Патрушев Максим Владимирович

ФУНКЦИОНИРОВАНИЕ МИТОХОНДРИАЛЬНОЙ ДНК ПРИ ДЕЙСТВИИ ГЕНОТОКСИЧЕСКИХ АГЕНТОВ

03.00.03. - молекулярная биология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук

ПУЩИНО - 2006

Научный руководитель	:	
Кандидат биол	огических наук	Ушакова Т.Е.
Официальные оппонен	ты:	
доктор биолог	ических наук, профессор	Матвиенко Н.И.
доктор химиче	ских наук, профессор	Брусков В.И.
Ведущая организация:		
Филиал Инсти Овчинникова РАН	тута биоорганической химии и	м. акад. М.М. Шемякина и Ю.А.
	итуте биофизики клетки РАН п	
142290, Московская об	ласть, г.Пущино, ул. Институт	ская, 3, ИБК РАН.
	ознакомиться в центральной б бласть, г.Пущино, ул. Институт	библиотеке НЦБИ РАН по адресу ская, 3, ИБК РАН.
Автореферат разослан	2	2006r.

кандидат биологических наук МС Стор Смолихина Т.И.

Ученый секретарь диссертационного совета:

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

За последние 20-30 лет сложились основные представления о структуре мтДНК, процессах ее репликации и транскрипции (Fernandez-Silva et al., 2003). В настоящее время установлено, что подавляющее большинство митохондриальных белков кодируется в ядре, синтезируется в цитоплазме в виде предшественников и импортируется в митохондрии (Гьотга et al., 2004). Собственно митохондриальный геном кодирует лишь небольшое число пептидов-компонентов системы окислительного фосфорилирования, в процессе которого синтезируется АТФ (Attardi and Shatz, 1988). Митохондриальный геном заметно отличается от ядерного: мтДНК имеет кольцевую форму, несколько отличный генетический код, наследуемость по материнской линии, полиплоидность, и транскрибируется единым полицистронным блоком.

Несмотря на относительную автономность и изолированность этой макромолекулы, ядерный геном многих видов растений и животных содержит участки с полной гомологией к фрагментам мтДНК. Например, у человека найдено несколько тысяч митохондриальных псевдогенов, равномерно распределенных по всем хромосомам (Woischnik et al., 2002). Считается, что это следствие эволюционного процесса, в ходе которого шел перенос мтДНК в ядро. Более того, в настоящее время появились свидетельства того, что спонтанные вставки фрагментов мтДНК в ядерный геном могут привести к дисфункции генов (Turner et al., 2003).

К началу настоящего исследования в литературе практически не обсуждался факт выхода фрагментов мтДНК из митохондрий. Существовало лишь единственное предположение о возможности такого процесса, выдвинутое Д.Б. Зоровым [Zorov et al., 1997). Тем не менее, было известно, что мтДНК, находясь в непосредственной близости от электрон-траспортной цепи, постоянно подвергается атакам сводных радикалов, приводящих к различного рода повреждениям митохондриального генома. Такие повреждения выражаются, как правило, модификациями оснований, одно- или двунитевыми разрывами. Неэффективность систем репарации, постоянные атаки свободных радикалов приводят к тому, что в митохондриях возникают разные по размерам молекулы мтДНК, способные замыкаться в кольцо - явление гетероплазмии. Если такое кольцо содержит область регуляции транскрипции/репликации, то данная молекула, хотя и потеряла часть генома, способна к репликации и транскрипции. Образование делеций мтДНК показано огромным количеством авторов, однако до настоящего времени не изучен механизм их образования и, что происходит с фрагментами мтДНК, неспособными к главное, ясно. не функционированию.

Процессы репликации, транскрипции, степень фрагментации мтДНК в условиях окислительного стресса также все еще остаются недостаточно изученными, несмотря на то, что роль митохондрий широко обсуждается в процессах программируемой клеточной гибели, клеточных патологий, в канцерогенезе. В связи с этим исследование функционирования мтДНК при действии генотоксических агентов — индукторов окислительного стресса (рентгеновское, γ-облучение) является не только оправданным, но и чрезвычайно актуальным.

Цель исследования.

Целью настоящей работы является исследование функционирования митохондриальной ДНК клеток головного мозга и селезенки при действии генотоксических агентов.

Основные задачи исследования.

- 1. Исследование процессов репликации и транскрипции мтДНК клеток головного мозга и селезенки мышей в условиях окислительного стресса, вызванного рентгеновским и гамма облучением, а также действием питостатического антибиотика блеомицина.
- Исследование процессов фрагментации мтДНК в клетках головного мозга при облучении мышей.
- 3. Выявление роли эндонуклеазы G при фрагментации мтДНК в условиях окислительного стресса.
- Тестирование цитозольной фракции клеток головного мозга мышей и среды инкубации митохондрий в модельных системах на наличие фрагментов мтДНК.
- 5. Исследование процессов выхода фрагментов мтДНК из органеллы, сохраняющей свои нативные физиологические характеристики.

