным источником информации о рассматриваемой системе.

Следует отметить актуальность задачи конструирования функциональных материалов с заданными характеристиками, где важная роль отводится полупроводниковым материалам. Примеси и дефекты оказывают решающее влияние на электрические и оптические свойства полупроводников, поэтому понимание физики дефектов является необходимым условием для перехода к стадии производства устройств с максимальной эффективностью. Неотъемлемой частью исследования и разработки таких материалов становится детальная диагностика дефектов. Для реализации такой диагностики, в частности, методами оптической спектроскопии, необходимо теоретическое описание трансформаций структуры и спектральных свойств материала, происходящих вследствие образования дефектов, вызванных изменениями элементного состава и электронной структуры, перестройкой колебательных и вращательных мод.

Степень разработанности темы исследования. Значительная сложность квантово-механической задачи сильно ограничивает возможность теоретического исследования многоатомных систем. Прежде всего это связано с большим количеством степеней свободы и конфигурационным многообразием системы. Теоретическая модель многоатомной системы может включать только конечное число активных степеней свободы, представленных ограниченной областью конфигурационного пространства. В случае многокомпонентных систем, например, дефектосодержащих кристаллических материалов, возникает необходимость комбинации и обобщения нескольких моделей, описывающих составляющие различных классов.

На сегодняшний день достигнут значительный прогресс в разработке теоретических методов описания квантовых систем, принадлежащих конкретно-

му классу. При этом в целом сохраняется разделение исследований электронной структуры и эффектов, обусловленных движением ядер. Значительную роль в развитии теории электронной структуры молекулярных и кристаллических систем играют методы, основанные на приближении самосогласованного поля и теории функционала плотности. Разработан ряд методов, позволяющих проводить расчёты колебательно-вращательных состояний небольших свободных молекул. Развиты методы вычисления фононных спектров кристаллов. Однако необходимо отметить, что изолированные подсистемы, принадлежащие разным классам рассматриваются, в основном, с применением различных подходов и методов. Такое положение дел обусловлено существенными отличиями структуры, симметрии, масштаба, и, как следствие, ограниченностью используемых математических моделей.

Сложность описания поведения квантово-механической системы заметно возрастает с увеличением значимости межкомпонентного взаимодействия, когда модели подсистем, принадлежащих различным классам, должны быть скомбинированы и обобщены. Понятно, что в реальных условиях молекулы подвергаются внешним воздействиям, являются частью более сложных комплексов, могут быть адсорбированы на поверхности или внедрены в кристаллический материал. В свою очередь, наличие объектов внедрения приводит к перестройке атомной и электронной структуры материала. Таким образом, интерес к исследованию процессов в многокомпонентных системах, включающих межкомпонентные взаимодействия и трансформации, приводит к необходимости развития общих подходов к определению структуры и свойств исходных составляющих и производных комплексов.

К основным объектам исследования диссертационной работы относятся малые молекулы, состоящие из 2–4 атомов, и примесные центры молекулярного типа в кристаллических полупроводниковых (диэлектрических) материалах. Предмет исследования — структура и спектральные свойства, теоретические подходы к их определению. Особое внимание уделяется проблеме описания межатомного взаимодействия в молекулах и системах молекула – кристалл, построению моделей многокомпонентных систем, изучению эффектов, обусловленных движением ядер (колебательные и вращательные моды).

Цель и задачи работы. Основной целью является разработка концепции и методик общего подхода к определению структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических полупроводниковых (диэлектрических) материалах. Достижение указанной цели потребовало решения нижеследующих задач.

1. Разработать общую методику теоретической оценки и исследования структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических материалах на основе анализа и обобщения квантово-механических моделей молекулярных и кристаллических систем, включая поиск наилучших подходов к реализации методов приближённого решения многочастичного уравнения Шредингера.

- 2. Разработать теоретические модели трёх- и четырёхатомных молекул, учитывающие структурную нежёсткость, позволяющие осуществлять расчёт и исследование структуры и энергетических спектров, включая изучение поверхностей потенциальных энергий, анализ волновых функций, выявление структурно-энергетических особенностей состояний.
- 3. Построить теоретические модели монокристаллических поверхностей и когерентных границ раздела в рассматриваемых системах для изучения трансформации атомной и электронной структуры при формировании границы раздела кристалл кристалл и кристалл газ; исследовать механизмы явлений адсорбции и адгезии в модельных системах на микроскопическом уровне.
- 4. Разработать теоретическую модель системы молекула матрица, позволяющую описывать поведение молекулярного дефекта внедрения в полупроводниковом кристалле; исследовать влияние междоузельного водорода на структуру и спектральные свойства кремния, включая расчёт атомной и электронной структуры, выявление механизмов взаимодействия объекта внедрения с носителем, изучение трансляционно-вращательных состояний молекулы в кристалле.
- 5. Разработать теоретические модели комплексов точечных дефектов и планарных дефектов в рассматриваемых системах, исследовать структуру и спектральные свойства комплекса «водород вакансия» и водородсодержащих планарных дефектов (нанодисков) в кремнии, изучить структурно-фазовые состояния двумерного молекулярного водорода в кремнии.

Методология и методы исследования. Вопросы развития теоретических методов описания многоатомных систем рассматривались в рамках квантовой и классической теории, включая теорию конденсированного состояния, термодинамику и статистическую физику. Исследования структуры и свойств молекулярных и дефектосодержащих кристаллических систем проводились путём разработки теоретических моделей, реализации аналитических вычислений и численных расчётов. При возможности, анализ и верификация полученных результатов осуществлялись с учётом доступных экспериментальных данных, полученных методами спектрального и структурного анализа.

Компоненты сложных систем, рассматриваемые в диссертационной работе, условно разделены на четыре класса, которые можно наименовать как «среда», «кристалл», «граница раздела» и «объект внедрения». Среда — это газ или жидкость, вещество с заметным проявлением индивидуальных свойств основных элементов — молекул. Элементы среды рассматриваются как отдельные слабовзаимодействующие квантово-механические объекты. Кристалл — полупроводниковый или диэлектрический материал с определённой кристаллической структурой. Граница раздела — область контакта среды с кристаллическим материалом, например, с поверхностью полупроводникового сенсора, или когерентная граница кристалл – кристалл. Физико-химические свойства границы раздела в значительной степени определяются процессами адсорбции, адгезии и диффузии атомов и молекул среды. Объекты внедрения —

примесные атомы или молекулы, проникающие в структуру кристаллического материала из среды в процессе синтеза или обработки, образующиеся в результате точечные дефекты и комплексы. Согласно вышеизложенным представлениям элементы среды и кристаллы являются исходными составляющими, точечные дефекты и комплексы рассматриваются как результат межкомпонентных взаимодействий и трансформаций.

Положения, выносимые на защиту:

- 1. Общая методика теоретической оценки и исследования структуры и спектральных характеристик малых молекул и примесных центров молекулярного типа в кристаллических материалах, состоящая из единого согласованного комплекса конкретных приёмов и способов построения моделей молекулярных и дефектосодержащих кристаллических систем, подходов к реализации методов приближённого решения многочастичного уравнения Шредингера. Концептуальная особенность предлагаемой методики заключается в её способности выявления закономерностей изменения структуры и спектральных свойств сложных многоатомных систем вследствие межкомпонентных взаимодействий и трансформаций.
- 2. Оригинальные теоретические модели трёх- и четырёхатомных молекул, предусматривающие структурную нежёсткость и ровибронное взаимодействие, позволяющие корректно осуществлять расчёт и исследование структуры, состояний и спектральных характеристик, включая изучение поверхностей потенциальных энергий, анализ волновых функций, вычисление спектров, выявление структурно-энергетических особенностей состояний.
- 3. Разработанные теоретические модели дефектосодержащих полупроводниковых кристаллических материалов, позволяющие проводить исследования структуры и спектральных свойств рассмотренных классов систем, предусматривающие описание поведения междоузельного водорода в кремнии, осуществление оценки характеристик комплекса «водород вакансия», изучение структуры и свойств водородсодержащих планарных дефектов (нанодисков).
- 4. Результаты исследования структуры и спектров нежёстких трёх- и четырёхатомных молекул, включающие полученные аналитические выражения для модельных функций потенциальной энергии и матричных элементов электрического дипольного момента, рассчитанные значения энергетических уровней и интенсивностей спектральных линий, теоретические спектры. Эффективные реализации квантово-механических вычислений состояний молекул и анализа соответствующих волновых функций, позволившие выявить структурно-энергетические особенности колебательно-вращательных и ровибронных состояний рассмотренных систем.
- 5. Результаты исследования структуры и спектральных свойств дефектосодержащих кристаллических систем, — междоузельного водорода в кремнии, комплекса «водород – вакансия», водородсодержащих планарных дефектов в кремнии, — представляющие новые знания о влиянии междоузельного водорода на структуру и спектральные свойства кремния, механизмах взаимо-

действия молекулярного водорода с дефектной структурой полупроводника, особенностях структурно-фазовых состояний двумерного молекулярного водорода в кремнии.

Научная новизна. Все результаты, выносимые на защиту, являются новыми, что также подтверждается публикациями в рецензируемых научных изданиях, входящих в международные реферативные базы данных и системы цитирования. Прежде всего следует отметить комплексность и целостность проделанных работ, одним из значимых результатов которых стало развитие общей методики теоретической оценки и исследования структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических материалах.

Предлагаемая методика состоит из единого комплекса приёмов, способов и алгоритмов построения теоретических моделей как для молекулярных, так и для дефектосодержащих кристаллических систем, подходов к реализации методов приближённого решения многочастичного уравнения Шредингера. Кроме того, концепция данной методики заложена в основу программного комплекса ATOMSK [17] (акроним от англ. *ATOmistic Modeling Subroutines Kit*), включающего набор теоретических моделей и пакет подпрограмм/модулей, необходимых для реализации расчёта и анализа энергетических уровней, волновых функций и искомых физических характеристик рассматриваемой многоатомной системы.

Оригинальные модели молекул и дефектосодержащих кристаллических систем позволили получить новые решения спектроскопических задач и выявить структурно-энергетические особенности их состояний. Особо следует отметить цикл работ, посвящённый исследованию водородсодержащих дефектов в кремнии. Впервые удалось получить детализированное представление о взаимодействии междоузельного молекулярного водорода со структурой полупроводника, осуществить оценку трансляционно-вращательных состояний молекулы, рассмотреть формирование зонной структуры в системе, предложить наиболее состоятельный механизм орто-пара-конверсии молекулярного водорода в полупроводниках. Впервые изучена возможность формирования комплекса, состоящего из вакансии кремния и молекулы водорода (дефект «водород – вакансия»), рассмотрено влияние этого комплекса на структуру и энергетические характеристики системы. Благодаря реализации комбинированного подхода проведено комплексное исследование водородсодержащих планарных дефектов (нанодисков). Впервые рассчитана фазовая диаграмма молекулярного водорода, заключенного в структуре нанодиска, осуществлена оценка зависимости вращательных состояний параводорода от соотношения концентраций орто- и пара-молекул, выявлена зависимость формы спектральных линий от относительного содержания орто- и пара- H_2 .

Достоверность полученных результатов обеспечивается корректностью и физической обоснованностью поставленных задач, строгостью и аккуратно-

стью применения математического аппарата, контролем адекватности и границ применимости используемых теоретических моделей и подходов, проверкой алгоритмов и данных численных расчётов. Также достоверность результатов подтверждается их внутренней согласованностью, сопоставимостью с результатами исследований других авторов, согласием с имеющимися экспериментальными данными.

