Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

На правах рукописи

Седнев-Луговец Антон Леонидович

Термодинамическая устойчивость и физико-химические свойства двойных перовскитов YBaCo_2O_{6-\delta} и HoBaCo_2O_{6-\delta}

02.00.04 – Физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Работа выполнена на кафедре физической и неорганической химии Института естественных наук и математики Федерального государственного автономного образовательного учреждения высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель: доктор химических наук, доцент Зуев Андрей Юрьевич

Официальные оппоненты:

Галахов Вадим Ростиславович, доктор физико-математических наук, старший научный сотрудник, ФГБУН Институт физики металлов имени М.Н. Михеева УрО РАН (г. Екатеринбург), главный научный сотрудник лаборатории рентгеновской спектроскопии

Кузнецов Михаил Владимирович, доктор химических наук, старший научный сотрудник, ФГБУН Институт химии твердого тела УрО РАН (г. Екатеринбург), директор

Быков Андрей Семенович, кандидат химических наук, старший научный сотрудник, ФГБУН Институт металлургии УрО РАН (г. Екатеринбург), старший научный сотрудник лаборатории физической химии металлургических расплавов

Защита состоится 15 октября 2020 г. в 12:00 на заседании диссертационного совета УрФУ 02.01.01 по адресу: 620000, Екатеринбург, пр. Ленина 51, Зал диссертационных советов, комн.248.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», https://dissovet2.urfu.ru/mod/data/view.php?d=12&rid=1342

Автореферат разослан «____» сентября 2020 г.

Ученый секретарь диссертационного совета, кандидат химических наук, доцент

haremot

Кочетова Н.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u>

Оксидные перовскитоподобные материалы, обладающие смешанной электронной и кислородной проводимостью, становятся все более и более востребованными в наши дни как материалы для каталитических и магнитных систем, а также как устройства преобразования и сохранения энергии [1]. Среди этих соединений огромный научный и практический интерес представляют вещества со структурой двойного перовскита с общей формулой RBaCo₂O₆₋₈, гле R – редкоземельный элемент. Эти сложные оксилы обладают уникальными свойствами. такими как высокая смешанная электронная и кислород-ионная проводимость, быстрый кислородный транспорт, широкий интервал изменения кислородной нестехиометрии. Особое внимание к этим веществам вызвано также возможностью тонкой подстройки их физикохимических свойств путем допирования в подрешетку Со и/или редкоземельного элемента, что позволяет получить материалы с желаемыми характеристиками [2-6], например, для катодов твердооксидных топливных элементов [6]. Тем не менее, общим недостатком данных материалов является высокий коэффициент термического расширения (~20.10⁻⁶ K⁻¹) [6]. практически в два раза превышающий КТР распространённых электролитных материалов. Выгодно в этой связи выделяются иттрий- и гольмий-содержащие двойные перовскиты, имеющие малые коэффициенты термического расширения [6-8]. Именно поэтому изучение данных соединений представляет особый интерес. Однако до настоящего момента данные двойные перовскиты исследовались только в структурном и прикладном аспектах, а такая критически важная информация об этих сложных как область оксилах. их термодинамической устойчивости, осталась совершенно не изученной. Более того, до сих пор отсутствуют належные ланные 0 зависимости кислоролной нестехиометрии электропроводности этих двойных перовскитов от парциального давления кислорода, не проволился и анализ их дефектной структуры. Не исследованными в области высоких температур также остаются теплоемкости данных соединений, хотя знание этих свойств открывает путь к предсказанию их химической совместимости, например, с материалом электролита в твердооксидных топливных элементах.

Таким образом, отсутствие в литературе работ, посвященных ключевым физикохимическим свойствам двойных перовскитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, определяет актуальность настоящего исследования.

Степень разработанности темы исследования

Кристаллическая структура, коэффициент термо-ЭДС, электропроводность, магнитные свойства и их зависимость от содержания кислорода и температуры были детально изучены для YBaCo₂O_{6-δ} и, в меньшей степени, для HoBaCo₂O_{6-δ} в области низких температур (T<200°C). Что касается области высоких температур, то в литературе приводятся результаты различных исследований, посвященных определению зависимости электропроводности и содержания кислорода YBaCo₂O_{6-δ} от температуры на воздухе вплоть до 800°C, а также измерению сопротивления и поляризации топливных ячеек на основе этого материала, однако эти данные противоречивы. Значения одного и того же свойства, приводимые разными авторами, порой отличаются на порядок определяемой величины. В случае HoBaCo₂O_{6-δ} ситуация усугубляется ограниченным количеством работ, посвящённых исследованию данного соединения. Помимо этого, нерешенным остается вопрос об устойчивости данных

веществ. В литературе имеются обрывочные сведения о том, что эти соединения разлагаются в определенных условиях, но до настоящего момента систематические исследования термодинамической устойчивости данных сложных оксидов не проводились. Кроме того, практически остаются не исследованными кислородная нестехиометрия И электропроводность двойных перовскитов иттрия и гольмия в зависимости от парциального давления кислорода. Остаются не изученными дефектная структура YBaCo₂O₆₋₈ и НоВаСо2О6-6 и термодинамические свойства данных соединений при высоких температурах. Отсутствие информации о ключевых физико-химических свойствах отмеченных двойных перовскитов является препятствием на пути применения этих материалов в устройствах преобразования и сохранения энергии.

Цель и задачи работы:

Настоящая работа направлена на определение термодинамических свойств и установление взаимосвязи физико-химических свойств с дефектной структурой соединений RBaCo₂O_{6-δ} (R = Y, Ho) в интервале их термодинамической устойчивости.

Для достижения указанной цели были поставлены следующие задачи:

1. Определить оптимальные условия получения двойных перовскитов RBaCo₂O_{6-δ} (R =Y, Ho) и синтезировать их однофазные образцы.

2. Определить границы термодинамической устойчивости кобальтитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} по отношению к их окислению и восстановлению с использованием независимых методов, а также установить соответствующие реакции разложения.

3. Определить зависимость содержания кислорода в двойных перовскитах YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} от температуры на воздухе методом термогравиметрического анализа, а также определить зависимость кислородной нестехиометрии данных соединений от температуры (*T*) и парциального давления кислорода (pO_2) в области их термодинамической устойчивости методом кулонометрического титрования. На основе полученных данных построить равновесные $pO_2 - T - \delta$ диаграммы исследуемых соединений.

4. На основе полученных в пункте 3 данных провести модельный анализ дефектной структуры двойных перовскитов $HoBaCo_2O_{6-\delta}$ и $YBaCo_2O_{6-\delta}$ и аналитически вывести модельную зависимость $log(pO_2/aTM) = f(\delta, T)$. Провести верификацию полученных моделей к экспериментальным данным по кислородной нестехиометрии в области термодинамической стабильности сложных оксидов $RBaCo_2O_{6-\delta}$ (R = Y, Ho) и определить стандартные энтальпии и энтропии реакций дефектообразования в этих соединениях.

5. Из верифицированного модельного уравнения дефектной структуры получить зависимость парциальной мольной энтальпии кислорода ($\Delta \bar{h}_0$) от кислородной нестехиометрии и температуры для соединений RBaCo₂O_{6-δ} (R = Y, Ho) в области их термодинамической устойчивости.

6. В области термодинамической устойчивости двойных перовскитов $RBaCo_2O_{6-\delta}$ (R = Y, Ho) измерить их общую электропроводность в зависимости от pO_2 и температуры.

7. Методом калориметрии сброса измерить инкременты энтальпии образцов YBaCo₂O_{5.0}, предварительно закаленных с температур 850 – 1050°C с шагом 50°C. Измерить инкременты энтальпии для образцов YBaCo₂O_{5.33} и определить энтальпию окисления состава YBaCo₂O_{5.0} в YBaCo₂O_{5.33} при комнатной температуре.

Научная новизна:

1. Впервые проведено систематическое исследование процесса синтеза двойных перовскитов HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ} и выявлены оптимальные условия его проведения.

2. Впервые определены границы термодинамической устойчивости двойных перовскитов RBaCo₂O₆₋₈ (R = Y, Ho) и установлены реакции их разложения.

3. Впервые получены достоверные данные по зависимости кислородной нестехиометрии изучаемых двойных перовскитов от температуры и *p*O₂ в области их термодинамической стабильности.

4. Впервые определена зависимость электропроводности кобальтитов HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ} от температуры и *p*O₂ в области их термодинамической стабильности.

5. Впервые выполнен систематический модельный анализ дефектной структуры оксидных фаз HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ}. Верификацией модельных уравнений к экспериментальным данным по кислородной нестехиометрии определены адекватные модели разупорядочения, термодинамические свойства реакций дефектообразования и зависимости парциальных мольных энтальпий кислорода от кислородной нестехиометрии в этих соединениях.