Научная новизна работы.

Настоящее исследование существенно расширяет современные представления о процессах репликации, транскрипции и повреждении мтДНК в условиях окислительного стресса. В данной работе приведены количественные оценки изменений указанных процессов в разных по радиочувствительности тканях (головной мозг и селезенка) мышей при рентгеновском и гамма-облучении, а также при действии цитостатического антибиотика блеомицина. Обнаружено, что вне зависимости от радиочувствительности ткани, изменения транскрипции мтДНК в условиях окислительного стресса носят универсальный характер. На фоне активации процессов репликации и транскрипции мтДНК в данных тканях происходит резкое снижение «дозы гена», в частности гена nd4, в результате процессов фрагментации мтДНК и появления крупных делеций. Исследована

роль митохондриальной неспецифической эндонуклеазы G в процессах фрагментации мтДНК.

Впервые зарегистрирован факт выхода фрагментов мтДНК из митохондрий, сохраняющих все функциональные характеристики, при участии РТР, что само по себе играет исключительно важную роль, поскольку расширяет современные представления о процессах, происходящих в митохондриях.

Научно-практическая ценность.

Фрагментация мтДНК, снижение «дозы определенного гена», появление фрагментов мтДНК в цитозоле клеток может быть в перспективе использовано при оценке генотоксическго груза при радиационных авариях, проведении курса радио- химиотерации онкологических больных, изучении нейродегенеративных болезней человека.

Способ количественной оценки экспрессии митохондриальных генов, с применением 2-х факторов нормализации: мРНК ядерных генов и собственно митохондриальных генов может использоваться при исследовании самых разнообразных научных проблем.

Апробация диссертации.

Материалы диссертации были представлены на 8-ой и 10-ой Пущинских школах-конференциях молодых ученых (Пущино, 2004, 2006 гг.); на V съезде по радиационным исследованиям (Москва, 2006 г.); на 35-ой конференции Европейского общества радиационных исследований (ERRS) (Киев, 2006 г.).

Публикации.

Основные результаты диссертации опубликованы в 10 печатных работах, из них 4 статьи в реферируемых журналах.

Структура и объем диссертации.

Диссертационная работа изложена на страницах с использованием 31 рисунок и включаст: введение, обзор литературы, материалы и методы исследования, собственные экспериментальные данные и их обсуждение, заключение и выводы. Список литературы содержит 270 ссылок.

материалы и методы

Все экспериментальные данные, описанные в работе, получены на мышах линий BALB/с и C57bl, содержащихся в стандартных условиях вивария ИТЭБ РАН.

Облучение в дозах 3, 5, 8, 10 Гр проводили на установке ГУБЕ (Со), мощность облучения - 1.8 Гр/мин, и на установке РУТ 250-15-1, мощность облучения 2 Гр/мин. Через определенные сроки после облучения (10 минут, 1час, 5часов, 24 часа, 48 часов, 72

часа, 1неделя, 3 недели) мышей декапитировали, извлеченные ткани (печень, мозг, селезенка) промывали холодным физ. раствором и использовали в экспериментах.

Митохондрии выделяли из головного мозга и селезенки мышей, согласно описанному методу [Brustovetsky and Dubinsky 1999], в среде выделения [СВ], содержащей: машиит- 225 мМ, сахароза- 75 мМ, ЭГТА-1 мМ, бычий сывороточный альбумии (БСА)- 0.1%, HEPES- 10 мМ, pH-7.4.

Измерения $\Delta \Psi$ -т проводили с использованием флуоресцентного зонда Rhodamine 123 [Еташs et al 1986]. Длина волны возбуждения флуоресценции зонда составляет 488 нм, длина волны регистрации флуоресценции составляет 525 нм. Концентрация зонда - 1мкМ. При соотношении концентрации зонда 1 мкМ/1мг митохондриального белка/1мл наблюдается линейная зависимость изменений интенсивности флуоресценции зонда от изменений $\Delta \Psi$ -т на участке от 200 до 50 мВ и в таких концентрациях Rhodamine 123 абсолютно не влияет на параметры $\Delta \Phi$.

Выделение иуклеиновых кислот. Выделение ДНК производили фенолхлороформной экстракцией с последующим спиртовым осаждением. Выделение РНК осуществляли по методу, описанному Хомчинским и Сачи (Chomczynski and Sacchi, 1987).