Теоретическая и практическая значимость. Результаты диссертации представляют интерес для дальнейшего развития теоретических методов исследования сложных многокомпонентных систем. Проведённые работы решают ряд принципиально важных вопросов построения адекватных моделей многоатомных систем, прогнозирования и объяснения результатов измерений, выявления механизмов и основных закономерностей наблюдаемых явлений. В силу того, что примеси и дефекты оказывают решающее влияние на электрические и оптические свойства полупроводников, полученные результаты имеют важное значение для решения задачи конструирования полупроводниковых функциональных материалов с заданными характеристиками. Приобретённые знания о структуре и спектральных свойствах рассмотренных систем представляют значительный интерес для реализации комплексной диагностики различных объектов и сред. Часть материалов диссертации была использована при подготовке монографии и учебного пособия.

Апробация работы. Основные результаты диссертации представлены и обсуждены на следующих международных научных мероприятиях: The 19th, 20th, 22th, 25th international conferences on high resolution molecular spectroscopy (Prague, Czech Republic, 2006, 2008, 2012; Bilbao, Spain, 2018); The 20th, 24th colloquiums on high resolution molecular spectroscopy (Dijon, France, 2007, 2015); Международная научно-техническая конференция «Фундаментальные проблемы радиоэлектронного приборостроения» (г. Москва, Россия, 2009); International ψ_k –2010 conference «Ab-initio (from electronic structure) calculations of complex processes in materials» (Berlin, Germany, 2010); Международная конференция по физической мезомеханике, компьютерному конструированию и разработке новых материалов (Томск, Россия, 2011); The international conference «Functional Materials and Nanotechnologies» (Riga, Latvia, 2012); Conference on computational physics (Gatlinburg, TN, USA, 2011); The 6th international symposium on surface science (Tokyo, Japan, 2011); Ab initio modeling in solid state chemistry (Torino, Italy, 2013); The congress of theoretical chemists of latin expression (Torino, Italy, 2015); Международная конференция «Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций» (г. Томск, Россия, 2017).

Публикации. По теме диссертации опубликовано 22 работы [1–22], в том числе 21 статья в журналах, включенных в Перечень рецензируемых научных изданий ВАК РФ (из них 12 статей в зарубежных научных журналах, индексируемых в «Web of Science», и 9 статей в российских научных журналах,

переводные версии которых индексируются в «Web of Science»), 1 статья в сборнике трудов международной конференции, включенном в библиографическую базу данных цитирования «Web of Science».

Личный вклад автора. Теоретические исследования, результаты которых представлены в диссертационной работе, выполнены автором в период с 2000 по 2018 гг. Вклад автора в работу состоит в выборе направления исследований и способов их реализации, все основные результаты получены лично автором. При выполнении всех работ автор принимал определяющее участие как в постановке, так и в решении задач.

Структура и объём работы. Диссертация состоит из введения, пяти глав, заключения, списка сокращений и условных обозначений и списка литературы, включающего 362 наименования. Материал изложен на 230 страницах, содержит 62 рисунка и 26 таблиц.

Основное содержание работы

Во введении дана общая характеристика диссертационной работы. Обоснована актуальность темы исследования, сформулированы цель, задачи, защищаемые положения. Представлены методология и методы исследования, отражена научная новизна полученных результатов, их достоверность, теоретическая и практическая значимость.

В первой главе проводится анализ основных теоретических положений и методов, необходимых для изучения структуры и свойств многоатомных систем различного типа. Представлен краткий обзор методов расчёта электронной структуры, обсуждаются возможности их модификации [4]. Рассматриваются вопросы построения гамильтониана системы, изучения поверхности потенциальной энергии (ППЭ) [1], вычисления спектральных характеристик [19].

Совокупность рассмотренных в данной главе теоретических положений и методов, включая численные методы решения многочастичного уравнения Шредингера, проведённый анализ квантово-механических моделей многоатомных систем и поиск наилучших подходов к реализации вычислений их физических характеристик, позволила сформулировать концепцию общей методики теоретической оценки и исследования структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических материалах.

В предлагаемом подходе система рассматривается в рамках адиабатического приближения, т.е. задача разделяется на электронную и атомную (ядерную) части. Сначала с применением *ab initio* методов осуществляется решение стационарного уравнения Шредингера для одного или нескольких изолированных электронных состояний, проводится оценка структурно-энергетических характеристик системы, изучаются свойства поверхностей потенциальной энергии, определяется модель межатомного взаимодействия. Далее, в зависимости от поставленных задач, возможно классическое и/или квантово-

механическое рассмотрение исследуемого объекта. При изучении физических процессов в конденсированных средах эффективно использование методов молекулярной динамики и Монте-Карло.

Квантово-механическая задача для системы атомов решается численно в рамках вариационного подхода. Построение и реализация вычислительного алгоритма происходит по общей схеме, включающей следующие основные этапы: І — разработка/коррекция атомистической (математической) модели, в том числе путём комбинации и обобщения моделей подсистем различных классов при необходимости рассмотрения межкомпонентного взаимодействия; ІІ — выбор/определение обобщённой системы координат, например, нормальные, естественные или специальные криволинейные координаты; ІІІ — построение квантово-механического гамильтониана системы; ІV — выбор/расчёт базисных функций, например, ортогональные полиномы, плоские волны, численные решения одномерных задач; V — расчёт матричных элементов посредством численного и/или аналитического интегрирования; VІ — диагонализация матрицы оператора Гамильтона, определение собственных значений и векторов; VІІ — анализ волновых функций, расчёт искомых физических величин.

Данная схема (этапы I-VII) повторяется итерационно необходимое число раз с включением и/или исключением определённых элементов. При возможности учитывается симметрия исследуемой системы, размер и структура определяют граничные условия. Например, при рассмотрении объекта внедрения в кристаллическом материале или на границе раздела зачастую возникает необходимость учёта периодичности структуры.

Верификация разработанных моделей и отладка вычислительного алгоритма проводится, в основном, с использованием доступных экспериментальных данных, а также посредством детального анализа полученных результатов. Структурные элементы алгоритма тестируются на известных примерах, включая точно интегрируемые и предельные случаи. Разработанные теоретические модели и вычислительные модули включаются в инструментарий программного комплекса ATOMSK [17].

При использовании вариационного подхода этапы I-VII представляют естественный способ решения квантово-механической задачи для стабильной системы атомов, который показал свою эффективность применительно к исследованию небольших молекулярных систем [17]. Значительные сложности возникают при попытке детализации и унификации базовых элементов схемы, где, по сути, для каждой системы требуется индивидуальная проработка возникающих подзадач.

Таким образом, в соответствие со спецификой объекта и предмета исследования, в качестве основных элементов предлагаемой методики определены конкретные приемы и способы построения обобщённых моделей молекулярных и дефектосодержащих кристаллических систем, подходы к реализации методов численного решения соответствующих уравнений Шредингера. Разработка и апробация общей методики осуществлялась по принципу «снизу-

вверх». Сначала рассматривались отдельные задачи для модельных систем, принадлежащих конкретному классу. Затем проводились обобщения развитых моделей, методов и полученных результатов для случаев более сложных многокомпонентных систем.

В широком смысле процедура разработки модели многоатомной системы затрагивает все семь этапов. При этом необходимо учитывать ограничения, связанные с границами применимости математических моделей, погрешностями численных методов, пределами функциональных и технических возможностей вычислительных машин. В первую очередь это сказывается на выборе активных степеней свободы, определении структуры и граничных условий, введении подходящих обобщённых координат (этапы I-II).

После разделения электронной и ядерной подсистем гамильтониан системы атомов в декартовых координатах записывается в известном виде:

$$\hat{H} = \sum_{I} \frac{\hat{\mathbf{P}}_{I}^{2}}{2M_{I}} + V(\mathbf{R}) = -\sum_{I} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + V(\mathbf{R}), \qquad (1)$$

где $\mathbf{R} = \{\mathbf{R}_I\}$ — совокупность координат всех ядер; $V(\mathbf{R})$ — потенциальная функция системы. С учётом структуры рассматриваемой системы, а также свойств потенциальной поверхности, осуществляется переход к обобщённым координатам (этап II): $\mathbf{R} \to \mathbf{\Xi} = \mathbf{\Xi}(\mathbf{R})$. После всех преобразований оператор Гамильтона (1) в новых координатах может быть представлен в следующем виде (этап III):

$$\hat{H} = \frac{1}{2} g^{1/4} \sum_{\alpha,\beta} \hat{\Pi}_{\alpha} g^{-1/2} g^{\alpha\beta} \hat{\Pi}_{\beta} g^{1/4} + V(\Xi), \qquad (2)$$

$$g^{\alpha\beta} = \sum_{I,\sigma} \frac{1}{M_I} J^{\alpha,I\sigma} J^{\beta,I\sigma} = \sum_{I,\sigma} \frac{1}{M_I} \frac{\partial \Xi_{\alpha}}{\partial R_{I\sigma}} \frac{\partial \Xi_{\beta}}{\partial R_{I\sigma}}, \tag{3}$$

где операторы обобщённых импульсов $\hat{\Pi}_{\alpha} = -i\hbar\partial/\partial\Xi_{\alpha};\;J^{\alpha,I\sigma}$ — элементы матрицы Якоби, \mathbf{J}^{-1} , обратного преобразования $\mathbf{R}\leftarrow\Xi;\;g=\det\|g^{\alpha\beta}\|.$ Следует отметить, что $\mathbf{g}=\|g_{\alpha\beta}\|=\|g^{\alpha\beta}\|^{-1}.$ Таким образом, задача построения квантово-механического гамильтониана в обобщённых координатах сводится к вычислению \mathbf{J}^{-1} . Точный аналитический расчёт матрицы Якоби обратного преобразования возможен лишь в ограниченном числе случаев. Если элементы \mathbf{J} являются функциями координат Ξ , то реализация вычислений \mathbf{J}^{-1} может представлять значительную сложность, приводящую к необходимости поиска оптимальных приближений и выполнения численных расчётов.

Решение соответствующего стационарного уравнения Шредингера осуществляется путём реализации вариационной процедуры с анзацем вида

$$\Psi_i = \sum_{j_1} \sum_{j_2} \dots \sum_{j_L} C^i_{j_1 j_2 \dots j_L} \prod_{l=1}^L \varphi^l_{j_l}, \qquad (4)$$

где $\{\varphi_{j_l}^l\}$ — набор базисных функций для l-ой степени свободы; L — число активных степеней свободы в системе. В свою очередь, базисные функции

 $\varphi_{j_l}^l$ могут быть представлены в виде разложения по примитивным функциям, например, с целью редукции и/или симметризации базиса. При этом также решается задача подбора и оптимизации набора базисных функций с учётом сходимости значений искомых физических величин (этапы IV-VII).

Изложенная методика позволяет реализовать общий подход к теоретической оценке и исследованию структуры и свойств рассматриваемых молекул и дефектосодержащих кристаллических материалов, включая разработку соответствующего инструментария — моделей и вычислительного аппарата. Эффективность и релевантность подхода подтверждается результатами исследований, представленными в последующих главах диссертационной работы.