6. Впервые показано, что в области термодинамической устойчивости двойных перовскитов HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ} реакция диспропорционирования Co⁺³ не вносит заметный вклад в разупорядочение исследуемых двойных перовскитов.

7. Впервые определена зависимость инкрементов энтальпии от температуры для YBaCo₂O_{5.0} и YBaCo₂O_{5.33}.

Теоретическая и практическая значимость:

1. Установленные пределы термодинамической стабильности и построенные равновесные $pO_2 - T - \delta$ диаграммы HoBaCo₂O_{6- δ} и YBaCo₂O_{6- δ}, а также полученные инкременты энтальпии и теплоемкости для YBaCo₂O_{5.0} являются фундаментальными справочными данными.

2. Результаты теоретического модельного анализа дефектной структуры иттрий- и гольмий-содержащих двойных перовскитов являются фундаментальным вкладом в развитие химии дефектов оксидных материалов.

3. Полученная информация об интервалах термодинамической стабильности, а также о зависимости электропроводности двойных перовскитов HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ} от температуры и парциального давления кислорода в этой области является ключевой для создания эффективных катодов для твердооксидных топливных элементов на их основе.

Методология и методы исследования:

Для достижения поставленных задач был использован комплекс современных теоретических и экспериментальных методов исследования:

1. Синтез образцов для исследования выполнен по глицерин-нитратной технологии.

2. Кристаллическая структура исследована при помощи методов рентгеноструктурного анализа. Рентгеновские данные были получены на дифрактометрах Inel Equinox 3000, Dron-6 и Shimadzu XRD-7000 в Си Кα излучении в диапазоне углов 20°≤2θ≤90°.

3. Границы термодинамической устойчивости исследуемых соединений определяли несколькими независимыми методами: кулонометрическим титрованием, совмещённым с

методом ЭДС, и методом измерения электропроводности. Кулонометрические измерения проводили на установке оригинальной конструкции.

4. Изменения относительной кислородной нестехиометрии проводили двумя независимыми методами: кулонометрическим титрованием и термогравиметрическим анализом на термовесах STA 409 PC Luxx (NETZSCH, Германия) и DynTHERM LP-ST (Rubotherm, Германия).

5. Абсолютная кислородная нестехиометрия была определена двумя независимыми методами: дихроматометрическим титрованием на автоматическом титраторе Аквилон АТП-02 и методом прямого восстановления оксидов в потоке водорода непосредственно в термогравиметрической установке.

6. Общая электропроводность измерена четырехэлектродным методом на постоянном токе на установке оригинальной конструкции.

7. Инкременты энтальпии для YBaCo₂O₆₋₈ с разным содержанием кислорода были измерены методом высокотемпературной калориметрии сброса на калориметре МНТС 96 (SETARAM, Франция).

Положения, выносимые на защиту:

1. Результаты исследования процесса синтеза двойных перовскитов $HoBaCo_2O_{6-\delta}$ и $YBaCo_2O_{6-\delta}$.

2. Результаты исследования интервалов термодинамической стабильности НоВаСо2О6-6 и YBaCo2O6-6 и реакций, протекающих на границах устойчивости.

3. Функциональные зависимости кислородной нестехиометрии от температуры и парциального давления кислорода, $\delta = f(pO_2, T)$, для двойных перовскитов RBaCo₂O_{6- δ} (R = Y, Ho).

4. Зависимости электропроводности от температуры и парциального давления кислорода для сложных оксидов HoBaCo₂O₆₋₈ и YBaCo₂O₆₋₈.

5. Теоретические модели дефектной структуры RBaCo₂O_{6- δ} (R = Y, Ho) и результаты их верификации с использованием экспериментальных данных $\delta = f(pO_2, T)$, полученных для этих соединений в настоящей работе.

6. Зависимости инкрементов энтальпии от температуры для YBaCo₂O_{5.0} и YBaCo₂O_{5.33}.

Достоверность результатов и апробация работы:

Достоверность результатов работы определяется комплексным подходом к выбору методов исследования; всесторонним анализом полученных теоретических И экспериментальных результатов; апробацией работы на международных и всероссийских конференциях, публикациями в высокорейтинговых зарубежных журналах. Основные результаты работы доложены и обсуждены на следующих конференциях: IX International conference of young scientists on chemistry "Mendeleev-2015", Saint Petersburg, 2015; 20th International Conference on Solid State Ionics, Colorado, USA, 2015; 15th European Conference on Solid State Chemistry, Vienna, Austria, 2015; 21th International Conference on Solid State Ionics. Padua, Italy, 2017; 16th IUPAC Conference on high temperature materials Chemistry, Yekaterinburg, Russia, 2018; Nonstoichiometric compounds VII, Miyazaki, Japan, 2019.

Работа выполнялась в рамках проектов РФФИ № 16-33-00188, № 16-33-00469, № 18-33-20243, РНФ № 18-73-00022, гранта Правительства Российской Федерации № 2019-220-07-7322.

<u>Публикации:</u>

По материалам диссертации опубликовано 6 статей и 9 тезисов докладов на международных и всероссийских конференциях.

Структура и объем работы:

Диссертационная работа состоит из введения, четырех глав, заключения и списка литературы. Материал изложен на 108 страницах, работа содержит 14 таблиц, 56 рисунков, список литературы – 116 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы, описана степень ее разработанности; основываясь на указанных положениях, сформулированы цели и задачи диссертационного исследования. Описана научная новизна выполненной работы, ее теоретическая и практическая значимость, перечислены методы и методология проведенного исследования, а также положения, выносимые на защиту.

В первой главе описаны тенденции в изменении физико-химических свойств в ряду двойных перовскитов RBaCo₂O_{6-δ} при уменьшении радиуса редкоземельного элемента – R; систематизированы литературные данные по кристаллической структуре, термодинамической устойчивости, кислородной нестехиометрии и электропроводности Y- и Но-содержащих двойных перовскитов.

Во второй главе на основе критического анализа имеющихся литературных данных сформулирована цель работы и обозначены конкретные задачи для ее достижения.

В третей главе представлены использованные экспериментальные методики:

<u>Синтез образцов</u> YBaCo₂O_{6-δ}, HoBaCo₂O_{6-δ}, YCoO_{3-δ}, BaCoO_{3-δ} осуществляли глицериннитратным методом. Синтез проводили ступенчато в интервале температур 900-1100°C с шагом 100°C на воздухе.

<u>Гомогенизирующие отжиги</u> эквимолярной смеси YCoO_{3-δ}:BaCoO_{3-δ} и однофазного YBaCo₂O_{6-δ} были проведены в печи оригинальной конструкции при температурах 800-1000°C с шагом 50°C в атмосфере чистого кислорода и на воздухе.

<u>Рентгеноструктурный анализ</u> проводили в Си Кα излучении в диапазоне углов 20°≤2θ≤90° на дифрактометрах Equinox 3000 (Inel, Франция), Dron-6 (Буревестник, Россия) и XRD-7000 (Shimadzu, Япония).

<u>Общая электропроводность</u> спеченных образцов YBaCo₂O_{6-δ}, HoBaCo₂O_{6-δ} измерена четырехконтактным методом на постоянном токе в установке оригинальной конструкции.

<u>Кулонометрическое титрование</u> YBaCo₂O_{6-δ}, HoBaCo₂O_{6-δ} было выполнено двумя разными методами: «стандартным» методом, когда ток пропускается через кулонометрическую ячейку и «модифицированным» методом - методом релаксации ячейки, помещенной во внешнюю среду с заданным *p*O₂, на установке оригинальной конструкции.

<u>Термогравиметрический анализ</u> образцов проводили на установке DynTherm LP - ST фирмы (Rubotherm, Германия) и термовесах STA 409 PC Luxx (NETZSCH, Германия). <u>Абсолютное содержание кислорода</u> было определено окислительно-восстановительным титрованием образцов и методом прямого восстановления образцов в потоке водорода в термогравиметрической установке.

<u>Приращения энтальпии</u> YBaCo₂O₆₋₈ были измерены в диапазоне температур 850-1050°C на высокотемпературном калориметре сброса МНТС 96 (SETARAM, Франция).

В четвертой главе приведены и проанализированы основные результаты исследования границ термодинамической устойчивости соединений YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, особенностей синтеза, электропроводности, кислородной нестехиометрии, кристаллической и дефектной структуры данных соединений, а также полученные данные по приращениям энтальпии YBaCo₂O_{6-δ}.