Для точной количественной оценки содержания фрагментов нуклеиновых кислот использовали **ПЦР-РВ** (для оценки количества ДНК) и **ОТПЦР-РВ** (для оценки количества мРНК). ПЦР-РВ и ОТПЦР-РВ проводили с использованием систем для детекции ПЦР — продуктов в реальном времени- IQ5 (Віо-Rаd). Система ПЦР-РВ и ОТПЦР-РВ включала технологию Тафмап, основанную на 5'-экзонуклеазной активности *Таф*-полимеразы. Зонды были помечены флуорофором на 5' конце и тушителем на 3' конце. Все реакции ПЦР-РВ проводились в буфере, содержащем 10мМ Tris-HCl pH 8.3, 50 мМ КСl, 0,25 мМ dNTPs, 2,5 мМ Mg²⁺, 300 нМ каждого праймера (Таблица 1) и 150 нМ каждого зонда, 1,5 ед. Таф-полимеразы.

Таблица 1.. Праймеры и зонды для ПЦР-РВ и ОТПЦР-РВ

Название	Последовательность	
	5'-3'	
ND4 FOR 10558	ATTATTACCCGATGAGGGAACC	
ND4 REV 10667	ATTAAGATGAGGGCAATTAGCAGT ·	
ND4 PROBE 10590	ROX-ACGCCTAAACGCAGGGATTTATTTCCTA-QUENCHER	
COX2 FOR 7309	CATAGGGCACCAATGATACTGAA	
COX2 REV 7408	TTCACCAGGTTTTAGGTCGTTT	
COX2 PROBE 7342	Cy5-TACTGACTATGAAGACCTATGCTTTGAT-QUENCHER	
ND6 FOR	CCCAGCTACTACCATCATTCAAGT	
ND6 REV	GATGGTTTGGGAGATTGGTTGATGT	
ND6 PROBE	R6G-GTTGCCGCTACCCCAATCCCTCCTTCCAACA- QUENCHER	
GAPDH For	GTGAGGGAGATGCTCAGTGT	
GAPDH Rev	CTGGCATTGCTCTCAATGAC	
GAPDH Probe	FAM-TAAGAAACCCTGGACCACCCACCCC- QUENCHER	
BETA-ACTIN FOR	AGCCATGTACGTAGCCATCCA	
BETA-ACTIN REV	TCTCCGGAGTCCATCACAATG	

BETA-ACTIN PROBE	TexasRed-TGTCCCTGTATGCCTCTGGTCGTACCAC-QUENCIIER
Endo 1 - Rev	AATGTGAGTCAGCCCATCTC
Endo 1 - For	ATCAGTAGCGTCCTTGTCCT
Endo 1 Probe	ROX-CAACCAGAATGCCTGGAACAACCTT-BHQ2

Для относительной количественной оценки мРНК использовался мегод, предложенный М.W.Pfaffl. (М.W. Pfaffl, 2001): $R = E^{-\Delta\Delta Ct}$ где R – относительная экспрессия гена, $\Delta\Delta Ct = \Delta Ct_{\text{пыт}}$ – $\Delta Ct_{\text{контроль}}$, $\Delta Ct = Ct_{\text{мит кЛНК}}$ – $\Delta Ct_{\text{я кЛНК}}$.

Определение нуклеазной активности митохондриального матрикса клсток головного мозга и селезенки мышей. Митохондрии, выделенные из контрольных и облученных животных, лизировали в буфере (10 мМ Tris HCl, pH 7.4). После осаждения нерастворившихся частиц при 10000 g в течение 10 мин, 10 мкл лизата инкубировали с 5 мкг высокомолекулярной ДНК тимуса теленка в течение 12 час при 37°С в буфере, содержащем 10мМ Tris-HCl pH 7.4, 50 мМ КСl, 2мМ MgCl₂, 2мМ CaCl₂. В присутствии 3 мМ ЭДТА нуклеазная активность митохондриального матрикса не проявлялась. Визуализация проводилась при помощи электрофоретического разделения в агарознем геле.

Активность цитратсинтазы определяли методом Срере [Srere, 1969].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

<u>Количество копий мтДПК в клетках головного мозга и селезенки контрольных</u> мышей.

На рис.1 приведены результаты исследования количества копий мтДНК в тканях контрольных мышей. Видно, что в клетках селезенки показатели разницы критических циклов Δ Ct лежат в пределах 8,5 - 10,15, что составляет превышение мтДНК над яДНК в $10^{3.2}-10^{3.4}$ копий, т.е., на 1 копию гена яДНК приходится, в среднем $10^{3.3}$, что соответствует 1995 копиям мтДНК. В клетках головного мозга, как можно видеть на этом же рисунке, количество мтДНК заметно ниже. Значения Δ Ct, лежащие в диапазоне 2,5 - 4,5, соответствуют превышению генов мтДНК над генами яДНК на $10^{1.35}-10^{2.2}$ молекул, соответственно, в среднем $10^{1.77}$, иными словами, на 1 однокопейный ген яДПК приходится приблизительно 60 копий мтДНК. Учитывая тот факт, что все структурные гены мтДНК являются однокопийными, можно заключить следующее: в одной клетке селезенки содержится, в среднем, 2000 копий мтДНК, в одной клетке головного мозга — 60 копий. Однако, учитывая гетерогенную популяцию клеток головного мозга, данное усреднение носит приближенный характер.