Вторая глава посвящена разработке теоретических моделей трёх- и четырёхатомных нежёстких молекул, изучению их структуры и спектральных свойств. Спектроскопические данные используются в многочисленных приложениях, поэтому также рассматривается вопрос решения обратной спектроскопической задачи [2]. Для ряда систем, представляющих фундаментальный и практический интерес, проводятся расчёты электронной структуры и анализ ППЭ, осуществляется построение модельных функций потенциальной энергии и дипольного момента. Приводятся результаты вычислений и анализа энергетических состояний, волновых функций, спектральных характеристик.

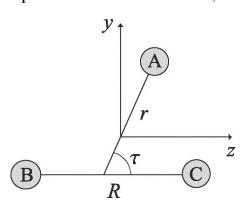


Рисунок 1 – Расположение ядер и координатных осей молекулы ABC в молекулярной системе координат

Разработка теоретических моделей трёхатомной молекулы осуществлялась поэтапно. Сначала, на примере молекулы диазокарбена CNN была рассмотрена задача определения структуры и спектральных характеристик для основного электронного состояния молекулы [3]. Рассчитаны колебательно-вращательные состояния и интенсивности спектральных линий, получен теоретический спектр.

Изучение структуры, энергетических состояний и спектральных характеристик CNN ограничивалось приближением квазижёсткой

молекулы, т.е. на ППЭ рассматривался только один чётко выраженный минимум, соответствующий равновесной структуре молекулы, однако в отличие от жёсткой (полужёсткой) системы, допускались колебания ядер с большой амплитудой. Структурная нежёсткость молекулы была учтена при построении теоретической модели трёхатомной молекулы общего вида ABC, включающей достоверное описание изомеризации ABC \rightarrow BCA [5,6,8]. Разработанная модель учитывает возможность двукратного вырождения электронных термов молекулы, позволяет проводить вычисления ровибронных энергетических состояний, волновых функций, интенсивностей спектральных переходов.

Для описания конфигурации произвольной трёхатомной молекулы ABC в молекулярной системе координат xyz были выбраны координаты Якоби (рис. 1), позволяющие включить в модель молекулы произвольное перемеще-

ние атома А относительно атомов В и С, а также допускающие аналитическое определение метрического тензора (3). Квантово-механический гамильтониан молекулы был записан в следующем виде:

$$\hat{H} = \frac{\hbar^2}{2\mu_r r^2} \left\{ \frac{1}{\sin^2 \tau} (\hat{N}_z - \hat{L}_z)^2 + \hat{N}_\tau^2 \right\} - \frac{\hbar^2}{8} \left\{ \frac{1}{\mu_R R^2} + \frac{1}{\mu_r r^2} \right\} \left\{ 1 + \frac{1}{\sin^2 \tau} \right\} + \frac{\hbar^2}{2\mu_R R^2} \left\{ \hat{N}_x^2 + \hat{N}_y^2 + \cot^2 \tau (\hat{N}_z - \hat{L}_z)^2 + \hat{N}_\tau^2 + \hat{N}_x \hat{N}_\tau + \hat{N}_\tau \hat{N}_x \right\} + \frac{\hbar^2}{2\mu_R R^2} \left\{ \cot \tau (\hat{N}_y (\hat{N}_z - \hat{L}_z) + (\hat{N}_z - \hat{L}_z) \hat{N}_y) \right\} + \frac{1}{2\mu_R} \hat{P}_R^2 + \frac{1}{2\mu_r} \hat{P}_r^2 + \hat{H}_e + \hat{H}_{SO},$$
(5)

где $\hat{\mathbf{N}}$ — оператор колебательно-вращательного углового момента системы ядер и электронов, $\hat{N}_{\tau} = -i\hbar\,\partial/\partial\tau$ — колебательный угловой момент; $\hat{\mathbf{L}}$ — орбитальный угловой момент электронов; \hat{H}_{e} — гамильтониан электронной подсистемы; \hat{H}_{SO} — оператор энергии спин-орбитального взаимодействия; $\hat{P}_{R} = -i\hbar\,\partial/\partial R$, $\hat{P}_{r} = -i\hbar\,\partial/\partial r$. $\hat{\mathbf{J}} = \hat{\mathbf{N}} + \hat{\mathbf{S}}$, где $\hat{\mathbf{S}}$ — оператор полного спина электронов.

Анзац вида (4) был представлен как

$$\Psi_{\text{rve}}^{J,M_{J},S,\Gamma_{\text{rve}}} = \sum_{N=|J-S|}^{J+S} \sum_{K=0}^{N} \sum_{\Gamma_{\text{rve}},N_{r},N_{R},\eta,v_{2}^{\eta}} c_{\eta,N,K,v_{2}^{\eta,\Gamma_{\text{vib}}},N_{r},N_{R}}^{J,M_{J},S,\Gamma_{\text{rve}}} \times |N_{R},\Gamma_{R}\rangle|N_{r},\Gamma_{r}\rangle|v_{2}^{\eta},K,\Gamma_{v_{2}^{\eta}}\rangle|\eta;N,J,S,K,M_{J},p\rangle,$$
(6)

где $|N_R, \Gamma_R\rangle$ и $|N_r, \Gamma_r\rangle$ — колебательные базисные функции, соответствующие степеням свободы R и r (рис. 1); $|v_2^\eta, K, \Gamma_{v_2^\eta}\rangle$ — базисные функции деформационного колебания; $|\eta; N, J, S, K, M_J, p\rangle$ описывают вращение молекулы и состояние электронной подсистемы, p — четность; $\Gamma_{\rm vib} = \Gamma_R \otimes \Gamma_r \otimes \Gamma_{v_2^\eta}$, $\Gamma_{\rm rve} = \Gamma_{\rm vib} \otimes \Gamma_{\rm ers}$, $\Gamma_{\rm rve}$ — симметрия функции (6), $\Gamma_{\rm ers}$ — симметрия функции $|\eta; N, J, S, K, M_J, p\rangle$; η — индекс, обозначающий электронное состояние.

На данном этапе актуальным приложением ABC-модели стал гидропероксильный радикал HO_2 . В линейной конфигурации основное электронное состояние молекулы ${}^2\Pi$ дважды вырождено. При изгибе молекулы происходит расщепление терма на два невырожденных состояния \widetilde{X} ${}^2A''$ и \widetilde{A} ${}^2A'$. Обоим состояниям соответствуют нелинейные равновесные конфигурации. Так как \widetilde{X} ${}^2A''$ и \widetilde{A} ${}^2A'$ коррелируют с ${}^2\Pi$ в линейной конфигурации, для данных состояний наблюдается эффект Реннера [6, 8].

На рис. 2 представлена диаграмма смешивания состояний \widetilde{X} $^2A''$ и \widetilde{A} $^2A'$ для термов с $J\leqslant 9/2$. Диаграмма построена как зависимость энергии состояния E от вероятности нахождения молекулы в возбуждённом электронном состоянии P_+ ; соответственно $P_-=1-P_+$ — вероятность нахождения в основном электронном состоянии. Для всех состояний с $E<6000~{\rm cm}^{-1}$ вероятность $P_+=0$, что указывает на незначительность ровибронного взаимодействия. Заметное проявление эффекта Реннера наблюдается при значениях энергии

порядка 7034 см $^{-1}$ и выше. Видно, что для молекулы HO_2 смешивание состояний вследствие ровибронного взаимодействия носит достаточно случайных характер. Для энергий выше 9000 см $^{-1}$, где заметно возрастает плотность состояний, значения P_+ распределены по всему диапазону вероятностей. Состояния, отмеченные как (a) и (δ), представляют пример случайного резонанса между ровибронными состояниями \widetilde{X} $^2A''$ и \widetilde{A} $^2A'$.

Расчёты показали, что эффект туннелирования начинает оказывать заметное влияние уже при энергиях порядка 5500 см^{-1} , что почти на 7950 см^{-1} ниже изомеризационного барьера в основном электроном состоянии молекулы. Понятно, что вероятность туннелирования возрастает с увеличением кратности возбуждения деформационной моды. На рис. 3 приведены графики функции $f_2(r,\tau)$, — плотности вероятности обнаружения молекулы в конфигурации с определёнными значениями координат (r, τ) , для двух ровибронных состояний молекулы НО2. Значения энергии для этих состояний равны 11716,97 и 12507,63 см⁻¹, туннельные расщепления — 6,13 и 12,98 см⁻¹,

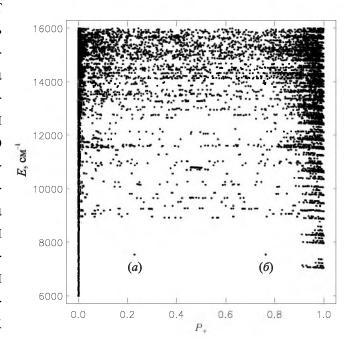


Рисунок 2 — Диаграмма смешивания электронных состояний \widetilde{X} $^2\!A''$ и \widetilde{A} $^2\!A'$ молекулы HO_2

соответственно; для обоих состояний $\Gamma_{\rm rve}=A_1,\,P_-=1.$ На рис. З δ хорошо прослеживается ненулевая вероятность обнаружения молекулы в конфигурации с $\tau=\pi/2.$ В подобных состояниях изомеризационная трансформация вносит значительны вклад в структуру ровибронного спектра молекулы.

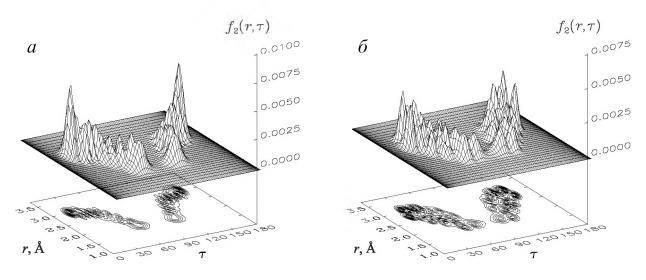


Рисунок 3 — Графики функции плотности вероятности $f_2(r,\tau)$ для двух ровибронных состояний молекулы HO_2

Разработка теоретической модели структурно-нежёсткой четырёхатомной молекулы осуществлялась в приложении к HSOH, нелинейной цепной молекулы, представляющей астрофизический интерес [7, 9]. Спектр этой молекулы содержит интересные особенности, связанные с расщеплением её энергетических уровней, возникающие в результате внутреннего вращения (торсионного движения) фрагментов ОН или SH вокруг соединя- расположение главных осей инерции ющей два тяжёлых атома оси (рис. 4). Расчё-

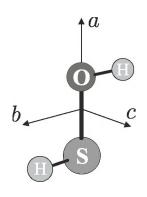


Рисунок 4 – Конфигурация и молекулы HSOH

ты состояний молекулы проводились с использованием гамильтониана общего вида (2) в молекулярной системе координат. Для описания структуры молекулы использовалась одна нежёсткая опорная конфигурация, соответствующая пути с наименьшей энергией вдоль торсионной координаты. Вычисления элементов метрического тензора (3) проводились численно.

В диссертации представлены результаты расчётов и исследования структуры и спектральных свойств молекулы HSOH в основном электронном состоянии [7,9]. Рассчитаны энергетические состояния системы и проведен анализ её характеристик. Изучены структурно-энергетические особенности вращательно-торсионных состояний системы, получены оценки колебательных термов (табл. 1) и моментов перехода. Хорошее согласие теоретических и экспериментальных результатов подтверждает адекватность предложенной модели.