Особенности синтеза двойных перовскитов УВаСо2О6-б и НоВаСо2О6-б

Процесс синтеза YBaCo₂O_{6-δ} был изучен путем отжига эквимолярной смеси YCoO_{3-δ} и ВаСоО₃₋₆ в течение 72 ч (6 ступеней с продолжительностью ~12 ч на каждой ступени) при температурах 900°С и 1000°С в атмосферах с парциальным давлением кислорода 0.21 атм и 1 атм, с промежуточным перетиранием смеси на каждом этапе, фазовый состав образцов после каждого этапа отжига контролировался методом рентгенофазового анализа (РФА). Как видно из представленных на рисунке 1 дифрактограмм, отжиг при 900°С на воздухе (рисунок 1 а) и в атмосфере чистого кислорода (рисунок 1 б) не приводит к образованию однофазного образца двойного перовскита, при этом на воздухе образуется смесь кобальтитов иттрия и бария и У-содержащего двойного перовскита, а в атмосфере кислорода какое-либо взаимодействие между YCoO3-6 и BaCoO3-6 отсутствует, что свидетельствует о термодинамической неустойчивости YBaCo₂O_{6-δ} в этих условиях. Отжиг смеси YCoO_{3-δ} и ВаСоО₃₋₆ при 1000°С на воздухе не привел к синтезу однофазного YBaCo₂O₆₋₆ за 72 часа, как следует из дифрактограммы, представленной на рисунке 1 в, более того, в процессе отжига одно из веществ стартовой смеси - YCoO_{3-δ} разложилось на оксид иттрия и оксид кобальта, что сильно замедлило дальнейший синтез двойного перовскита YBaCo₂O₆₋₈ и позволило получить однофазный образец только после 120 часов отжига. Наконец, отжиг эквимолярной смеси кобальтитов при 1000°С в чистом О2 позволил получить однофазный двойной перовскит УВаСо2О6-б за время отжига, равное 72 часам.

Рисунок 1 – Результаты отжига эквимолярной смеси YCoO_{3-δ} и BaCoO_{3-δ} при а) 900°С на воздухе б) 900°С в чистом кислороде и в) 1000°С на воздухе

Подробное пошаговое исследование синтеза YBaCo₂O_{6-δ} в атмосфере чистого кислорода при 1000°С показало, что исследуемая смесь на каждой стадии, кроме последней, содержала BaCoO_{3-δ}, Y₂O₃, CoO, YCoO_{3-δ} и целевую фазу YBaCo₂O_{6-δ} (смотри рисунок 2), что указывает на то, что синтез двойного перовскита YBaCo₂O_{6-δ} при этих условиях может быть описан следующими одновременно протекающими реакциями:

$$YCoO_{3-x} + BaCoO_{3-y} + \frac{\delta - x - y}{2}O_2 = YBaCo_2O_{6-\delta}$$
(1)

$$\frac{1}{2}Y_2O_3 + CoO + \frac{1-2x}{4}O_2 = YCoO_{3-x}$$
(2)

При этом образование кобальтита YCoO_{3-δ} как продукта реакции (2) способствует синтезу YBaCo₂O_{6-δ} по реакции (1). Учитывая полученные результаты, можно сделать вывод о том, что ключевую роль в синтезе двойных перовскитов с малыми РЗЭ играет термодинамическая стабильность кобальтита редкоземельного элемента RCoO_{3-δ}.

Используя имеющиеся данные по энтальпиям и энтропиям образования ErCoO3-& и HoCoO3-&

Рисунок 2 — Рентгенограммы эквимолярной смеси YCoO_{3-δ} и BaCoO_{3-δ}, отожженной пошагово при 1000°C в атмосфере кислорода

[9,10] и предполагая аналогию свойств. были рассчитаны температуры, которых разлагается при YCoO3-δ. Согласно этим расчетам, он стабилен вплоть до 953°С на воздухе и ~1000°C в атмосфере чистого кислорода, поэтому синтез YBaCo₂O_{6-δ} вести оптимально при 1000°С в кислороде. Что касается НоСоОз-6, то он устойчив вплоть до 1050°С 1192°С в на воздухе и атмосфере чистого кислорода, следовательно, синтез НоВаСо2О6-8 следует проводить в этих средах не выше указанных температур.

Аттестация синтезированных УВаСо2О6-6 и НоВаСо2О6-6

Рентгеновские дифрактограммы YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, медленно охлажденных на воздухе с 1000°С со скоростью 100°С/час, были проиндексированы в рамках тетрагональной *P4/mmm* пространственной группы. Параметры элементарных ячеек изучаемых двойных перовскитов, уточненные бесструктурным методом Ле Бейла, были найдены равными a=b=11.611 Å, c=7.485 Å для YBaCo₂O_{6-δ}, в то время как для HoBaCo₂O_{6-δ} – a=b=11.655 Å, c=7.481 Å, что прекрасно совпадает с данными, полученными ранее [11–15].

Термодинамическая устойчивость УВаСо2О6-а

Область термодинамической устойчивости YBaCo₂O_{6-δ} была исследована двумя независимыми методами: методом кулонометрического титрования, совмещенного с методом ЭДС, а также методом измерения электропроводности. Полученные кулонометрические кривые приведены на рисунке 3. На представленном графике отчетливо видны вертикальные участки кривой титрования, которые соответствуют разложению образца и указывают на пределы его термодинамической устойчивости по отношению к восстановлению (при низком pO_2) и окислению (при высоком pO_2). Устойчивость YBaCo₂O_{6-δ} в зависимости от pO_2 . Поскольку разложение YBaCo₂O_{6-δ} связано с образованием соединений, обладающих более низкой проводимостью, чем YBaCo₂O_{6-δ}, резкое уменьшение электропроводности в процессе измерения при понижении парциального давления кислорода указывает на достижение границы термодинамической стабильности этого соединения. Результаты, полученные двумя вышеописанными методами, для сравнения представлены на рисунке 4. Как видно, между ними наблюдается хорошее согласие.

Рисунок 3 – Содержание кислорода в YBaCo₂O₆₋₈ в зависимости от парциального давления кислорода. Символы – экспериментальные данные

Рисунок 4 – Область термодинамической стабильности YBaCo₂O₆₋₈. Черные квадраты и треугольники – данные кулонометрического титрования, выколотые кружки – данные измерения электропроводности

Для установления химических реакций, протекающих на границах термодинамической устойчивости YBaCo₂O₆₋₈, его образец был отожжен при 850°С и $pO_2=0.5$ атм (окислительная область) и при 1000°С и $pO_2=10^{-4}$ атм (восстановительная область). Рентгенофазовый анализ полученных после отжига порошков показал, что в окислительной области Y-содержащий двойной перовскит разлагается в соответствии со следующей реакцией:

$$YBaCo_2O_{6-\delta} + \frac{\delta - y - z}{2}O_2 = YCoO_{3-y} + BaCoO_{3-z},$$
(3)

в то время как в восстановительной области разложение YBaCo₂O_{6-δ} происходит по реакции 4:

$$YBaCo_2O_{6-\delta} = pY_2O_3 + nYBaCo_4O_7 + mBaCo_{1-x}Y_xO_{3-\gamma} + qO_2,$$
(4)

где $m = \frac{2}{3+x}$, $n = \frac{1+x}{3+x}$, $p = \frac{1-x}{3+x}$, $q = \frac{2-\delta(3+x)+2x+2\gamma}{2(3+x)}$

Полученные химические реакции согласуются с данными, имеющимися в литературе [11,16].

Термодинамическая устойчивость НоВаСо2О6-б

Область термодинамической устойчивости HoBaCo₂O_{6-δ} была исследована методом кулонометрического титрования, совмещенного с методом ЭДС, а также методом измерения электропроводности. Кулонометрическое титрование Ho-содержащего образца было выполнено двумя разными методами: методом релаксации ячейки во внешнем pO_2 были получены кулонометрические кривые для температур 900-1050°С, а также найдены границы термодинамической устойчивости по отношению к восстановлению, в то время как методом пропускания тока через кулонометрическую ячейку были получены кулонометрические кривые при 900°С и 1000°С, полностью совпадающие с зависимостями, полученными первым методом, и определены границы термодинамической устойчивости по отношению к восстановлению и окислению в интервале 900-1050°С. Полученные таким образом кулонометрические кривые показаны на рисунке 5. Фазовая диаграмма для HoBaCo₂O_{6-δ}, составленная на основе данных, полученных различными методами, показана на рисунке 6.