Рис.1 Уровень мтДНК в клетках головного мозга и селезенки контрольных мышей. Амплификация фрагмента гена *nd6*, нормализация по *gapdh*.

<u>Репликация мтДНК в клетках головного мозга и селезенки при гамма – облучении</u> мышей.

Известна чрезвычайно высокая степень повреждения мтДНК при действии ионизирующих излучений. В данной работе исследовались процессы репликации мтДНК в клетках головного мозга и селезенки мышей в условиях повреждения матрицы.

На рис.2 приведены результаты исследования процессов репликации мтДНК клеток головного мозга и селезенки при гамма- облучении мышей в дозе 5 Гр.

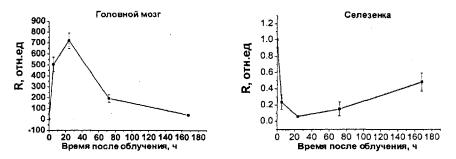


Рис. 2 Уровень репликации мтДНК в клетках головного мозга и селезенки мышей при облучении *in vivo* в дозе 5 Гр. R≈1 - уровень репликации контрольных мышей.

Количество копий мтДНК в клетках головного мозга мышей после действия ИР в дозе 5 Гр резко возрастает: через 5 часов после облучения мы регистрируем уровень мтДНК в 500 раз, через 24 часа - более чем в 700 раз превышающий контрольный, к 72 часам уровень мтДНК снижается, но все еще в 200 раз выше контрольного, а через 168 часов приближается к норме (Рис. 2).

После облучения большое количество копий мтДНК переходит в состояние так называемых миницирклей, т.е. после делеции фрагментов оставшаяся часть молекулы замыкается в кольцо. Можно предположить, что увеличение репликации мтДНК после облучения представляет собой компенсаторную реакцию на повреждение части копий митохондриального генома. Процесс репликации происходит эффективно еще и потому, что минициркли реплицируются нампого быстрее, чем крупные молекулы мтДНК [Diaz et al. 2002]. Наблюдаемый нами эффект увеличения репликации мтДНК клеток головного мозга после воздействия генотоксических агентов коррелирует с представлениями о том, что в условиях повышенного содержания АФК индуцируется биогенез митохопдрий [Gutsaeva et al. 2006].

В клетках селезенки наблюдается обратный процесс: через 5 часов после облучения уровень мтДНК снижен в 5 раз по сравнению с контролем, к 24 часам снижение количества копий мтДНК достигает порядковой величины, к 72 часам наблюдается небольшое восстановление числа копий, которое продолжается до 168 часов и к этому времени составляет 50% от контрольного уровня. В данном случае необходимо отметить, что при облучении млекопитающих в летальных дозах спленоциты очень быстро вступают в апоптоз: значительная часть клеток погибает уже через 3 часа, а максимальная гибель (80%) наблюдается через сутки после облучения. Таким образом, падение числа копий мтДНК в спленоцитах в течение первых суток после облучения связано с развитием программируемой клеточной гибели. В сохранившейся части клеточной популяции селезенки на 2-е – 3-е сутки после облучения начинается процесс восстановления количества копий мтДНК.

<u>Транскрипция мтДНК в клетках головного мозга и селезенки при гамма – облучении</u> мышей.

Мы исследовали транскрипцию трех митохондриальных генов: nd4, coll и nd6 в клетках головного мозга и селезенки облученных в дозе 10 Гр мышей. Следует отметить, что первые два гена, входят в состав тяжелой цепи (h-strand) мтДНК, а nd6 - структурный ген, кодирующийся легкой цепью.

Транскринция мтДНК оценивалась по числу молекул митохондриальной мРНК чсрсз 5, 24, 48 и 72 часов после облучения мышей. Для нормализации количества внесенной матрицы использовались два housekeeping гена, кодирующихся ядерной ДНК: gapdh и beta – actin. На Рис. 2 представлены результаты исследования экспрессии митохондриального гена nd6.

Рис. З Относительная экспрессия гена *nd6* в клетках головного мозга и селезенки облученных в дозе 10 Гр мышей. Для нормализации использовали амплификацию фрагмента гена *gapdh*. R=1 - уровень транскрипции *nd6* контрольных мышей.