Необходимо отметить, что в силу природы рассмотренных систем, достоверное теоретическое описание их структуры и свойств стало возможным только при условии включения нежёсткости в соответствующие квантово-механические модели. Рассмотренные теоретические подходы, предложенные модели и представленные результаты исследований в данной главе относятся к комплексу проделанных работ, необходимых для формирования базовых элементов методики (глава 1). Развитые модели молекул и вычислительный аппарат являются основой многофункционального инструментария, необходимого для изучения более сложных квантово-механических объектов, включая дефектосодержащие кристаллические материалы.

Таблица 1 – Колебательные термы E и соответствующие торсионные расщепления Δ_{tor} молекулы HSOH в основном электронном состоянии (см $^{-1}$)

	1	Ξ	$\Delta_{ m tor}$		
	Теор. Эксп.		Teop.	Эксп.	
$ u_{\mathrm{OH}} $	3625,9	3625,6	0,0036	< 0,01	
$ u_{ m SH}$	2544,4	2538,0	2538,0 -0,0775		
$ u_{ m HOS} $	1174,0	1175,7	-0,0335		
$ u_{ m OSH}$	1007,7		0,0255		
$ u_{ m SO}$	760,0	762,5	0,0546		
$ u_{ m HSOH} $	443,0	445,3	0,1279		

В третьей главе рассматриваются теоретические подходы к исследованию структуры и электронных свойств поверхностей и границ раздела кристаллических материалов. Реализуется построение моделей монокристаллических поверхностей и когерентных границ раздела. На примере реальных систем рассматриваются явления адсорбции и адгезии [10–12, 22]. Приводятся результаты теоретического исследования формирования границы раздела кремний – водород.

Свойства поверхностей и границ раздела, как и всего материала, зависят, прежде всего, от элементного состава, структуры и типа межатомных связей. В свою очередь, природа межатомного взаимодействия и пониженная размерность приводят к существенному влиянию квантовых эффектов на характеристики системы. Одним из наиболее эффективных подходов к вычислению структуры и свойств кристаллических материалов является метод суперячейки с периодическими граничными условиями. В принципе, твёрдое тело может быть смоделировано с помощью кластера. Однако его размер должен быть значительным, для того чтобы свести к минимуму влияние поверхности на свойства объёмного материала.

Теоретическое описание поверхностей и границ раздела осуществлялось с использованием метода суперячейки. Сопутствующие расчёты атомной и электронной структуры проводились в рамках теории функционала плотности. Изучение свойств рассматриваемых систем осуществлялось путём вычисления и анализа перестройки атомной структуры, конфигурационной зависимости энергии, пространственного распределения зарядовой плотности, полных и парциальных плотностей электронных состояний.

Задача изучения взаимодействия атомов с поверхностью диэлектрического (полупроводникового) материала рассматривается на примере системы α -Al₂O₃ [10]. Реализовано теоретическое исследование адсорбции 3d-металлов, в ряду от Ті до Си, на поверхности α -Al₂O₃(0001). Рассмотрено влияние адсорбатов на атомную и электронную структуру поверхности оксида алюминия. Рассчитаны значения энергии адсорбции и определены равновесные положения адатомов на поверхности. Проведен сравнительный анализ свойств и механизмов взаимодействия 3d-металлов с атомами подложки.

При построении модели поверхности использовалась суперячейка, содержащая симметричную структуру корунда с двумя поверхностями (0001), разделённых промежутком вакуума. Вычисление энергии адсорбции осуществлялось для следующих конфигураций адатомов: три позиции над атомами алюминия первого (Al_1), третьего (Al_3) и четвёртого (Al_4) слоя, а также позиции над кислородом второго (O_2) и пятого (O_5) слоя (рис. 5).

Проведённое теоретическое исследование трансформации атомной и электронной структуры алюминиевого окончания поверхности оксида алюминия (0001) при взаимодействии с 3d-металлами позволило выявить ряд особенностей процесса адсорбции для этой системы [10]. В частности, показано, что наиболее предпочтительным положением для всех адсорбатов при малых кон-

центрациях покрытия является ямочное положение над алюминием четвертого от поверхности атомного слоя (Al_4). В этом случае адатом располагается в центре «кислородного треугольника» и взаимодействует сразу с тремя атомами О.

Подход к построению теоретических моделей когерентных границ раздела, включая реализацию квантово-механических вычислений их характеристик, рассматривается в приложении к системе ОЦК-металл/ α -Al₂O₃. Представлены результаты исследования границ раздела $Me(111)/Al_2O_3(0001)$ с металлами V, Cr, Nb, Mo, Ta и W, а также границ раздела Nb(110)/Al₂O₃(1120) и Nb(112)/Al₂O₃(1100) [11, 12, 22]. Выполнены оценки энергии отрыва $W_{\rm sep}$ металлических пленок от оксидных поверхностей. Проведен анализ структурных и электронных факторов, определяющих адгезию пленок ОЦК-металлов

на поверхности оксида алюминия.

Для описания границ раздела использовалась схожая с предыдущей модель. Суперячейка содержала симметричную структуру металлоксид-металл и промежуток вакуума, разделяющий металлические поверхности. Структура оксида рассматривалась с Al- и О-окончаниями поверхности. В последнем случае первым слоем является O_2 (рис. 5).

В случае наиболее стабильных конфигураций на кислородном окончании поверхности α -Al₂O₃(0001)_О атомы первого слоя металлической пленки занимают позицию алюми-

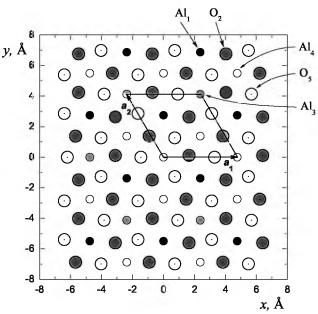


Рисунок 5 – Структура поверхности α -Al₂O₃(0001)

ния первого слоя (ямочная О-позиция), а на металлическом окончании оксида металл занимает позицию следующего атома алюминия. Для всех рассмотренных границ раздела наибольшие значения энергии отрыва получены для ямочной конфигурации (табл. 2). При такой геометрии атомы металла первого и второго слоев взаимодействуют одновременно с тремя поверхностными атомами кислорода. Стабильность этой конфигурации обеспечивается значительной ионной составляющей в механизме связи, возникающей в результате переноса заряда от металлических пленок к оксиду. Для границ раздела $Nb(1\bar{1}0)/Al_2O_3(11\bar{2}0)$ и $Nb(11\bar{2})/Al_2O_3(\bar{1}100)$ выявлено существенное снижение адгезии до W_{sep} порядка 1,37 и 1,86 Дж/м² [11].

Проведённое теоретическое исследование границ раздела между ОЦКметаллами и оксидом алюминия со структурой корунда α -Al₂O₃(0001) с кислородным и алюминиевым окончанием поверхности позволило получить детальное микроскопическое описание адгезии на границе металл – оксид [11,12,22]. Для всех изученных интерфейсов прослеживается корреляция между электронными, структурными и механическими свойствами.

		$Al_2O_3(0001)_{Al}$		
Me	W_{sep} , Дж/м 2	$W_{ m sep}$, Дж/м 2	$W_{ m sep}$, Дж/м 2	$W_{ m sep}$, Дж/м 2
	(Al_3)	(Al_4)	(O)	(Al_4)
Nb	8,49	8,69	9,91	2,13
Mo	8,93	8,33	9,38	2,04
Ta	8,89	9,19	10,34	2,15

8,48

9,41

2,44

W

8,89

Таблица 2 – Энергия адгезии пленок на границах раздела Me(111)/Al₂O₃(0001)

Построение модели межфазной границы кристалл - газ реализовано для системы кремний - водород. Формирование таких границ раздела происходит в монокристаллических образцах, например, в процессе обработки полупроводниковых пластин по технологии «полупроводник на изоляторе». Схожие процессы происходят при насыщении полупроводника атомарным водородом, например, при обработке плазмой [21]. Формирование водородного слоя наиболее энергетически выгодно в плоскости Si(111). В процессе расслоения монокристалла происходит разрыв связей Si-Si в направлении [111] и образование двух пространственно удалённых плоскостей (111). При этом происходит пассивация поверхностей атомами водорода с заменой ненасыщенных (оборванных) связей у атомов кремния стабильными соединениями Si-H.

Толщина водородного включения, величина порядка 1-10 Å, зависит от условий обработки образца, размеры в плоскости полупроводника достигают 10–100 нм [21]. Физические свойства таких планарных дефектов (нанодисков) рассматриваются в главе 5. С одной стороны, в силу того, что две монокристаллических поверхности могут быть достаточно удалены относительно друг друга, а, с другой стороны, с целью последовательного исследования структуры кремний – водород – кремний, возникла необходимость изучения влияния пассивации на свойства поверхности Si(111), в том числе на механизм взаимодействия с атомарным и молекулярным водородом.

Согласно проведённым расчётам, система $Si(111) + H_2$ остаётся нестабильной до образования монослоя водорода, т.е. формирования пассивированной поверхности Si(111):Н. При этом происходит почти полное восстановление структурных характеристик полупроводника (табл. 3, слои Si_i пронумерованы от границы). Взаимодействие молекулярного водорода с поверхностью Si(111):Н носит отталкивающий характер, адсорбция и абсорбция H_2 не наблюдается. Заметная перестройка электронной структуры происходит только при непосредственной близости молекулы к атомам поверхности.

Рассмотренные теоретические подходы и представленные в текущей главе оригинальные результаты исследований подтверждают адекватность предложенных моделей монокристаллических поверхностей и когерентных границ раздела применительно к изучению трансформации атомной и электронной структуры при формировании границы раздела кристалл - кристалл и кристалл-газ. В целом, полученные модели позволяют исследовать механизмы

Таблица 3 — Межплоскостные расстояния d_{ij} (Å) и их относительные изменения $\Delta d_{ij}/d_{ij}^0$ (%) для поверхностей Si(111) и Si(111):Н

Атомные	Si(1	11)	Si(111):H		
слои	d_{ij}	$\Delta d_{ij}/d_{ij}^0$	d_{ij}	$\Delta d_{ij}/d_{ij}^0$	
Si ₁ –Si ₂	0,6260	-20,64	0,7640	-3,15	
Si ₂ –Si ₃	2,3874	0,89	2,3671	0,03	
Si ₃ –Si ₄	0,7777	-1,42	0,7929	0,52	
Si ₄ –Si ₅	2,3790	0,53	2,3698	0,14	
Si ₅ -Si ₆	0,7906	0,23	0,7923	0,45	
Si ₆ –Si ₇	2,3709	0,19	2,3700	0,15	

таких явлений, как адсорбция и адгезия на микроскопическом уровне, а также являются основой для построения моделей более сложных объектов.

Четвертая глава посвящена развитию подходов к теоретическому исследованию структуры и спектральных свойств примесных центров молекулярного типа (молекул внедрения) в полупроводниковых кристаллических материалах. Вопрос разработки модели системы молекула – матрица рассматривается на примере системы водород – кремний. На основе расчётов из первых принципов проводится детальное теоретическое исследование структуры и энергетических характеристик междоузельного молекулярного водорода в кремнии, анализируется стабильность молекулы и механизм её взаимодействия с кристаллом [15]. Рассматриваются возможные механизмы орто-пара-конверсии Н₂ в полупроводниках [20]. Приводятся результаты квантово-механических вычислений вращательных, трансляционных и трансляционно-вращательных состояний молекулярного водорода в кремнии [13–16].