Рисунок 5 – Содержание кислорода в НоВаСо₂О₆₋₈ в зависимости от парциального давления кислорода. Символы – экспериментальные данные

Из рисунка 6 следует, что данные о термодинамической устойчивости HoBaCo₂O₆₋₈ в восстановительной атмосфере, полученные различными методами, хорошо согласуются друг с другом. Для установления реакции, в соответствии с которой HoBaCo₂O₆₋₈ разлагается в окислительных и восстановительных условиях, порошкообразный образец исследуемого сложного оксида был отожжен при 900°C в атмосфере чистого кислорода и при 1000°C в

атмосфере с парциальным давлением кислорода log(*p*O₂/атм)=-4. Методом рентгенофазового анализа отожжённых порошков было установлено, что в восстановительной области Носодержащий двойной перовскит разлагается в соответствии со следующей реакцией:

$$HoBaCo_2O_{6-\delta} + \frac{\delta - y - z}{2}O_2 = HoCoO_{3-y} + BaCoO_{3-z},$$
(5)

то есть аналогично его Y-содержащему аналогу, что согласуется с результатами авторов [11]. На нижней границе термодинамической стабильности HoBaCo₂O₆₋₈ разлагается в соответствии со следующей реакцией:

HoBaCo₂O_{6-δ} = pHo₂BaCoO₅ + nHoBaCo₄O₇ + mBaCo_{1-x}Ho_xO_{3-γ} + qO₂, (6) где $p = \frac{(1-x)}{(3-x)}, n = \frac{1}{(3-x)}, m = \frac{1}{(3-x)}, q = \frac{1-\delta}{2} + \frac{\gamma}{2(3-x)}.$

С целью сравнения на рисунке 7 представлены области термодинамической устойчивости двойных перовскитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, определенные в настоящей работе, вместе с литературными данными по устойчивости YBaCo₄O_{7-δ} [17]. Видно, что устойчивость исследованных двойных перовскитов к окислению близка как по отношению друг к другу, так и к YBaCo₄O_{7-δ}, что, по всей видимости, объясняется близостью реакций разложения, происходящих на верхней границе термодинамической устойчивости данных соединений.

Что касается границы устойчивости по отношению к восстановлению, то, как видно на рисунке 7, Но-содержащий образец немного более устойчив, чем его Y-содержащий аналог. Помимо этого, существенным образом отличается форма границы устойчивости данных соединений в области низких pO_2 . Отмеченные различия вызваны тем, что реакции разложения данных перовскитов в восстановительных условиях (см. реакции (4) и (6)) отличаются. Действительно, при разложении HoBaCo₂O_{6-δ}, в соответствии с реакцией (6), образуется фаза Ho₂BaCoO₅, которая, по всей видимости, является более стабильной, чем ее иттрий-содержащий аналог – Y₂BaCoO₅, и существует, например, уже при $pO_2 = 10^{-3.3}$ атм и 1000°C (смотри рисунок 7). Фаза Y₂BaCoO₅ стабилизируется только при более низких pO_2 , и поэтому в данных условиях она при разложении YBaCo₂O_{6-δ} не образуется. Ее появление возможно при дальнейшем уменьшении парциального давления кислорода, например, в условиях, когда с ее образованием разлагается фаза YBaCo₄O_{7-δ}, например, при $pO_2 = 10^{-4.79}$ атм и 1000°C.

Рисунок 7 – Диаграмма устойчивости YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}. Черными квадратами и выколотыми кружками обозначены границы устойчивости для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, соответственно, пунктирной линией обозначены границы термодинамической стабильности YBaCo₄O_{7-δ} [17]

Содержание кислорода в УВаСо2О6-6 и НоВаСо2О6-6 на воздухе

Зависимости содержания кислорода в двойных перовскитах YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} от температуры на воздухе, полученные методом TГА с учетом определенного абсолютного содержания кислорода (таблица 1), представлены на рисунке 8.

Таблица 1 – Значения кислородной нестехиометрии для медленно охлажденных до комнатной температуры на воздухе образцов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}

	δ	δ
RBaCo ₂ O _{6-δ}	$(H_2/T\Gamma)$	(O-B
		титр.)
YBaCo ₂ O _{6-δ}	$0.67\pm$	$0.69\pm$
	0.005	0.02
HoBaCo ₂ O _{6-δ}	$0.65\pm$	$0.63\pm$
	0.005	0.03

Рисунок 8 – Содержание кислорода в YBaCo₂O_{6-δ} и НоBaCo₂O_{6-δ} в зависимости от температуры на воздухе

Как видно, диапазоны изменения содержания кислорода в $YBaCo_2O_{6-\delta}$ и $HoBaCo_2O_{6-\delta}$ в исследованном интервале температур очень близки друг к другу и составляют $5.015 \ge 6-\delta \ge 5.330$ и $5.017 \ge 6-\delta \ge 5.345$, соответственно. Активный обмен кислородом между твердой фазой и газовой средой у изучаемых кобальтитов начинается при температуре около 300° C. Абсолютные содержания кислорода для медленно охлажденных до комнатной температуры на воздухе образцов также очень близки друг к другу и составляют 5.33 и 5.35 для $YBaCo_2O_{6-\delta}$ и $HoBaCo_2O_{6-\delta}$, соответственно.

Анализ дефектной структуры YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}

Дефектная структура RBaCo₂O_{6-δ} (R = Y, Ho) была описана в рамках квазихимического подход Крёгера-Винка. В качестве кристалла сравнения были выбраны простые перовскиты $Ho_2Co_2O_6$ и Y₂Co₂O₆, соответственно, с удвоенными относительно кристаллографической оси *с* элементарными ячейками. В рамках предложенной модели дефектной структуры RBaCo₂O_{6-δ} (R = Y, Ho) рассматриваются следующие реакции.

Реакция 1:

$$V_0^{\bullet\bullet} + R_R^{\times} = (V_0^{\bullet\bullet} - R_R^{\times})^{\bullet\bullet}, \tag{7}$$

описывающая образование вакансии кислорода в слоях, содержащих редкоземельный элемент.

Реакция 2:

$$0_{o}^{\times} + 2Co_{Co}^{\times} = \frac{1}{2}O_{2} + V_{o}^{**} + 2Co_{Co}^{\prime},$$
(8)

определяющая выход кислорода из кристаллической решетки с одновременным восстановлением Co³⁺ до Co²⁺ (Co[×]_{Co} и Co²_{Co} в обозначении Крегера-Винка).

Учитывая условие электронейтральности и закон сохранения массы, можно составить следующую систему линейных уравнений:

$$\begin{cases} K_{1} = \frac{[(V_{0}^{**} - R_{R}^{*})^{**}]}{[V_{0}^{**}][R_{R}^{*}]} = K_{1}^{\circ} \cdot exp\left(-\frac{\Delta H_{1}^{\circ}}{RT}\right) \\ K_{2} = \frac{p_{0_{2}}^{\frac{1}{2}}[V_{0}^{**}][Co_{Co}^{*}]^{2}}{[O_{0}^{*}][Co_{Co}^{*}]^{2}} = K_{2}^{\circ} \cdot exp\left(-\frac{\Delta H_{2}^{\circ}}{RT}\right) \\ [Co_{Co}^{*}] = [Co_{Co}^{*}] = 2 \\ [V_{0}^{**}] + [(V_{0}^{**} - R_{R}^{*})^{**}] = \delta \\ [O_{0}^{*}] = 6 - \delta \\ 2[(V_{0}^{**} - R_{R}^{*})^{**}] + 2[V_{0}^{**}] = [Co_{Co}^{*}] + [Ba_{R}^{*}] \\ [R_{R}^{*}] = 1 - [(V_{0}^{**} - R_{R}^{*})^{**}] \\ [Ba_{R}^{*}] = 1 \end{cases}$$

$$(9)$$

Аналитическое решение данной системы приводит к следующему выражению:

$$\log(pO_2 / \text{atm}) = 2\log\left(\frac{2K_1K_2(6-\delta)(3-2\delta)^2}{(2\delta-1)^2B}\right),$$
(10)

где В = $K_1(\delta - 1) - 1 + \sqrt{K_1^2(\delta - 1)^2 + 2K_1(\delta + 1) + 1}$, K_1 и K_2 – термодинамические константы равновесия реакций (7) и (8), соответственно. В относительно узком исследованном температурном интервале стандартные энтальпии и энтропии рассматриваемых реакций дефектообразования можно считать независящими от температуры, что позволяет заменить K_1 и K_2 соответствующими температурными зависимостями:

$$K_{i} = exp\left(-\frac{\Delta H_{i}^{\circ}}{RT} + \frac{\Delta S_{i}^{\circ}}{R}\right),\tag{11}$$

где ΔH_i° и ΔS_i° – изменение энтальпии и энтропии *i*-ой реакции. Это, в свою очередь, дает возможность верифицировать модель дефектной структуры одновременно ко всему массиву экспериментальных данных $pO_2 = f(\delta, T)$. На рисунке 9 и в таблице 2 представлены результаты верификации предложенной модели дефектной структуры RBaCo₂O_{6-δ} (R = Y, Ho) методом нелинейной регрессии.