Рис. 4 Относительная экспрессия тена *coll* в клетках головного мозга и селезенки облученных в дозе 10 Гр мышей. Для нормализации использовали амплификацию фрагмента гена *beta – actin*. R≈1 - уровень транскрипции *coll* контрольных мышей.

Можно видеть, что как в селезенке, так и в клетках головного мозга облученных мышей количество транскриптов гена *nd6* мтДНК изменяется уже в первые часы после облучения. В селезенске в первые 5 часов после облучения количество транскриптов возрастает не более чем в два раза, однако, что удивительно, ужс к 24 часам мРНК гена *nd6* превышает контрольный уровень более чем в 1000 раз. Через 48 часов количество транскриптов данного гена резко падает до контрольного уровня и в более поздние времена практически не меняется.

Сходная картина наблюдается в клетках головного мозга облученных мышей. Через 5 часов, так же как и в спленоцитах, после облучения уровень мРНК *nd6* возрастает в 2-3 раза, однако, по сравнению с селезепкой, дальнейшего увеличения числа транскриптов не происходит. Через сутки после облучения количество траснкриптов спижается в 2 раза, дальнейшие изменения транскрипции направлены на восстановление до контрольного уровня

мРНК *nd6* в головном мозге, который достигается к 48 часам и далее остается постоянным в течение суток.

Результаты изменения транскрипции митохондриального гена *coll* (Рис. 4) обнаруживают поразительное сходство с результатами, полученными для гена *nd6*. Так же, как и в случае *nd6*, в селезенке количество мРНК гена *coll*, незначительно изменяется к 5 часам после облучения, а уже к 24 часам превышает контрольные уровень более чем в 1350 раз. В дальнейшем происходит резкое падение и через 72 часа уровень мРНК возвращается к контрольному.

Изменение транскрипции *coll* в клетках головного мозга также повторяет динамику изменения количества транскриптов *nd6*. Так, через 5 часов, уровень мРНК *coll* в этой ткани в 2.5 раза превышает контрольный, спустя сутки снижается до уровня в 2 раза меньше контрольного и этот уровень практически сохраняется в течение следующих двух суток.

Основная регуляция уровня траскрипции/репликации в митохондриях осуществляется несколькими транскрипционными факторами. В настоящее время в литературе обсуждается роль mtTFA в регуляции биогенеза мтДНК. Существует представление, что оверэкспрессия mtTFA приводит к индукции репликации мтДНК [Ekstrand et al. 2004]. с другой стороны аналогичные исследования показали, что роль mtTFA не существенна при репликации мтДНК [Maniura-Weber et al. 2004]. Но ни у кого не вызывает сомнения тот факт, что оверэкспрессия mtTFA приводит к увеличению транскрипции мтДНК. Оверэкспрессия mtTFA подконтрольна факторам NRF-1 и NRF-2 [Gleyzer et al. 2005], которые, в свою очередь, активируются повышенным уровнем свободных радикалов. Таким образом, увеличение общего количества транскриптов мтДНК может объясняться процессом активации экспрессии транскрипционных факторов.

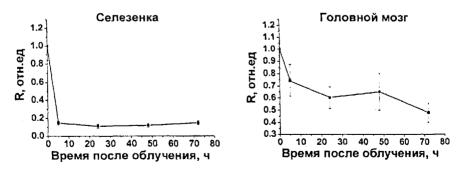
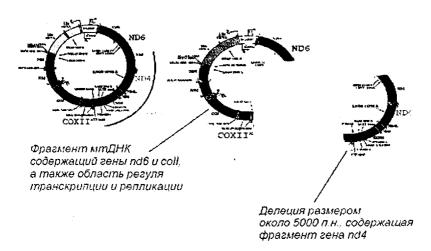



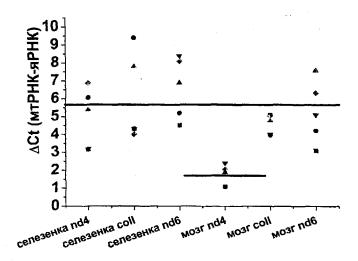
Рис. 5 Относительная экспрессия гена nd4 в головном мозге и селезенки облученных в дозе 10 Гр мышей. R=1 уровень транскрипции nd4 контрольных мышей.