В структуру полупроводника водород проникает практически на всех стадиях обработки. Наличие атомарного водорода приводит к возникновению мелких и глубоких донорных уровней. Из части атомов водорода, проникших в кристаллическую структуру материала, формируется молекулярный водород. Молекула Н2 достаточно сильно взаимодействует с матрицей кремния, что ведет к увеличению её длины связи и уменьшению частоты гармонического колебания. В равновесной конфигурации центр масс Н2 находится в тетраэдрической позиции (Т-позиции) кристаллической решётки Si, молекула ориентирована вдоль <100> (рис. 6).

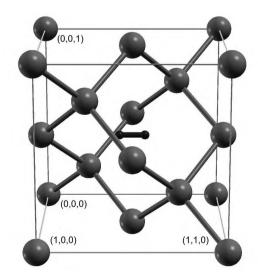


Рисунок 6 — Расположение молекулы водорода в структуре кремния

Полный ядерный спин молекулы H_2 может принимать два значения: I=0 (параводород) и I=1 (ортоводород). При наличии магнитного поля, создаваемого, например, соседними парамагнитными атомами или молекулами, ядрами

с ненулевым спином переходы между орто- и пара-состояниями становятся разрешенными. Согласно проведённому анализу, наиболее вероятным механизмом орто-пара-конверсии водорода в полупроводниках является спиновый катализ, активатором которого выступает валентный электрон [20].

При вычислении зависимости потенциальной энергии системы от положения и ориентации дефекта внедрения, атомы Si были зафиксированы в положениях равновесия для идеального кристалла. Оценка влияния междоузельного молекулярного водорода на внутреннюю геометрию кристалла и соответствующую энергию системы была проведена путём структурной оптимизации.

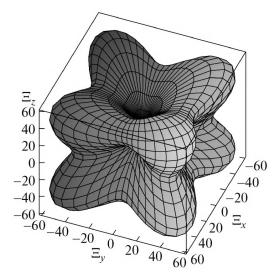


Рисунок 7 — Зависимость ППЭ системы от ориентации молекулы (см $^{-1}$), $|\mathbf{\Xi}| = V(\mathbf{R}_{\mathrm{T}}, \vartheta, \varphi)$

Рассчитанные значения энергии системы были использованы для построения аналитического представления функции потенциальной энергии $V(\mathbf{R}, \vartheta, \varphi)$, где ϑ и φ — сферические координаты, задающие ориентацию молекулы; \mathbf{R} — координаты центра масс \mathbf{H}_2 . Минимальная (максимальная) величина потенциального барьера между соседними положениями равновесия молекулы в кристалле равна \sim 7961 (8947) см⁻¹. В Т-позиции ($\mathbf{R} = \mathbf{R}_T$) экстремумы вращательного барьера составляют 60 и 85 см⁻¹ (рис. 7).

Изучение структурно-энергетических особенностей состояний и спектральных

свойств системы H_2 –Si проводилось путём включения различного числа активных степеней свободы в теоретическую модель системы. В рамках предложенного подхода было рассмотрено три случая: вращательная (2D), трансляционная (3D) и трансляционно-вращательная (5D) задачи. Общий гамильтониан системы, соответствующий 5D-модели, был записан в следующем виде:

$$\hat{H} = \frac{\hat{\mathbf{P}}^2}{2M} + \frac{\hat{\mathbf{J}}^2}{2\mu\rho^2} + V(\mathbf{R}, \vartheta, \varphi), \qquad (7)$$

где $\hat{\mathbf{P}}$ — оператор импульса молекулы водорода с массой M; $\hat{\mathbf{J}}$ — оператор момента количества движения \mathbf{H}_2 ; ρ — средняя длина связи молекулы водорода в кристалле; μ — приведённая масса молекулы. В качестве базисного набора в разложении (4) были выбраны плоские волны и сферические функции:

$$\Psi_{\mathbf{k}n}(\mathbf{R}, \vartheta, \varphi) = \sum_{\mathbf{G},l,m} a_{lm}^{\mathbf{k}n}(\mathbf{G}) \exp[i(\mathbf{k} + \mathbf{G})\mathbf{R}] Y_l^m(\vartheta, \varphi), \qquad (8)$$

где ${f G}$ — векторы обратной решётки кристалла; ${f k}$ — волновой вектор; $a_{lm}^{{f k}n}({f G})$ — искомые коэффициенты разложения; n — порядковый номер состояния.

Решение 2D-задачи [13] позволило провести оценки влияния вращательного потенциального барьера на состояния системы и объяснить применимость модели свободной молекулы к исследованию спектральных свойств H_2

в кремнии при J < 2. Энергии молекулы были представлены как

$$E_{v,J} = \hbar \omega_e \left(v + \frac{1}{2} \right) - x_e \hbar \omega_e \left(v + \frac{1}{2} \right)^2 + B_v J(J+1) - D_e J^2 (J+1)^2, \quad (9)$$

где $B_v=B_e-\alpha_e(v+1/2)$, α_e и x_e — общепринятые спектроскопические постоянные. Орто-пара-расщепления в рамановских спектрах для переходов $\Delta v=1$ и $\Delta J=0$: $\Delta_{op}=(E_{1,0}-E_{0,0})-(E_{1,1}-E_{0,1})$. Рассчитанные значения спектральных параметров приведены в табл. 4.

Таблица 4 – Спектроскопические параметры и величина Δ_{op} для молекул H_2 и D_2 (см⁻¹)

Система	ω_e		$x_e \omega_e$		α_e		Δ_{op}	
Система	теор.	эксп.	теор.	эксп.	теор.	эксп.	теор.	эксп.
H_2	4404,9	4401,2	116,9	121,3	2,979	3,062	5,96	5,9
H ₂ –Si	3838,4	4015,0	175,2	194,0	4,309	_	8,62	9,0
D_2	3115,2	3115,5	59,7	61,8	1,017	1,079	2,03	2,1
D ₂ –Si	2714,2	_	87,6	_	1,524	_	3,05	3,0

Исследование предполагаемой зонной структуры энергетических уровней молекулярного водорода в кремнии проводилось с учётом только трансляционных степеней свободы (3D-модель) [15, 16]. Согласно результатам расчётов слабое расщепление энергетических уровней H_2 , приводящее к возникновению зоны шириной $\Delta \approx 0.1~{\rm cm}^{-1}$, появляется для энергий порядка 6000 см $^{-1}$ относительно основного состояния. Далее зоны с $\Delta \approx 0.6~{\rm cm}^{-1}$ формируются в диапазоне 6603–6606 см $^{-1}$ (рис. 8 а). Для энергий 6000–9000 см $^{-1}$ имеется лишь небольшое количество разрешённых зон, в основном энергетический спектр дискретен. С ростом энергии происходит уширение зон, уже для энергий порядка 8300 см $^{-1}$ значение ширины Δ превышает 24 см $^{-1}$ (рис. 8 б).

Анализ зависимости групповой скорости молекулы от направления волнового вектора показал, что максимальная групповая скорость соответствует направлениям <100>, минимальная -<111>. Данный результат согласуется с фактом возникновения водородсодержащих планарных дефектов (глава 5), которые формируются преимущественно в плоскостях $\{111\}$.

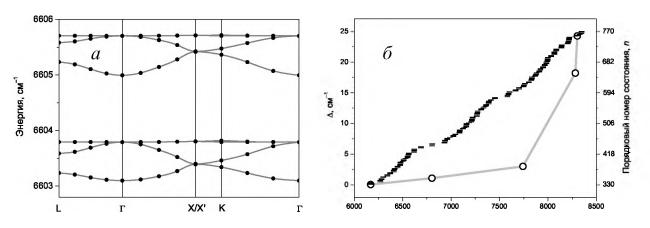


Рисунок 8 – Зонная структура энергетических уровней (a) и диаграмма состояний (б) H_2 в кристалле Si. На диаграмме кругами обозначены максимальные значения ширины разрешённых энергетических зон, штрихи соответствуют значениям энергии E_n в Γ -точке

Состояние Свойст		ства	Энергетические уровни, см ⁻¹						
$(n_{ m h}, l_{ m h})$	J	C_J	ΔX	5D	2D	3D	2D+3D	$B_0J(J+1)$	Эксп.
(0,0)	0	0,987	0,21	$0,00 (A_1)$	$0,00 (A_{1g})$	$0,00 (A_1)$	0,00	0,00	
(0,0)	1	0,995	0,21	103,45 (T ₂)	105,20 (T_{1u})		105,20	105,37	99
(0,0)	2	0,971	0,21	307,64 (T ₂)	300,21 (E_g)		300,21	316,10	297
		0,997	0,21	310,37 (E)	$327,06 \ (T_{2g})$		327,06		
(0,0)	3	0,870	0,23	588,59 (A ₁)	622,79 (T _{1u})		622,79	632,20	
		0,949	0,22	$610,32 (T_2)$	635,97 (T_{2u})		635,97		
		0,932	0,22	$612,15 (T_1)$	652,97 (A_{2u})		652,97		
(1,1)	0	0.956	0.26	$727.38 (T_2)$		$715,27(T_2)$	715,27		·

Таблица 5 – Энергетические уровни Н2 в кремнии

Исследования трансляционно-вращательных состояний (5D-модель) подтверждают междоузельную локализацию молекулярного водорода в кремнии [16]. Несколько значений низколежащих энергетических уровней, полученных с применением различных моделей, представлены в табл. 5; C_J — наибольший вклад в разложении (8) от вращательных базисных функций с определённым значением J; ΔX — среднеквадратическое отклонение координаты центра масс молекулы. Индексация трансляционных мод проводилась с использованием приближённых квантовых чисел $(n_{\rm h},\,l_{\rm h})$, соответствующих состояниям трёхмерного изотропного гармонического осциллятора. Классификация состояний по симметрии осуществлялась в соответствии с неприводимыми представлениями точечной группы O_h для вращательной задачи и группы T_d при трансляционных и трансляционно-вращательных вычислениях.

Неочевидным результатом, полученным посредством квантово-механических вычислений (табл. 5), является факт того, что несмотря на значительную роль трансляционно-вращательного взаимодействия, при J < 2 дефект внедрения проявляет свойства свободной молекулы. Для состояний с $n_{\rm h} = 0$ и J < 2 значения энергии, полученные с использованием различных приближений, отличаются не более чем на 2 см $^{-1}$. Кроме того, для состояний с $J \geqslant 2$ наличие трансляционных степеней свободы приводит к заметному снижению влияния вращательного потенциального барьера на энергетический спектр H_2 .

Представленные в данной главе результаты показывают, что разработанная модель системы молекула – матрица с разумной точностью описывает поведение молекулярного дефекта внедрения в полупроводниковом кристалле, позволяет проводить детальное исследование влияния междоузельного водорода на структуру и спектральные свойства кремния. Развитые теоретические подходы показали свою результативность при расчёте атомной и электронной структуры, выявлении механизмов взаимодействия объекта внедрения с носителем, изучении трансляционно-вращательных состояний молекулы в кристалле. Адекватность предложенных моделей подтверждается хорошим согласием полученных результатов с имеющимися экспериментальными данными.