Рисунок 9 – Результаты анализа модели дефектной структуры согласно уравнению (10) для (а) YBaCo₂O_{6-δ} и (б) HoBaCo₂O_{6-δ}

Видно, что данная модель адекватно описывает экспериментальные данные по кислородной нестехиометрии HoBaCo₂O_{6-δ} и YBaCo₂O_{6-δ}, что подтверждается близким к единице коэффициентом детерминации R² и устойчивыми значениями энтальпий и энтропий реакций, имеющих незначительную случайную погрешность и сопоставимых с таковыми для других двойных перовскитов [18–20].

	Уравнение 7		Уравнение 8			
RBaCo ₂ O _{6-δ}	Δ <i>S</i> ₁ °, Дж/моль·К	Δ <i>H</i> ₁ °, кДж/моль	ΔS ₁ °, Дж/моль·К	Δ <i>H</i> ₁ °, кДж/моль	R ²	
YBaCo ₂ O _{6-δ}	-70±5	-197±7	86.3±3	199±4	0.997	
HoBaCo ₂ O _{6-δ}	-47±7	-173±9	57±5	172±5	0.996	

Таблица 2 – Энтальпии и энтропии реакций дефектообразования, полученные в результате модельного анализа дефектной структуры для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}

Парциальная мольная энтальпия кислорода в УВаСо2О6-6 и НоВаСо2О6-6

Парциальная мольная энтальпия кислорода для исследуемых двойных перовскитов была рассчитана в соответствии со следующим уравнением:

$$\Delta \bar{h}_0 = \left(\frac{R}{2} \frac{\partial \ln(pO_2)}{\partial (^1/_T)}\right)_{\delta}.$$
 (12)

Подставив зависимость $\log(pO_2) = f(T, \delta)$, полученную в результате верификации модельного уравнения (10), в уравнение (12), можно получить модельную зависимость $\Delta \bar{h}_0 =$ f(δ, T). Полученные экспериментальные данные по кислородной нестехиометрии были перестроены к виду $\ln(pO_2) = f(1/T)$ для постоянных значений δ . Если они линейны, то по уравнению (12)определяются экспериментальные зависимости $\Delta \bar{h}_{0} = f(\delta, T)$ при различных значениях δ . Соответствующие зависимости представлены на рисунке 10 и, как видно, результаты расчета двумя способами прекрасно согласуются друг с другом, что является дополнительным свидетельством релевантности предложенной модели дефектной структуры исследуемых двойных перовскитов. Из рисунка 10 также следует, что зависимости $\Delta \bar{h}_0 = f(\delta, T)$ для YBaCo₂O_{6- δ} и HoBaCo₂O_{6- δ} в пределах погрешности определения практически совпадают и демонстрируют перегиб в точке с $\delta = 1.0$, отображающий существенное изменение дефектной структуры исследуемых двойных перовскитов.

Рисунок 10 – Зависимость относительной парциальной мольной энтальпии кислорода от кислородной нестехиометрии для RBaCo₂O_{6-δ} (R = Y, Ho). Линии – расчет по модельному уравнению для дефектной структуры; символы – расчет из экспериментальных данных При $\delta < 1.0$ образование кислородных вакансий происходит исключительно в слоях, содержащих редкоземельный элемент, и соответствующие затраты энергии на протекание реакции (8) почти полностью компенсируются выигрышем энергии при образовании квазикластера ($V_0^{\bullet\bullet} - R_R^x$) по реакции (7), что и обуславливает небольшие отрицательные величины $\Delta \bar{h}_0$, наблюдаемые на рисунке 10 в указанной области. При $\delta = 1.0$ кислородные узлы в слоях, содержащих редкоземельный элемент, становятся полностью вакантными, и дальнейший выход кислорода осуществляется из кристаллографических позиций, соответствующих кислородным октаэдрам, подобно тому, как это осуществляется в простых кубических перовскитах. При этом реакция (7) не протекает и, следовательно, наблюдается скачкообразное смещение относительной парциальной мольной энтальпии кислорода в отрицательную область с последующим выходом на плато, соответствующее значениям энтальпии реакции (8) (см. рисунок 10 и таблицу 2).

Электропроводность YBaCo2O6-8 и HoBaCo2O6-8

Зависимость общей проводимости двойных перовскитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} от парциального давления кислорода при разных температурах в интервале их термодинамической стабильности показана на рисунке 11. Электропроводность данных соединений в исследованном интервале T и pO_2 , в котором они стабильны, изменяется несущественно: например, при 900°C в интервале $\log(pO_2/\text{атм}) = -0.67 - -4$ ее величина меняется в диапазоне $\sigma = 105.8 - 97.3$ См/см для YBaCo₂O_{6-δ} и 143.9 - 130.2 См/см в случае HoBaCo₂O_{6-δ}. Для сравнения, электропроводность GdBaCo₂O_{6-δ} в тех же условиях изменяется от 280 до 170 См/см [21]. Это объясняется тем фактом, что концентрация носителей заряда (Co⁺²) в двойных перовскитах RBaCo₂O_{6-δ} меняется с pO_2 по реакции (8). Поэтому наблюдаемое незначительное изменение проводимости для Y- и Ho-содержащих двойных перовскитов коррелирует с одновременным очень малым изменением содержания кислорода и, как следствие, - с несущественным увеличением концентрации Co'_{Co} в этих соединениях.

Рисунок 11 – Зависимость общей электропроводности YBaCo₂O_{6-δ} и НоBaCo₂O_{6-δ} от парциального давления кислорода при различных температурах

Уменьшение проводимости RBaCo₂O_{6- δ} (R = Y, Ho) с ростом температуры (рисунок 11) объясняется тем, что выход кислорода из их кристаллической решетки по реакции (8) ведет к уменьшению концентрации Co[×]_{Co} и, следовательно, к уменьшению количества позиций, доступных для перескока локализованных электронов Co[′]_{Co}, что, в конечном итоге, и приводит к наблюдаемому уменьшению электропроводности.

Из рисунка 11 следует, что электропроводность HoBaCo₂O_{6-δ} уменьшается с температурой сильнее, чем для YBaCo₂O_{6-δ}, что объясняется различными величинами энергии активации

проводимости данных соединений. Для расчета энергии активации данные, представленные на рисунке 11, были перестроены при фиксированных значениях pO_2 в координатах $\ln(\sigma T) - f(1/T)$ (рисунок 12). Линейной регрессией были определены величины энергии активации проводимости исследуемых соединений в зависимости от pO_2 , представленные на рисунке 13.

Рисунок 12 – Температурные зависимости общей проводимости HoBaCo₂O_{6-δ} (a) и YBaCo₂O_{6-δ} (б) при различных парциальных давлениях кислорода: символы – экспериментальные данные; линии – расчет по линейной регрессии

Рисунок 13 – Зависимость энергии активации проводимости от парциального давления кислорода для HoBaCo₂O_{6-δ} (a) и YBaCo₂O_{6-δ} (б)

Из рисунка 13 следует, что эффективная энергия активации проводимости исследуемых двойных перовскитов практически постоянна в диапазоне парциальных давлений кислорода - 0.67<log(pO_2/atm)<-2.5 и составляет $E_a = 0.070\pm0.007$ и 0.16±0.013 эВ для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, соответственно. Энергия активации проводимости является комплексной величиной, определяемой суммой энергии активации подвижности носителя заряда и энергии образования данного носителя заряда. Энергия образования носителя заряда Co'_{Co}, оцененная как полусумма энтальпий реакций, представленных в таблице 2, составила 0.01 и -0.005 эВ для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, соответственно. Полученные величины сопоставимы с погрешностью определения энергии активации проводимости, и в результате образование носителей заряда не вносит существенного вклада в определяемую величину E_a , которая практически полностью определяется энергией активации подвижности носителя заряда.

В восстановительной области, где 6-8<5.0, кислородные вакансии полностью заполняют слой R – O, и кислород выходит из других (октаэдрических) позиций кристаллической решетки RBaCo₂O_{6-δ}. Поэтому энергия образования носителей заряда Co_{Co} определяется как половина энтальпии реакции (8) (таблица 2). Тогда для HoBaCo₂O_{6-δ} энергия образования Co'_{Co} осставляет 86±1 кДж/моль (0.89±0.02 эВ), а для YBaCo₂O_{6-δ} – 99.5±1 кДж/моль (1.03±0.02 эВ). По этой причине на рисунке 13а заметно увеличение энергии активации проводимости HoBaCo₂O_{6-δ} при log(pO_2 /атм)<-2.5. Для YBaCo₂O_{6-δ} эта зависимость в явном виде не просматривается из-за более узкого интервала стабильности данного соединения и, как следствие, отсутствия необходимого количества данных по электропроводности ниже log(pO_2)<-2.5. Однако на рисунке 11 в этой области можно заметить, что кривые для

 $YBaCo_2O_{6-\delta}$ начинают расходиться, что косвенно указывает на увеличение энергии активации проводимости.