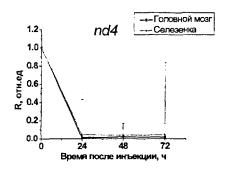
При исследовании уровня транскрипции гена *nd4* (Рис. 5) были получены следующие результаты: уровень мРНК гена *nd4* в селезенке облученных мышей через 5 часов после облучения снижается более чем в 5 раз, в дальнейшем каких-либо значимых отклонений в количестве мРНК данного гена не происходит. В головном мозге изменения количества транскриптов носят также отрицательный характер, однако кинетика снижения количества копий мРНК *nd4* в данной ткани несколько иная: в течение трех суток происходит постепенное снижение и через 72 часа после облучения уровень транскриптов мРНК гена *nd4* в клетках головного мозга мышей в 2 раза ниже контрольного уровня.

На основании анализа результатов, полученных при исследовании экспрессии трех митохондриальных генов, можно предположить, что в условиях окислительного стресса возникает крупная делеция мтДНК, включающая область гена nd4 (Рис. 6)

Рис.6 Делеция мтДНК [4977 ± 3 п.н.].

Известно, что в случае удаления D-петли из целостной структуры мтДНК как репликация, так и транскрипция невозможны [Fernandez-Silva et al. 2003]. Таким образом, ген nd4 не участвует в процессах репликации и транскрипции мтДНК, именно этим и объясняется снижение экспрессии данного гена на фоне увеличенной транскрипции других митохондриальных генов при облучении мышей. Более того, анализ транскрипции трех исследуемых генов позволяет считать, что и у контрольных мышей происходит потеря гена nd4 (в меньшей степени), по-видимому, из-за близости к электрон-транспортной цепи (Рис.7).




Рис. 7 Уровень экспрессии трех митохондриальных генов (nd4, coII, nd6) в клетках селезенки и головного мозга контрольных мышей, нормализация по генам gapdh и beta-actin.

Транскрипция митоходриальной ДНК при действии блеомицина.

Результаты исследования транскрипции трсх митохондриальных генов: nd4, coll и nd6 в клетках головного мозга и селезенки мышей после инъекции блеомицина [1,5 мг/мышь] совпадают с результатами, полученными при действии облучения (Рис. 8). Известно, что принцип действия блеомицина основан на способности вызвать многочисленные одно- и двунитевые разрывы в структуре ДНК, подобно действию свободных радикалов, образующихся при облучении.

Нам представлялось интересным выяснить, что происходит с нефункциональными фрагментами мтДНК, образующимися при действии генотоксических агентов. Возможны 2 процесса, позволяющие утилизировать большие фрагмент мтДНК:

- 1 фрагменты могут быть выведены за пределы органеллы и,
- 2 фрагменты могут быть расщеплены эндонуклеазой G, локализованной в митохондриях. Не исключено, что оба этих процесса дополняют друг друга и являются частями целого механизма.

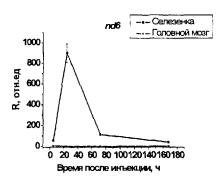


Рис. 8 Изменение транскрипции генов nd4, coll nd6, мтДНК после введения блеомицина (1,: мг/мышь). R=1 уровень транскрипциі контрольных мышей.

Выход ДНК из митохондрий in vitro

Нами был поставлен модельный эксперимент, в котором митохондрии помещали в кювету микроспектрофлуориметра и измеряли функциональную активность митохондрий по изменениям $\Delta \Psi$ -т. Открытие РТР индуцировали добавлением ионов кальция в концентрации 50 мкМ. После индукции РТР, наблюдаемой по спаду $\Delta \Psi$ -т, добавляли ингибитор РТР – циклоспорин A, который способствовал закрытию РТР и восстановлению $\Delta \Psi$ -т до исходного уровня. В контрольном эксперименте до внесения кальция был добавлен циклоспорин A, что предотвращало индукцию РТР. После этого суспензия отбиралась, помещалась в центрифужную пробирку, митохондрии осаждали при 12000 обмин [Еррепdorf 5415] и из супернатанта выделяли ДНК.

На рис.9 приведена схема эксперимента по открытию РТР и анализ фрагментов мтДНК, обнаруженных в среде после осаждения митохондрий до и после открытия РТР. Как видно из рисунка, при индукции РТР в среде инкубации митохондрий обнаруживаются

фрагменты ДНК, размером 10090 п.н., так же как и при ингибировании РТР циклоспорином А. Однако отчетливо видно, что при осуществлении предельных порядковых разведении ДНК, вносимой в реакцию, титр крупного фрагмента мтДНК, как минимум, на 1 порядок выше при индуцированной РТР, чем при ингибированной. Это свидетельствует о том, что при индукции РТР крупные фрагменты мтДНК выходят из митохондрий. Для того, чтобы снять все сомнения относительно разрушения митохондрий во время проведения эксперимента, параллельно измерению относительного количества фрагментов мтДНК в инкубационной среде, нами был измерен уровень внутриматриксного фермента митохондрий — цитратсинтазы, уровень которой в модельной системе свидетельствовал о целостности митохондрий (Рис.10).