Пятая глава посвящена развитию теоретических методов описания комплексов точечных и планарных дефектов в полупроводниковых кристалличе-

ских материалах. Разработка теоретических моделей осуществляется в приложении к гидрогенизированному кремнию. Проводится исследование структуры и энергетических характеристик комплекса «водород – вакансия» [18] и водородсодержащих планарных дефектов (нанодисков) в кремнии [21], анализируется влияние дефектной структуры на спектральные свойства материала. Последняя система в двух измерениях обладает макроскопическими масштабами, поэтому наряду с квантово-механическими вычислениями осуществляются расчёты термодинамических и кинетических свойств нанодисков в рамках классической теории.

Построение модели комплекса дефектов, состоящего из вакансии в кремнии и молекулы водорода [18], реализовано путём модифицирования модели молекула – матрица, представленной в предыдущей главе. Проводится анализ стабильности возможных конфигураций системы, рассматривается механизм взаимодействия молекулы с дефектосодержащим кристаллом. Представлены результаты исследования влияния образующегося комплекса на структуру и энергетические характеристики системы.

Исследование водородсодержащих планарных дефектов проводилось с учётом экспериментальных данных, полученных методами структурного и спектрального анали-

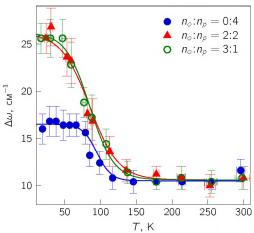


Рисунок 9 — Температурная зависимость полной ширины на полувысоте спектральной лини $S_0(0)$ для различных соотношений концентраций орто- и пара- H_2 в $Si\{111\}$ -нанодиске

за [21]. На рис. 9 и 10 приведены температурные зависимости полной ширины на полувысоте $\Delta \omega$ и профили спектральных линий рамановского пере-

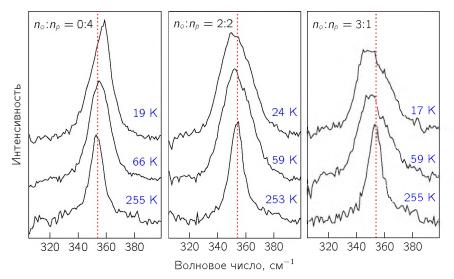


Рисунок 10 – Температурная зависимость формы спектральных линий $S_0(0)$ для различных соотношений концентраций орто- и пара- H_2 в Si $\{111\}$ -нанодиске. Спектры для различных значений температуры смещены вертикально. Пунктирной линией обозначена частота 354 см $^{-1}$, соответствующая переходу $J=0 \rightarrow J=2$ свободной молекулы водорода

хода $S_0(0)$ для различных соотношений концентраций n_o : n_p орто- и пара- H_2 в нанодиске. При T>150 К значение $\Delta\omega$ близко к 10 см $^{-1}$. Снижение температуры приводит к зависящему от n_o : n_p увеличению $\Delta\omega$. Видно, что окружение молекул пара- H_2 оказывает заметное влияние на форму спектральных линий.

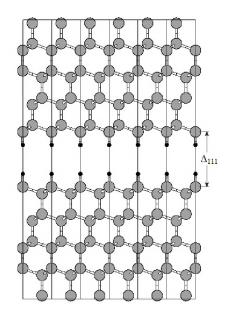


Рисунок 11 – Модель структуры нанодиска: проекция трёх суперячеек на плоскость (110); атомы Si и H обозначены серым и чёрным цветом

Расчёты электронной структуры нанодисков методами теории функционала плотности проводились с использованием гексагональной суперячейки размером $a\sqrt{2} \times a\sqrt{2} \times (3a\sqrt{3} + \Delta d)$, содержащей 72 и 8 атомов Si и H (рис. 11); a — параметр решётки кремния. Одна пробная молекула водорода размещались в вакуумном промежутке. $\Delta_{111} = d_0 + \Delta d$, где d_0 — длина связи Si–Si в монокристалле, Δd — дилатация кристаллической решётки. Исследования спектральных, термодинамических и кинетических свойств нанодисков проводились при $\Delta d = 4$ Å [21].

Изучение кинетики и структурно-фазовых состояний водорода в нанодисках проводилось с применением метода классической молекулярной динамики. Расчёты показали, что при низких температурах происхо-

дит кристаллизация H_2 с образованием монослоя с гексагональной структурой. В рассматриваемом диапазоне температур и давлений молекулярный водород может находиться в двух состояниях — твёрдое тело (двумерных кристалл) и сверхкритический флюид. На полученных p-T диаграммах (рис. 12) прослеживается заметное повышение температуры фазового перехода для двумерного водорода. Так, в бездефектной гексагональной структуре H_2 фазовый переход происходит при температурах близких к 100 К. Данный результат хорошо согласуется с экспериментальными зависимостями $\Delta\omega(T)$, см. рис. 9, указывающими на фазовый переход в подсистеме H_2 при сравнимых значениях T.

Разработка квантово-механической модели молекулярного водорода, кристаллизованного в структуре нанодиска, проводилась с учётом экспериментальных данных и результатов предшествующих расчётов [21]. Суперячейка с периодическими граничными условиями конструировалась из $N=L\times M$ гексагональных элементарных ячеек с параметром $a_{hex}=a/\sqrt{2}$. Гамильтониан системы был записан в следующем виде:

$$\hat{H} = \sum_{i} \frac{\hat{\mathbf{J}}_{i}^{2}}{2\mu\rho^{2}} + \frac{1}{2} \sum_{i \neq j} V_{ij}(r_{ij}, \Omega_{i}, \Omega_{j}, \Omega_{ij}), \qquad (10)$$

$$V_{ij} = \Gamma_{ij} \, 20\pi \sqrt{70\pi} \, \frac{1}{9} \sum_{t_1, t_2} C(224; t_1 t_2) \, Y_2^{t_1}(\Omega_i) \, Y_2^{t_2}(\Omega_j) \, Y_4^{t_1 + t_2}(\Omega_{ij})^*, \tag{11}$$

где $V_{ij}(r_{ij},\Omega_i,\Omega_j,\Omega_{ij})$ — энергия квадруполь-квадрупольного взаимодействия i-ой и j-ой молекул; r_{ij} — расстояние между центрами масс соответствующих молекул; $\Omega_i \equiv \{\vartheta_i,\varphi_i\}$ — сферические координаты, задающие ориентацию i-ой молекулы в кристалле; Ω_{ij} — сферические координаты, задающие положение центра масс одной молекулы относительно центра масс другой молекулы в кристалле; $\Gamma_{ij}=(6/25)\,e^2Q^2/r_{ij}^5,\,Q$ — квадрупольный момент молекулы водорода; $C(224;t_1t_2)$ — коэффициенты Клебша — Гордана. В зависимости от соотношения концентраций n_o : n_p , модель системы включает N_o молекул орто- H_2 и N_p молекул пара- H_2 , $N_o+N_p=N$. Анзац вида (4) был представлен как

$$\psi_n = \sum_{\boldsymbol{J}} \sum_{\boldsymbol{m}} U_{\boldsymbol{J}\boldsymbol{m}}^n |\boldsymbol{J}\boldsymbol{m}\rangle , \quad |\boldsymbol{J}\boldsymbol{m}\rangle = Y_{J_1}^{m_1}(\Omega_1) Y_{J_2}^{m_2}(\Omega_2) \dots Y_{J_N}^{m_N}(\Omega_N) , \quad (12)$$

где $J = \{J_1, J_2, \dots, J_N\}, J_i \leqslant 2; m = \{m_1, m_2, \dots, m_N\};$ суммирование производится по всем отобранным комбинациям индексов J и m.

В случае чистого параводорода или небольших примесных концентраций ортоводорода ($N_p\gg N_o$) существенное влияние оказывает наличие трансляционной симметрии системы. При таких условиях, вследствие анизотропии межмолекулярного взаимодействия, в кристалле должны возникать делокализованные вращательные возбуждения, которые могут быть интерпретированы как волны углового момента. Эти волны характеризуются определёнными значениями квантового числа J и волнового вектора \mathbf{k} , поэтому коэффициенты

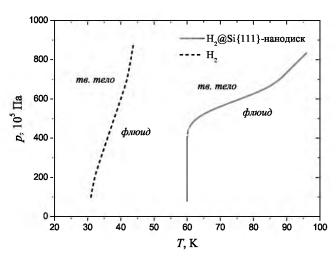
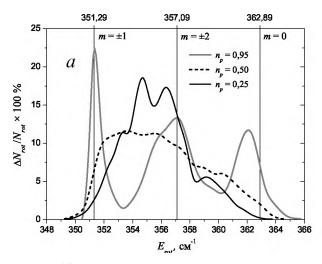



Рисунок 12 — Фазовые диаграммы молекулярного водорода в Si{111}-нанодиске и водорода, рассмотренного в рамках модели Леннарда-Джонса (пунктирная линия)

 $U_{\bm{Jm}}^n$ в анзаце (12) были представлены в виде разложения по плоским волнам:

$$U_{Jm}^{n} = U_{Jm}^{n}(\mathbf{R}) = \sum_{\mathbf{G}} A_{Jm}^{n\mathbf{k}}(\mathbf{G}) \exp[i(\mathbf{k} + \mathbf{G})\mathbf{R}].$$
 (13)

Расчёты показали, что для чистого двумерного параводорода (J=2) в Γ -точке возникает триплет вращательных состояний (рис. 13 a). Введение в систему даже небольших концентраций молекул ортоводорода приводит к заметному уширению энергетических уровней и формированию полосы шириной порядка $15~{\rm cm}^{-1}$. В структуре состояний малопримесного параводорода $(n_p=0.95)$ триплет хорошо различим. Здесь, вследствие протяженности области когерентного рассеяния, система в значительной степени наследует свойства бездефектного двумерного кристалла. С ростом концентрации орто- H_2 происходит заметное изменение окружения молекул пара- H_2 , приводящее к нарушению локальной симметрии и перестройке межмолекулярного взаимодействия в системе. В результате наблюдается изменение структуры враща-

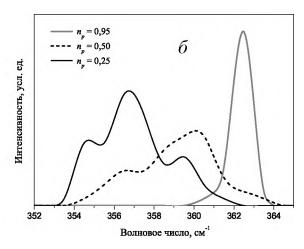


Рисунок 13 — Рассчитанные плотности вращательных состояний параводорода в Γ -точке (a) и профили спектральных линий рамановского перехода $S_0(0)$ (δ) для различных соотношений концентраций орто- и пара- H_2 в Si $\{111\}$ -нанодиске. Три вертикальные линии показывают состояния чистого параводорода (J=2)

тельных состояний параводорода (рис. 13 a). При этом, наличие анизотропии межмолекулярного взаимодействия приводит к смешиванию состояний с различными значениями m в суперпозиции функций (12).

Результаты вычислений низкотемпературных спектров комбинационного рассеяния двумерного параводорода представлены на рис. 13 δ . Форма спектральных линий в значительной степени зависит от относительного содержания орто- и пара- H_2 . Анализ волновых функций, матричных элементов операторов взаимодействия и поляризуемости показал, что заметное уменьшение ширины линии $S_0(0)$ для малопримесного параводорода и увеличение её красного смещения с ростом концентрации орто- H_2 (рис. 9, 10 и 13 δ) являются следствием особенностей анизотропной составляющей межмолекулярного взаимодействия водорода, структуры и симметрии системы.