Энтальпия окисления и инкременты энтальпии УВаСо2О6-8

В настоящей работе для определения инкрементов энтальпии были приготовлены различные образцы YBaCo₂O₆₋₈. Образец с содержанием кислорода $6-\delta = 5.33$, был получен путем медленного охлаждения (100°C/час) с температуры 1000°C на воздухе, тогда как закаленные образцы были получены путем их предварительной выдержки при температурах в интервале 850-1050°C с шагом 50°C в течение 10 часов и последующей закалки на комнатную температуру. Методом дихроматометрического титрования было определено, что для всех закаленных образцов содержание кислорода составляет $6-\delta = 5.00\pm0.02$.

Значения инкрементов энтальпии для медленно охлажденного образца, полученные методом калориметрии сброса, показаны на рисунке 14, а также приведены в таблице 3.

Рисунок 14 – Приращения энтальпии образцов YBaCo₂O_{5.33} и YBaCo₂O_{5.0} в зависимости от температуры. Линиями показаны результаты аппроксимации уравнения Майера-Келли к экспериментальным точкам

YBaCo ₂ O _{5.33}		YBaCo ₂ O _{5.0}			
<i>Т</i> , К	<i>T</i> , °C	$\Delta_{298}^T H^\circ$,	<i>Т</i> , К	<i>T</i> , °C	$\Delta_{298}^T H^\circ$,
		кДж/моль			кДж/моль
1322.37	1049.22	285.8±4.0	1322.45	1049.3	261.86±4.8
1272.51	999.36	276.4±2.5	1272.39	999.24	243.11±4.2
1218.64	945.49	260.1±4.8	1222.61	949.46	230.77±4.6
1172.94	899.79	250.6±3.4	1172.64	899.49	219.80±2.8
1123.02	849.87	235.3±2.7	1122.64	849.49	202.50±4.0

Таблица 3 – Инкременты энтальпии для YBaCo₂O_{5.33} и YBaCo₂O_{5.0}

Для описания экспериментальных данных, полученных методом калориметрии сброса, было использовано уравнение Майера-Келли:

$$\Delta_{298}^T H^\circ = aT + bT^2 + \frac{c}{r} + d.$$
(13)

Аппроксимация уравнения (13) методом наименьших квадратов к инкрементам энтальпии для YBaCo₂O_{5.33} дает с коэффициентом детерминации R² = 0.992 следующее уравнение:

$$\Delta_{298}^{T} H^{\circ}_{YBaCo_{2}O_{5.33}} \left(\frac{\mathcal{A}_{\mathcal{K}}}{MOJL}\right) = [322 \pm 19] \cdot (T(K) - 298.15) - [0.0025 \pm 0.001] \cdot (T(K)^{2} - 298.15^{2}),$$
(14)

в то время как инкременты энтальпии для $YBaCo_2O_{5.0}$ по аналогичной процедуре были описаны с коэффициентом детерминации $R^2 = 0.988$ следующим уравнением:

$$\Delta_{298}^{T} H^{\circ}_{YBaCo_{2}O_{5.0}} \left(\frac{\Delta \pi}{MOJh}\right) = [205 \pm 27] \cdot (T(K) - 298.15) - [0.0030 \pm 0.001] \cdot (T(K)^{2} - 298.15^{2}).$$
(15)

Полученные уравнения хорошо описывают экспериментальные данные, что следует из близких к единице факторов детерминации, а также из того факта, что отклонение между рассчитанными и экспериментальными значениями энтальпий не превышает 3%. Следует отметить, что коэффициент *с* уравнения Майера-Келли в обоих случаях был принят равным нулю, поскольку в процессе минимизации он принимал малые значение с ошибкой определения, значительно превышающей величину самого параметра.

В величину инкремента энтальпии YBaCo₂O_{5.33} вносят вклад два фактора: во-первых, непосредственно нагрев вещества данного состава с комнатной температуры до температуры эксперимента *T*. Во-вторых, при данных температурах равновесным является меньшее содержание кислорода, поэтому свой вклад вносит также восстановление YBaCo₂O_{5.33} до состава YBaCo₂O_{5.0}. Поскольку получаемые инкременты энтальпии для YBaCo₂O_{5.33} из получаенных калориметрических данных нельзя. В случае образца YBaCo₂O_{5.0}, для которого, очевидно, восстановления не происходит, зависимость теплоемкости от температуры в диапазоне $850 \le T$, °C ≤ 1050 может быть получена как:

$$Cp(T) = \frac{d(\Delta_{298}^T H^\circ(T))}{dT},$$
(16)

что приводит к следующему уравнению:

$$C_p\left(\frac{A_{\rm W}}{_{\rm MORb\cdot K}}\right) = [205 \pm 27] - [0.006 \pm 0.002] \cdot T({\rm K}).$$
 (17)

Измеренные нами значения энтальпий нагрева различных по кислороду составов YBaCo₂O_{6-δ} позволяют определить среднюю энтальпию окисления от одного состава по кислороду до другого при комнатной температуре. Для этого был составлен термодинамический цикл, содержащий процессы, приведенные в таблице 4.

Описание	Реакция	Энтальпия
Нагрев медленно охлажденного образца YBaCo ₂ O _{6-δ1} от комнатной температуры до температуры <i>T</i> . δ_1 =0.67, δ_2 – равновесное при температуре <i>T</i> значение нестехиометрии.	$YBaCo_2O_{6-\delta_1}^{298} = YBaCo_2O_{6-\delta_2}^{T} + \frac{\delta_2 - \delta_1}{2}O_2^{T}$	ΔH°_{1}
Нагрев закаленного образца YBaCo ₂ O ₆₋₈₂ от комнатной температуры до температуры <i>T</i> .	$YBaCo_2O_{6-\delta_2}^{298} = YBaCo_2O_{6-\delta_2}^{T}$	$\Delta H^{\circ}{}_2$
Нагрев газообразного кислорода от комнатной температуры до температуры <i>T</i> .	$0_2^{298} = 0_2^T$	ΔH°_{3}
Окисление YBaCo ₂ O _{5.0} до состава YBaCo ₂ O _{6-δ1} .	$YBaCo_2O_{6-\delta_2}^{298} + \frac{\delta_2 - \delta_1}{2}O_2^{298}$ = YBaCo_2O_{6-\delta_1}^{298}	$\Delta H^{\circ}{}_4$

Таблица 4 – Термодинамический цикл для расчета средней энтальпии окисления YBaCo₂O_{6-δ}

Из таблицы 4 следует, что энтальпии ΔH°_1 и ΔH°_2 соответствуют экспериментально определенным инкрементам энтальпии медленно охлажденного образца и закаленного образца, соответственно. Комбинируя приведенные в таблице 4 реакции, можно рассчитать среднюю мольную энтальпию окисления YBaCo₂O_{5.0} до YBaCo₂O_{5.33} при комнатной температуре:

$$\Delta_{298}^{T} H^{\circ}{}_{ox} = \frac{\Delta H^{\circ}{}_{4}}{\delta_{2} - \delta_{1}} = \Delta H^{\circ}{}_{2} - \Delta H^{\circ}{}_{1} + \frac{\delta_{2} - \delta_{1}}{2} \Delta H^{\circ}{}_{3}.$$
(18)

Значения ΔH°_4 были рассчитаны для каждой пары точек инкрементов энтальпии при всех измеренных температурах, таким образом было определено среднее значение мольной энтальпии окисления YBaCo₂O_{5.0} до YBaCo₂O_{5.33} при 25°C, оно составило $\Delta_{298}^{T}H^{\circ}_{ox} = -83 \pm 18$ кДж/моль.

ЗАКЛЮЧЕНИЕ

На основании проделанной работы можно сделать следующие выводы:

1. Показано, что ключевую роль в синтезе двойных перовскитов иттрия и гольмия играет термодинамическая стабильность кобальтита РЗЭ - RCoO₃. В связи с этим, процесс синтеза YBaCo₂O_{6-δ} следует вести на воздухе при температурах не выше 900°С и в атмосфере чистого кислорода – не выше 1000°С. В случае HoBaCo₂O_{6-δ} оптимальной температурой синтеза на воздухе является 1000°С, а в атмосфере чистого кислорода - 1150°С.