Рис.9 Модельный эксперимент на изолированных митохондриях. Сверху слева – график измерения потенциала в присутствии циклоспорина А и 50 мкМ кальция. Снизу слева - график измерения потенциала в присутствии Циклоспорина А, который добавляли после индукции РТР. Сверху справа – электрофорез амплифицированных фрагментов мтДНК при закрытой РТР. Снизу справа – электрофорез амплифицированных фрагментов мтДНК при индукции РТР. М-маркер длин фрагментов ДНК; 1, 2, 3, 4 — соответственно, порядковые разведения количества ДНК в супернатанте после осаждения митохондрий.

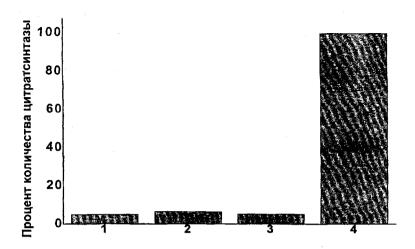


Рис.10 Определения количества внутриматриксного фермента — цитратсинтазы. 1 — среда выделения после последней отмывки митохондрий. 2 — среда инкубации после осаждения митохондрий [добавление циклоспорина-А перед Ca2+]. 3 - среда инкубации после осаждения митохондрий [добавление циклоспорина-А после Ca2+]. 4 — разрушенные митохондрии в среде инкубации.

На рис. 10 видно, что при индукции РТР в данных модельных экспериментах не происходит разрушения митохондрий, из этого следуст, что увеличивающийся титр фрагментов мтДНК в среде инкубации митохондрий является прямым следствием индукции РТР. Следовательно, можно заключить, что индукции РТР является своеобразным тригтером, обеспечивающим выход фрагментов мтДНК из митохондрий.

Выход фрагментов мтДНК из митохондрий при облучении мышей in vivo.

Митохондриальная РТР индуцируется многими продуктами окислительновосстановительных реакций и продуктами реакций, в которых образуются радикалы, как например, при облучении. [Constantini P, et al., 1995, Kowaltowski et al., 1995, Petrolini et al., 1994] Кроме того, облучение вызывает одпо- и двунитивые разрывы ДНК и, таким образом, является наилучшей моделью для исследования процессов выхода мтДНК из митохондрий. На рис. 11 представлено электрофоретическое разделение митохондриального фрагмента размером 1841 п.н. (область D-петли), обнаруженного в питозоле клеток головного мозга.

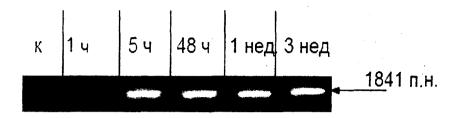


Рис.11 Амплификация фрагмента митохондриальной ДНК размером 1841 п.н. из цитозольной фракции клеток головного мозга контрольных и облученных в дозе 5 Гр мышей.

Результаты амплификации фрагмента митохондриальной ДНК размером 1841 п.н. показывают, что при заданных параметрах амплификации в цитозоле клеток головного мозга контрольных животных визуализация амплифицированных фрагментов ДНК отсутствует. Однако, уже через 1 час после облучения в дозе 5 Гр в цитозоле клеток мозга наблюдаются фрагменты митохондриальной ДНК. Максимум количества фрагментов митохондриальной ДНК в цитозольной фракции клеток мозга достигается к 5 часам после облучения в дозе 5 Гр и сохраняется в течение 3 недель.

В описанных выше экспериментах уровень митохондриальной ДНК в цитозольной фракции клеток головного мозга после облучения мышей оценивался по амплификации одного митохондриального фрагмента размером 1841 п.н. В дальнейших экспериментах мы провели амплификацию различных по топологии и размеру участков митохондриальной ДНК от 316 п.н. до 10090 п.н. (рис. 12). Результаты эксперимента свидетельствуют о том, что фрагменты митохондриальной ДНК, обнаруженные в цитозольной фракции клеток головного мозга облученных мышей, представляют собой практически всю структуру мтДНК.

Поразительно то, что в цитозоле клеток головного мозга облученных в дозе 5 Гр мышей присутствуют такие большие фрагменты как 10090 п.н.

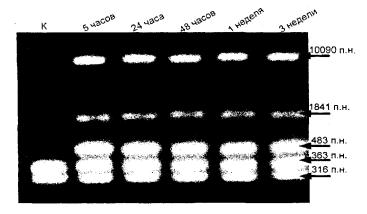


Рис.12 Сводная схема электрофоретического разделения различных по топологии и размеру фрагментов митохондриальной ДНК в цитозоле мозга мышей, облученных в дозе 5 Гр.