Проведённые работы и полученные результаты, представленные в данной главе, наиболее полно демонстрируют возможности развитой методики. Хорошее согласие теоретических результатов с имеющимися экспериментальными данными подтверждает адекватность разработанных моделей дефектосодержащих систем и позволяет успешно верифицировать новые знания о поведении водорода в кристаллическом кремнии.

Заключение

В диссертации рассмотрен круг вопросов, связанных с проблемой развития теоретических методов описания многоатомных систем. Комплекс проделанных работ позволил осуществить разработку концепции и методик общего подхода к определению структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических материалах, получить новые знания о свойствах и поведении рассмотренных физических систем. Подводя общий итог диссертационной работы, необходимо отметить следующие наиболее значимые результаты и выводы.

- 1. На основе совокупности рассмотренных теоретических положений и методов, в том числе численных методов решения многочастичного уравнения Шредингера, проведённого анализа квантово-механических моделей многоатомных систем и поиска наилучших подходов к реализации вычислений их физических характеристик разработана общая методика теоретической оценки и исследования структуры и спектральных свойств малых молекул и примесных центров молекулярного типа в кристаллических полупроводниковых (диэлектрических) материалах. Развитие и апробация основного инструментария, моделей и вычислительного аппарата, проводились при исследовании трёх- и четырёхатомных молекул, поверхностей и границ раздела, точечных дефектов и комплексов, планарных дефектов.
- 2. Разработана модель трёхатомной молекулы общего вида ABC, учитывающая структурную нежёсткость и ровибронное взаимодействие. Модель включает достоверное описание изомеризации ABC \rightarrow BCA и учитывает возможность двукратного вырождения электронных термов молекулы, позволяет проводить расчёт и анализ ровибронных энергетических состояний, волновых функций, интенсивностей спектральных переходов. Проведено исследование структуры и спектра молекулы HO_2 для двух электронных состояний (основного \widetilde{X} $^2A''$ и возбуждённого \widetilde{A} $^2A'$, вырожденных в линейной конфигурации), включая анализ волновых функций и изучение структурно-энергетических особенностей её ровибронных состояний. Установлено, что эффект туннелирования при трансформации H-O-O \leftrightarrow O-O-H начинает оказывать заметное влияние уже при энергиях порядка 5500 см $^{-1}$, что на 7950 см $^{-1}$ ниже изомеризационного барьера в основном электроном состоянии молекулы. Проявление ровибронного взаимодействия в спектре HO_2 носит стохастический характер, не поддающийся описанию известными пертурбативными моделями.
- 3. Разработана модель структурно-нежёсткой нелинейной четырёхатомной молекулы. В приложении к молекуле HSOH решена задача вычисления структуры, энергетических и спектральных характеристик системы с внутренним вращением. Представлены результаты расчётов и исследования поверхности потенциальной энергии, получены аналитические выражения для потенциальной функции и матричных элементов дипольного момента основного электронного состояния. Рассчитаны энергетические состояния системы и проведен анализ её характеристик. Изучены структурно-энергетические особенности вращательно-торсионных состояний системы, рассчитаны значения колебательных термов и моментов перехода. Новая модель молекулы позволила оптимизировать описание торсионно-колебательного взаимодействия в системе, рассчитать с высокой точностью расщепления торсионно-вращательных термов, обосновать нерегулярный характер зависимости торсионного расщепления от проекции углового момента молекулы.
- 4. Разработаны модели монокристаллических поверхностей и когерентных границ раздела, позволяющие исследовать трансформации атомной и электронной структуры при формировании границы раздела кристалл крис-

талл и кристалл—газ. На примере системы α -Al $_2$ O $_3$ рассмотрено взаимодействие атомов металлов с поверхностью диэлектрического (полупроводникового) материала. Реализовано теоретическое исследование адсорбции 3d-металлов в ряду от Ті до Си на поверхности α -Al $_2$ O $_3$ (0001). Рассмотрено влияние адсорбатов на атомную и электронную структуру поверхности оксида алюминия. Рассчитаны значения энергии адсорбции и определены равновесные конфигурации адатомов на поверхности. Выполнен сравнительный анализ свойств и механизмов взаимодействия 3d-металлов с атомами подложки.

- 5. Проведено теоретическое исследование адгезии пленок ОЦК-металлов на поверхности оксида алюминия. Представлены результаты расчётов из первых принципов атомной и электронной структуры когерентных границ раздела $Me(111)/\alpha$ - $Al_2O_3(0001)$, где Me = V, Cr, Nb, Mo, Ta, W; Nb/α - $Al_2O_3(1100)$ и Nb/α - $Al_2O_3(1120)$. Выполнены оценки энергии отрыва металлических пленок от оксидных поверхностей. Проведен анализ структурных и электронных факторов, определяющих адгезию пленок ОЦК-металлов на поверхности оксида алюминия. Показано, что адгезия пленок ниобия в значительной степени зависит от ориентации поверхности оксида. Наибольшие значения энергии адгезии для всех рассмотренных систем получены для границ раздела с нестехиометрической геометрией, соответствующей кислородному окончанию полярной поверхности корунда (0001), и ОЦК-металлами с незаполненной d-оболочкой.
- 6. Построение квантово-механической модели межфазной границы кристалл газ реализовано для системы кремний водород. Исследовано влияние атомарного и молекулярного водорода на структуру и свойства чистой монокристаллической поверхности Si(111), изучено взаимодействие H_2 с пассивированной поверхностью Si(111):Н. Теоретические результаты находятся в хорошем согласии с экспериментальными данными, полученными методами просвечивающей электронной микроскопии высокого разрешения, и послужили основой при разработке модели водородсодержащих планарных дефектов в кремнии. Показано, что система $Si(111) + H_2$ остаётся нестабильной до образования монослоя водорода, т.е. формирования пассивированной поверхности Si(111):Н. При этом происходит почти полное восстановление структурных характеристик полупроводника.
- 7. Разработана модель системы молекула матрица, позволяющая описывать поведение молекулярного дефекта внедрения в полупроводниковом кристалле, получены новые представления о поведении междоузельного молекулярного водорода в монокристаллическом кремнии. Проведены расчёты структуры и энергетических характеристик H_2 в кремнии, исследованы структурноэнергетические особенности вращательных, трансляционных и трансляционно-вращательных состояний дефекта внедрения. Изучена зависимость потенциальной энергии системы от положения и ориентации дефекта внедрения, проведена оценка пути с минимальной энергией H_2 между соседними тетра-эдрическими позициями в кремнии с учётом вращательных степеней свободы и отклика кристаллической структуры.

- 8. Осуществлена оценка зонной структуры энергетических уровней в системе H_2 –Si, формирующейся в результате взаимодействия молекулы с матрицей полупроводника. В рамках предложенной модели проведены расчёты энергетического спектра H_2 в трёхмерном потенциале кристалла кремния. Получено, что формирование зонной структуры происходит при энергиях, превышающих основное состояние дефекта приблизительно на 6000 см $^{-1}$ и более. Исследования трансляционно-вращательных состояний подтверждают междоузельную локализацию молекулярного водорода в кремнии, по крайней мере, для низколежащих энергетических уровней. Несмотря на значительную роль трансляционно-вращательного взаимодействия, при J < 2 дефект внедрения проявляет свойства свободной молекулы.
- 9. Получены новые представления о механизме взаимодействия молекулы водорода с кристаллическим кремнием, стабильности молекулы и свойствах её пространственной локализации в кристалле. Выполнены расчёты орто-парарасщепления спектральных линий молекулярного водорода в кремнии, изучено влияние матрицы на спектральные характеристики молекулы внедрения. Предложен механизм орто-пара-конверсии молекулярного водорода в полупроводниках, в основе действия которого лежит спиновый катализ, активируемый валентным (или примесным) электроном. Состоятельность выдвинутой гипотезы подтверждается выявленным увеличением электронной плотности в окрестностях протонов и снижением энергии активации катализа в результате перестройки электронной структуры системы при взаимодействии междоузельной молекулы водорода с матрицей кристаллического кремния.
- 10. Разработана модель дефекта «водород вакансия», предполагаемого комплекса, образованного в результате взаимодействия междоузельного молекулярного водорода с вакансией в кремнии. Изучено влияние данного комплекса на структуру и энергетические характеристики системы H₂–Si. Исследована зависимость потенциальной энергии системы от положения и ориентации дефекта внедрения относительно вакансии, рассмотрен механизм взаимодействия молекулы с дефектосодержащим кристаллом, проведен анализ стабильности возможных конфигураций системы. Реализованы квантово-механические вычисления трансляционно-вращательных состояний молекулярного водорода в кремнии. Выявлено, что понижение симметрии системы при переходе к дефектной структуре кристалла и увеличение вращательного барьера вследствие сильного взаимодействия молекулы с вакансией приводит к существенной перестройке энергетического спектра системы.
- 11. Разработана модель водородсодержащего планарного дефекта в кремнии (нанодиска). Проведено исследование структуры и спектральных свойств дефекта. В рамках классической теории осуществлена оценка термодинамических и кинетических свойств нанодисков, получены представления о структурно-фазовых состояниях двумерного молекулярного водорода в кремнии. Расчёты показали, что молекула Н₂ в нанодиске в значительной степени сохраняет структурные и энергетические характеристики, присущие свободной

молекуле. Выявлено, что локализованный в нанодиске молекулярный водород может находиться в кристаллическом и флюидном состояниях (температура фазового перехода порядка 100 K). При этом двумерная твёрдая фаза может быть представлена как монослой с гексагональной структурой с параметром решётки $a_{hex} = a/\sqrt{2}$, где a — параметр решётки кремния.

12. Разработана квантово-механическая модель двумерного кристаллического молекулярного водорода, исследована зависимость вращательных состояний параводорода от соотношения концентраций орто- и пара-молекул. Выявлено, что форма спектральной линии рамановского перехода $S_0(0)$ при гелиевых температурах в значительной степени зависит от относительного содержания орто- и пара- H_2 , преимущественно определяется свойствами анизотропной составляющей межмолекулярного взаимодействия водорода, структурой и симметрией системы. В частности, с ростом концентрации ортоводорода наблюдается уширение спектральной линии $S_0(0)$ и увеличение красного смещения её максимума. В целом, полученные теоретические оценки физических свойств молекулярного водорода, локализованного в $Si\{111\}$ -нанодисках, позволяют объяснить значительную часть экспериментальных данных, представленных в литературе.

В завершение необходимо отметить, что проведённое диссертационное исследование позволило решить ряд принципиальных вопросов проблемы теоретического описания примесных центров молекулярного типа в кристаллических материалах. Перспективы дальнейшей разработки темы связаны с последующим развитием теоретических методов определения структуры и свойств дефектосодержащих полупроводниковых (диэлектрических) материалов, изучением процессов и закономерностей образования и трансформации дефектной структуры, исследованием явлений адсорбции, абсорбции, диффузии и пр. Разработанные в диссертации теоретические модели, подходы и способы представляют собой основу для решения подобных задач.