кулонометрического титрования, 2. Метолом а также метолом измерения электропроводности определены границы термодинамической устойчивости двойных перовскитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}. Методом РФА продуктов разложения были определены реакции, протекающие на этих границах. Было показано, что границы термолинамической устойчивости данных соединений по отношению к окислению близки друг к другу, а протекающие на них реакции аналогичны. По отношению к восстановлению оксид HoBaCo₂O_{6-б} является более устойчивым, чем его иттрий-содержащий аналог, и разложение Ү- и Но-содержащего двойного перовскита на этой границе устойчивости происходит по различным реакциям. Показано, что кобальтиты YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} являются устойчивыми на воздухе только при температурах выше 850°С и 871°С, соответственно, однако могут быть получены в метастабильном состоянии при температуре ниже 700°С.

3. Методом термогравиметрического анализа определены зависимости кислородной нестехиометрии двойных перовскитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} от температуры на воздухе. Было показано, что изменения содержания кислорода в изучаемых сложных оксидах на воздухе в исследованном интервале температур близки друг к другу. Методом кулонометрического титрования были определены зависимости кислородной нестехиометрии изученных сложных оксидов от температуры и парциального давления кислорода в области их термодинамической устойчивости. На основе полученных данных были построены их равновесные $pO_2 - T - \delta$ диаграммы.

4. Изучена зависимость общей электропроводности YBaCo₂O₆₋₈ и HoBaCo₂O₆₋₈ от парциального давления кислорода и температуры в области термодинамической стабильности данных соединений. Показано, что проводимость иттрий- и гольмий-содержащего двойного перовскита достаточно велика для успешного применения данных материалов в ТОТЭ. Были определены энергии активации общей электропроводности для

изучаемых двойных перовскитов. Показано, что в интервале $pO_2 = 0.21 - 10^{-2.5}$ атм энергия образования носителей заряда не вносит существенного вклада в энергию активации проводимости, и последняя полностью определяется энергией активации подвижности носителя заряда и составляет 0.070 ± 0.007 эВ и 0.16 ± 0.013 эВ для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, соответственно. При $pO_2 \le 10^{-2.5}$ атм и вплоть до границы термодинамической устойчивости происходят существенные изменения в процессах разупорядочения в кристаллической решетке данных соединений, связанные с образованием свободных вакансий вне слоев, содержащих РЗЭ, что приводит к увеличению энергии образования носителей заряда и, как следствие, увеличению энергии активации проводимости YBaCo₂O_{6-δ}.

5. Предложены модели дефектной структуры для кобальтитов YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ}, в рамках которых выведены модельные зависимости log(pO_2/a тм) = f(δ , T). Верификацией этих уравнений на основе экспериментальных данных по кислородной нестехиометрии показано, что модель, учитывающая отсутствие электронных дырок (Co⁺⁴) в изученных двойных перовскитах, является наиболее адекватной, так как описывает экспериментальные данные с коэффициентами детерминации, близкими к единице, а полученные в результате верификации энтальпии и энтропии соответствующих реакций дефектообразования имеют малую ошибку определения и обладающие физическим смыслом значения.

6. Определены зависимости парциальной мольной энтальпии кислорода от HoBaCo2O6-8 кислородной нестехиометрии для YBaCo₂O_{6-δ} и в области их термодинамической стабильности. Было показано, что зависимости парциальной мольной энтальпии кислорода от состава исследуемых образцов в пределах погрешности определения практически одинаковы и демонстрируют перегиб в точке с $\delta = 1.0$. Это связано с тем, что при переходе через эту область составов происходит существенное изменение в процессах разупорядочения кристаллической решетки двойных перовскитов YBaCo₂O₆₋₈ и HoBaCo₂O₆₋₈. Показано, что при значениях кислородной нестехиометрии $\delta \leq 1$ в исследованном диапазоне температур сложные оксиды YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} имеют наименее отрицательную, близкую к нулю, парциальную мольную энтальпию кислорода по сравнению с двойными перовскитами RBaCo₂O_{6- δ} (R = Gd, Pr), содержащими большие по радиусу РЗЭ.

7. Методом высокотемпературной калориметрии сброса были определены инкременты энтальпии образцов YBaCo₂O_{5.0}, YBaCo₂O_{5.33}. Для сложного оксида с составом по кислороду $6-\delta = 5.0$ была рассчитана зависимость теплоемкости от температуры в интервале его термодинамической устойчивости. Кроме того, была определена энтальпия окисления cocraва YBaCo₂O_{5.0} в YBaCo₂O_{5.33} при комнатной температуре. Было показано, что энтальпия окисления YBaCo₂O_{6- δ} менее отрицательна, чем для Pr- или Gd-содержащих двойных перовскитов, что свидетельствует о том, что окисление кобальтита иттрия бария – менее выгодный с термодинамической точки зрения процесс, чем окисление его аналогов, содержащих большие по размеру P3Э.

Таким образом, в настоящей работе были впервые определены термодинамические свойства соединений RBaCo₂O_{6-δ} (R = Y, Ho) и установлены взаимосвязи физико-химических свойств с дефектной структурой данных сложных оксидов в интервале их термодинамической устойчивости.

Анализируя полученные в настоящей работе результаты, можно заключить, что физикохимические свойства YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} достаточно близки друг к другу, что, по всей видимости, связано с близостью ионных радиусов Ho³⁺ и Y³⁺. Двойные перовскиты, содержащие P3Э с маленьким радиусом, такие как Y и Ho, в отличие от их аналогов с большими по размеру P3Э (Pr, Nd, Sm, Gd), являются термодинамически стабильными только при высоких температурах, имеют узкие интервалы устойчивости и обладают гораздо меньшей электропроводностью (однако достаточной для их применения в качестве катодов в ТОТЭ). Маленькие по абсолютной величине значения парциальной мольной энтальпии кислорода для YBaCo₂O_{6-δ} и HoBaCo₂O_{6-δ} обуславливают их небольшую склонность к окислению и в результате для них характерна узкая, в разы меньшая по сравнению с аналогичными двойными перовскитами область гомогенности по кислороду. Это, в свою очередь, приводит к тому, что концентрация ионов Co⁺⁴ в них пренебрежимо мала, а реакция диспропорционирования Co⁺³ не вносит заметного вклада в их разупорядочение, в отличие от двойных перовскитов с большими по размеру P3Э.

Цитируемая литература

1. Moure C. Recent advances in perovskites: Processing and properties / C. Moure, O. Peña // Prog. Solid State Chem. – 2015. – Vol. 43. – № 4. – P. 123-148.

2. Kim J.-H. LnBaCo₂O_{5+δ} Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells / J.-H. Kim, A. Manthiram // J. Elect Soc. – 2008. – Vol. 155. – № 4. – P. B385-B390.

3. Structural characterisation of REBaCo₂O_{6-δ} phases (RE=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) / P.S. Anderson [et al.] // Solid State Sci. – 2005. – Vol. 7. – № 10. – P. 1149-1156.

4. Kim J.-H. Layered LnBaCo₂O_{5+ δ} perovskite cathodes for solid oxide fuel cells: an overview and perspective / J.-H. Kim, A. Manthiram // J. Mat Chem. A. – 2015. – Vol. 3. – Nº 48. – P. 24195-24210.

5. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites $LnBaCo_2O_{5+\delta}$, Closely Related to the "112" Structure / A. Maignan [et al.] // J. Solid State Chem. – 1999. – Vol. 142. – P. 247-260.

6. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review / R. Pelosato [et al.] // J. Power Sources. – 2015. – Vol. 298. – P. 46-67.

7. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba–Co–O system / A.S. Urusova [et al.] // J. Solid State Chem. – 2013. – Vol. 202. – P. 207-214.

8. Liu Y. YBaCo₂O_{5+ δ} as a new cathode material for zirconia-based solid oxide fuel cells / Y. Liu // J Alloys and Comp. – 2009. – Vol. 477. – No 1-2. – P. 860-862.

9. Кропанев А.Ю. Термическая устойчивость кобальтитов LnCoO₃ на воздухе (Ln-Sm,Eu,Gd,Tb,Dy,Ho) / Кропанев А.Ю., Петров А.Н. // Неорг. матер. – 1983. – Vol. 19. – № 12. – Р. 2027-2030.

10. Кропанев А.Ю. Термические свойства кобальтитов редкоземельных элементов состава RCoO₃ / Кропанев А.Ю., Петров А.Н. // Ж. физ. химии. – 1984. – Vol. 1. – № 58. – Р. 50-53.