Список работ, опубликованных автором по теме диссертации

Статьи в журналах, включенных в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание учёной степени кандидата наук, на соискание учёной степени доктора наук:

- 1. Quapp W. Valley ridge inflection points on the potential energy surfaces of H_2S , H_2Se , and H_2CO / W. Quapp, **V. V. Melnikov** // Physical Chemistry Chemical Physics. -2001. Vol. 3, is. 14. P. 2735-2741. DOI: 10.1039/B102053F. 0.75 / 0.4 a. π . (*Web of Science*).
- 2. Quapp W. The Bending Vibrational Ladder of H¹³C¹⁵N by Hot Gas Emission Spectroscopy / W. Quapp, **V. V. Melnikov**, G. Ch. Mellau // Journal of Molecular Spectroscopy. 2002. Vol. 211. P. 189-197. DOI: 10.1006/jmsp.2001.8472. 1,1/0,37 а.л. (*Web of Science*).

- 3. **Melnikov V. V.** Potential energy surface and spectroscopic parameters of $\widetilde{X}^3\Sigma^-$ CNN / V. V. Melnikov, P. Jensen // Chemical Physics Letters. 2004. Vol. 394. P. 171-175. DOI: 10.1016/j.cplett.2004.06.129. 0,56 / 0,45 a.π. (*Web of Science*).
- 4. Buenker R. J. Positron binding energies for alkali hydrides / R. J. Buenker, H.-P. Liebermann, V. V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura // Journal of Physical Chemistry A (Dynamics, Kinetics, Environmental Chemistry, Spectroscopy, Structure, Theory). 2005. Vol. 109, is. 26. P. 5956-5964. DOI: 10.1021/jp050687f. 1,1/0,19 а.л. (Web of Science).
- 5. Odaka T. E. Theoretical study of the double Renner effect for $\widetilde{A}^2\Pi$ MgNC/MgCN: Higher excited rovibrational states / T. E. Odaka , **V. V. Melnikov**, P. Jensen, T. Hirano, B. Lang, P. Langer // Journal of Chemical Physics. 2007. Vol. 126, is. 9. P. 094301 (1-9). DOI: 10.1063/1.2464094. 1,1/0,35 а.л. (*Web of Science*).
- 6. **Melnikov V.V.** The double Renner effect in the \widetilde{X}^2A'' and \widetilde{A}^2A' electronic states of HO₂ / V. V. Melnikov, T. E. Odaka, P. Jensen, T. Hirano // Journal of Chemical Physics. 2008. Vol. 128, is. 11. P. 114316 (1-10). DOI: 10.1063/1.2827490. 1,2/0,8 а.л. (Web of Science).
- 7. Ovsyannikov R. I. Theoretical rotation-torsion energies of HSOH / R. I. Ovsyannikov, V. V. Melnikov, W. Thiel, P. Jensen, O. Baum, T. F. Giesen, S. N. Yurchenko // Journal of Chemical Physics. 2008. Vol. 129, is. 15. P. 154314 (1-9). DOI: 10.1063/1.2992050. 1,08/0,35 а.л. (Web of Science).
- 8. **Melnikov V. V.** Calculation of rovibronic intensities for triatomic molecules in double-Renner-degenerate electronic states: Application to the \widetilde{X}^2A'' and \widetilde{A}^2A' electronic states of HO_2 / V. V. Melnikov, P. Jensen, T. Hirano // Journal of Chemical Physics. 2009. Vol. 130, is. 22. P. 224105 (1-9). DOI: 10.1063/1.3139916. 1,05/0,84 а.л. (*Web of Science*).
- 9. Yurchenko S. N. An ab initio calculation of the vibrational energies and transition moments of HSOH / S. N. Yurchenko, A. Yachmenev, W. Thiel, O. Baum, T. F. Giesen, **V. V. Melnikov**, P. Jensen // Journal of Molecular Spectroscopy. 2009. Vol. 257, is. 1. P. 57-65. DOI: 10.1016/j.jms.2009.06.010. 1,1/0,3 а.л. (*Web of Science*).
- 10. **Мельников В. В.** Теоретическое исследование адсорбции 3d-металлов на поверхности α -Al₂O₃(0001) / В. В. Мельников, С. В. Еремеев, С. Е. Кулькова // Известия высших учебных заведений. Физика. 2011. Т. 54, N_{\odot} . 6. С. 80-88. 0,7/0,5 а.л.

в переводной версии журнала:

Melnikov V. V. Theoretical investigations of 3d-metal adsorption on the α -Al₂O₃(0001) surface / V. V. Melnikov, S. V. Eremeev, S. E. Kulkova // Russian Physics Journal. – 2011. – Vol. 54, No. 6. – P. 704-712. – DOI: 10.1007/s11182-011-9673-5 (*Web of Science*).

11. **Мельников В.В.** Изучение адгезии пленок ниобия на разно-ориентированных поверхностях α -Al₂O₃ / В. В. Мельников, С. В. Еремеев, С. Е. Кулькова // Журнал технической физики. — 2011. — Т. 81, вып. 10. — С. 114-121. — 0,8 / 0,6 а.л.

в переводной версии журнала:

Melnikov V.V. Adhesion of niobium films to variously oriented α -Al₂O₃ surfaces / V. V. Melnikov, S. V. Eremeev, S. E. Kulkova // Technical Physics. – 2011. – Vol. 56, is. 10. – P. 1494-1500. – DOI: 10.1134/S1063784211100148 (*Web of Science*).

12. **Мельников В. В.** Адгезия на границах раздела между ОЦК-металлами и α -Al₂O₃ / В. В. Мельников, С. Е. Кулькова // Журнал экспериментальной и теоретической физики. – 2012. – Т. 141, вып. 2. – С. 345-354. – 0,9 / 0,7 а.л. в переводной версии экурнала:

Melnikov V. V. Adhesion at the interfaces between bcc metals and α -Al₂O₃ / V. V. Melnikov, S. E. Kulkova // Journal of Experimental and Theoretical Physics. – 2012. – Vol. 114, is. 2. – P. 305-313. – DOI: 10.1134/S1063776111160138 (*Web of Science*).

13. **Мельников В. В.** Вращательные состояния молекулы водорода в матрице кристаллического кремния / В. В. Мельников, С. Н. Юрченко // Известия высших учебных заведений. Физика. -2013. - Т. 56, №. 12. - С. 41-47. - 0,6 / 0,5 а.л.

в переводной версии журнала:

Melnikov V. V. Rotational states of the hydrogen molecule in the crystalline silicon matrix / V. V. Melnikov, S. N. Yurchenko // Russian Physics Journal. – 2014. – Vol. 56, No. 12. – P. 1363-1369. – DOI: 10.1007/s11182-014-0187-9 (*Web of Science*).

14. **Мельников В. В.** Зонная структура энергетических уровней молекулярного водорода в матрице кристаллического кремния / В. В. Мельников // Известия высших учебных заведений. Физика. – 2014. – Т. 57, №. 9. – С. 129-131. – 0.19 а.л.

в переводной версии журнала:

Melnikov V. V. Band structure of energy levels of molecular hydrogen in the crystalline silicon matrix / V. V. Melnikov // Russian Physics Journal. – 2015. – Vol. 57, No. 9. – P. 1294-1296. – DOI: 10.1007/s11182-015-0377-0 (*Web of Science*).

15. **Мельников В. В.** Структурные и энергетические особенности междоузельного молекулярного водорода в монокристаллическом кремнии / В. В. Мельников // Журнал экспериментальной и теоретической физики. — 2015. — Т. 147, вып. 6. — С. 1162-1169. — 0,78 а.л.

в переводной версии журнала:

Melnikov V.V. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon / V. V. Melnikov // Journal of Experimental

- and Theoretical Physics. 2015. Vol. 120, is. 6. P. 1005-1011. DOI: 10.1134/S1063776115060199 (Web of Science).
- 16. **Melnikov V. V.** Roto-translational states of the interstitial molecular hydrogen in silicon: A theoretical study / V. V. Melnikov, S. N. Yurchenko // Journal of Chemical Physics. 2015. Vol. 143, is. 16. P. 164305 (1-9). DOI: 10.1063/1.4934368. 1,0/0,9 а.л. (*Web of Science*).
- 17. **Мельников В. В.** Развитие общего подхода к моделированию свободных и локализованных многоатомных систем / В. В. Мельников, С. Н. Юрченко, П. Йенсен, А. И. Потекаев // Известия высших учебных заведений. Физика. 2015. Т. 58, № 8. С. 8-11. 0,4/0,3 а.л.

в переводной версии журнала:

- **Melnikov V. V.** Development of a general approach to the modeling of free and confined polyatomic systems / V. V. Melnikov, S. N. Yurchenko, P. Jensen, A. I. Potekaev // Russian Physics Journal. 2015. Vol. 58, No. 8. P. 1040-1043. DOI: 10.1007/s11182-015-0608-4 (*Web of Science*).
- 18. **Мельников В. В.** Дефект «водород вакансия» в монокристаллическом кремнии / В. В. Мельников // Известия высших учебных заведений. Физика. 2016. Т. 59, №. 5. С. 14-20. 0,67 а.л.

в переводной версии журнала:

- **Melnikov V. V.** A hydrogen vacancy defect in single-crystal silicon / V. V. Melnikov // Russian Physics Journal. 2016. Vol. 59, No. 5. P. 618-625. DOI: 10.1007/s11182-016-0814-8 (*Web of Science*).
- 19. **Melnikov V. V.** Radiative cooling of H_3O^+ and its deuterated isotopologues / V. V. Melnikov, S. N. Yurchenko, J. Tennyson, P. Jensen // Physical Chemistry Chemical Physics. 2016. Vol. 18, is. 37. P. 26268-26274. DOI: 10.1039/ c6cp04661d. 0,8/0,45 а.л. (*Web of Science*).
- 20. **Мельников В. В.** О механизме орто-пара-конверсии молекулярного водорода в полупроводниках / В. В. Мельников, Э. В. Лавров // Известия высших учебных заведений. Физика. 2016. Т. 59, №. 12. С. 166-167. 0.2/0.15 а.л.

в переводной версии журнала:

- **Melnikov V. V.** On the mechanism of ortho-para conversion of molecular hydrogen in semiconductors / V. V. Melnikov, E. V. Lavrov // Russian Physics Journal. 2017. Vol. 59, No. 12. P. 2168-2170. DOI: 10.1007/s11182-017-1029-3 (*Web of Science*).
- 21. **Melnikov V. V.** Two-dimensional H₂ in Si: Raman scattering and modeling study / V. V. Melnikov, M. Hiller, E. V. Lavrov // Physical Review B. 2018. Vol. 97, is. 12. P. 125307 (1-11). DOI: 10.1103/PhysRevB.97.125307. 1,2/0,85 а.л. (Web of Science).

Статья в сборнике трудов международной конференции:

22. **Melnikov V.V.** Theoretical study of interfaces between bcc metals and α -Al₂O₃ [Electronic resource] / V. V. Melnikov, S. E. Kulkova // IOP Confer-

ence Series: Materials Science and Engineering. — 2011. — Vol. 23: 7th International Conference "Functional Materials and Nanotechnologies" (FM&NT—2011). Riga, Latvia, April 5–8, 2011. — Article number 012041. — 4 р. — URL: https://iopscience.iop.org/article/10.1088/1757-899X/23/1/012041/pdf (access date: 22.12.2018). — DOI: 10.1088/1757-899X/23/1/012041. — 0,4/0,28 а.л. (*Web of Science*).

Издание подготовлено в авторской редакции. Отпечатано на участке цифровой печати Издательского Дома Томского государственного университета Заказ № 6010/19 от «07» июня 2019 г. Тираж 100 экз.

г. Томск Московский тр.8 тел. 53-15-28