11. Overcoming phase instability of $RBaCo_2O_{5+\delta}$ (R=Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells / J.-H. Kim [et al.] // Solid State Ion. – 2013. – Vol. 253. – P. 81-87.

12. Electrical characterization of co-precipitated LaBaCo₂O_{5+ δ} and YBaCo₂O_{5+ δ} oxides / R. Pelosato [et al.] // J. Europ. Ceram. Soc. – 2014. – Vol. 34. – Nº 16. – P. 4257-4272.

13. Akahoshi D. Oxygen Nonstoichiometry, Structures, and Physical Properties of $YBaCo_2O_{5+x} (0.00 \le x \le 0.52) / D$. Akahoshi, Y. Ueda // J. Solid State Chem. – 2001. – Vol. 156. – No 2. – P. 355-363.

14. Diaz-Fernandez Y. Effect of oxygen content on properties of the HoBaCo₂O_{5+ δ} layered cobaltite / Y. Diaz-Fernandez, L. Malavasi, M.C. Mozzati // Physical Review B. – 2008. – Vol. 78. – Nº 14. – P. 144405.

15. Structure and magnetism of HoBaCo₂O_{5+ δ} layered cobaltites with 0.02 $\leq \delta \leq 0.22$ / L. Malavasi [et al.] // Solid State Commun. – 2008. – Vol. 148. – No 3-4. – P. 87-90.

16. Jørgensen, Simon Lindau. Synthesis and Properties of $YBaCo_2O_{5+\delta}$ for Solid Oxide Fuel Cell Cathodes. MS thesis. NTNU, 2016.

17. Oxygen content and thermodynamic stability of $YBaCo_4O_{7\pm\delta}$ / D.S. Tsvetkov [et al.] // Solid State Ion. – 2015. – Vol. 278. – P. 1-4.

18. Tsvetkov D.S. Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo₂O_{6- δ} / D.S. Tsvetkov, V.V. Sereda, A.Yu. Zuev // Solid State Ion. – 2010. – Vol. 180. – Nº 40. – P. 1620-1625.

19. Oxygen content, cobalt oxide exsolution and defect structure of the double perovskite $PrBaCo_2O_{6-\delta} / D.S.$ Tsvetkov [et al.] // J. Mater. Chem. A. $-2016. - Vol. 4. - N_{2} 5. - P. 1962-1969.$

20. Preparation, oxygen nonstoichiometry and defect structure of double perovskite $LaBaCo_2O_{6-\delta}$ / D.A. Malyshkin [et al.] // Mater. Letters. – 2018. – Vol. 229. – P. 324-326.

21. Chemical diffusivity and ionic conductivity of $GdBaCo_2O_{5+\delta}$ / M.-B. Choi [et al.] // J. Power Sources. - 2010. - Vol. 195. - N_{2} 4. - P. 1059-1064.

Основное содержание диссертации изложено в следующих публикациях:

Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК и Аттестационным советом УрФУ:

1. Redox energetics and enthalpy increments of GdBaCo₂O_{6- δ} / D.S. Tsvetkov, A.L. Sednev-Lugovets, V.V Sereda, D.A. Malyshkin, I.L. Ivanov, A.Yu. Zuev // Thermochimica Acta. – 2020. – Vol. 686. – Р. 178562. (0.38 п.л. / 0.06 п.л.) Scopus.

2. Double perovskites REBaCo₂O_{6-δ} (RE=La, Pr, Nd, Eu, Gd, Y; M=Fe, Mn) as energyrelated materials: an overview / D.S. Tsvetkov, I.L. Ivanov., D.A. Malyshkin; A.L. Sednev-Lugovets; V.V. Sereda, A.Yu. Zuev // Pure Applied Chemistry – 2019. – Vol. 91. – № 6. – Р. 923-940. (1.13 п.л. / 0.188 п.л.) Scopus, Web of Science.

3. Enthalpy increments and redox thermodynamics of SrFeO_{3- δ} / V.V. Sereda, A.L. Sednev, D.S. Tsvetkov, A.Yu. Zuev // Journal of Materials Research. – 2019. – P. 1-8. (0.5 п.л. / 0.125 п.л.) Scopus, Web of Science.

4. Thermodynamics of Sr₂NiMoO₆ and Sr₂CoMoO₆ and their stability under reducing conditions / V.V. Sereda, D.S. Tsvetkov, A.L. Sednev, A.I. Druzhinina, D.A. Malyshkin, A.Yu. Zuev // Physical Chemistry Chemical Physics. – 2018. – Vol. 20. – № 30. – P. 20108-20116. (0.562 п.л. / 0.09 п.л.) Scopus, Web of Science.

5. Oxygen Content and Thermodynamic Stability of YBaCo₂O_{6- δ} Double Perovskite / A.L. Sednev, A.Y. Zuev, D.S. Tsvetkov // Advances in Materials Science and Engineering – 2018. – Vol. 2018. – P. 1205708. (0.375 п.л. / 0.125 п.л.) Web of Science.

6. Study and optimization of the synthesis routine of the single phase YBaCo₂O_{6- δ} double perovskite / A.L. Sednev, D.S. Tsvetkov // Chimica Techno Acta. – 2017. – Vol. 4. – No 3. – P. 183-190. (0.438 п.л. / 0.219 п.л.) Chemical Abstracts

Другие публикации:

7. Sednev A.L., Tsvetkov D.S, Ivanov I.L., Malyshkin D.A., Sereda V.V., Zuev A.Yu. Heat increments and oxidation enthalpies of (Y,Pr,Gd)BaCo₂O₆₋₈ double perovskites // Nonstoichiometric compounds VII, Japan, Miyazaki, 2019. (0.06 п.л./0.01 п.л.)

8. Седнев А.Л., Цветков Д.С., Зуев А.Ю. Дефектная структура сложных оксидов RBaCo₂O_{6-δ} (где R = Y, Ho) // Проблемы теоретической и экспериментальной химии, Россия, Екатеринбург, 2018. – С.315-316. (0.06 п.л./0.02 п.л.)

9. Sednev A.L., Tsvetkov D.S, Zuev A.Yu. Thermochemistry of YBaCo₂O_{6- δ} // 16th IUPAC Conference on high temperature materials Chemisty, Russia Yekaterinsburg, 2018. – p. 31. (0.06 п.л./0.02 п.л.)

10. Tsvetkov D.S., Sednev A.L., Telegin S.V, Ivanov I.L., Malyshkin D.A., Sereda V.V., Tsvetkova N.S., Yagovitin R.E., Zuev A.Yu. Double perovskites LnBaCo₂O_{6-δ} as energy materials: an overview // 16th IUPAC Conference on high temperature materials Chemisty, Russia, Yekaterinsburg, 2018. – p. 261. (0.06 п.л./0.007 п.л.)

11. Седнев А.Л., Цветков Д.С., Зуев А.Ю. Электрохимические свойства HoBaCo₂O₆₋₆ // Первая международная конференция по интеллектоемким технологиям в энергетике; физическая химия и электрохимия расплавленных и твердых электролитов, Россия, Екатеринбург, 2017. – с. 661-662. (0.06 п.л./0.02 п.л.)

12. Tsvetkov D.S., Sednev A.L., Ivanov I.L., Malyshkin D.A., Zuev A.Yu. Defect Structure and Related Properties of RBaCo₂O_{6-δ} (where R=Y or Ho) // 21th International Conference on Solid State Ionics, Italy, Padua, 2017. – p. 585. (0.05 п.л./0.01 п.л.)

13. Sednev A.L, Tsvetkov D.S., Zuev A.Yu. Defect structure and related properties of YBaCo₂O_{6- δ} // IX International conference of young scientists on chemistry "Mendeleev- 2015", Russia, Saint Petersburg, 2015. – p. 119. (0.06 п.л./0.02 п.л.)

14. Tsvetkov D.S., Sednev A.L., Ivanov I.L., Malyshkin D.A., Zuev A.Yu. Defect Structure and Related Properties of YBaCo₂O_{6- δ} // 20th International Conference on Solid State Ionics, USA, Colorado, 2015. – р. 84. (0,05 п.л./0,01 п.л.)

15. Tsvetkov D.S., Sednev A.L., Ivanov I.L., Malyshkin D.A., Zuev A.Yu. Defect structure and related properties of YBaCo₂O₆₋₈ // 15th European Conference on Solid State Chemistry, Vienna, Austria, 2015. – p. 90. (0.05 п.л./0.01 п.л.)

Подписано в печать 11.09.2020 г. Формат 60х84 1/16. Бумага офсетная. Усл. печ. л. 1.5. Тираж 120 экз. Заказ № 113. Отпечатано: 620075, г. Екатеринбург, ул. Красноармейская, 66 Центр оперативной печати ООО ПолиПринт