При облучении мышей в дозах 3 Гр и 8 Гр в цитозоле клеток головного мозга также были обнаружены фрагменты мтДНК (рис. 13). Динамика появления мтДНК в цитозоле совпадала после облучения мышей в дозе 5 Гр и 8 Гр. При действии облучения в этих двух дозах амплификация фрагмента 10090 п.н. наблюдается через 5 часов. Амплификация того же фрагмента при облучении мышей в дозе 3 Гр происходит через 24 часа после облучения. При облучении во всех дозах фрагменты мтДНК находится в цитозоле по крайней мере в течение 3-х недель наблюдения.

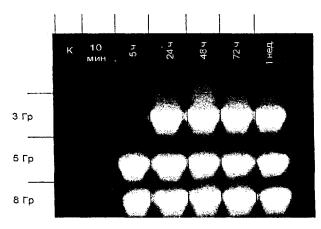


Рис. 13 Схема электрофоретического разделения фрагмента митохондриальной ДНК размером 10090 п.н., выделенной из цитозольной фракции клеток головного мозга контрольных и облученных мышей.

Эксперименты на модельной системе, связанные с открытием РТР и выходом мтДНК из органеллы, позволяют провести некую аналогию с процессом появления мтДНК в цитозоле клеток головного мозга мышей после радиационного воздействия.

Предполагается, что в условиях in vivo быстрые кальшисвые токи могут возникать только при кратковременной индукции РТР и пора в этом случае проявляет себя как индуцибильный кальциевый канал [Akerman K.E., 1977, Bernardi P., 1992, 1998, 1996]. Нами был поставлен эксперимент, в котором митохондрии тестировались на способность аккумулировать ионы кальция и сохранять при этом мембранный потенциал (рис.14). В течение первых семи суток после облучения в летальных дозах, когда происходит выход фрагментов мтДНК в цитозоль клеток головного мозга, мембранный потснциал не меняется. Тем не менее, физиологические параметры митохондрий облученных животных отличаются от контрольных, но в более поздние сроки (3 недели после облучения мышей в детальных дозах). Результаты экспериментов свидетельствуют о том, что митохондрии, выделенные из клеток головного мозга через три недели после облучения мышей в дозе 5 Гр, сохраняют мембранный потенциал. Однако, митохондрии мозга облученных мышей по сравнению с более чувствительны к кальциевым нагрузкам, контрольными Добавка кальшия в концентрации 50 мкМ приводит к практически полному сбросу ДУ-т. После добавки циклоспорина А ФУ-ш восстанавливался до уровня, составляющего приблизительно 80% от начального. Контрольные же митохондрии были менее чувствительны к кальциевым нагрузкам, и после побавки циклоспорина А практически полностью восстанавливали $\Delta \Psi$ m.

Таким образом, физиологическое состояние изолированных митохондрий клеток головного мозга облученных мышей отличается от контрольных. Результаты показали, что для индукции РТР в митохондриях клеток головного мозга облученных мышей необходимы гораздо более слабые воздействия, чем в митохондриях контрольной группы. Это свидетельствует о том, что при облучении выход митохондриальной ДНК из органеллы происходит с большей вероятностью

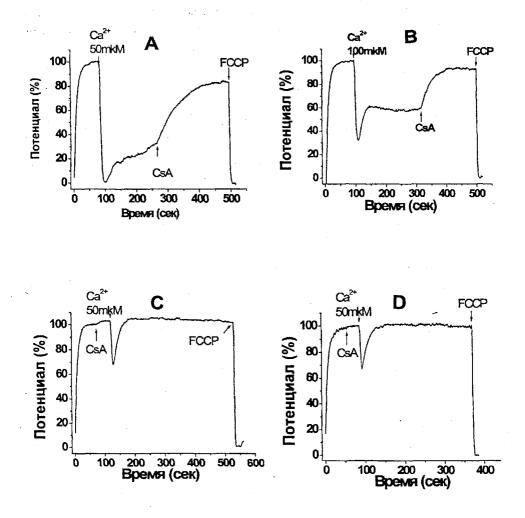


Рис.14 Измерение потенциала в контрольных и облученных мышах через 3 недели послоблучения в дозе 5 Гр. Измерение потенциала проводилось при помощи зонда Rhodamine 123 Открытие РТР индуцировали добавкой кальция. РТР ингибировалась циклоспорином А. А, С — митохопдрии клеток головного мозга мышей через 3 недели после облучения. В, D — митохондрии клеток головного мозга контрольных мышей.

Нуклеазная активность митохондриального матрикса.

Нами была исследована нуклеазная активность лизатов митохондриального матрикса клеток головного мозга и селезенки контрольных и облученных в дозе 10 Гр мышей. Как следует из рис.15, ДНК при инкубации с лизатом контрольных мышей практически не подвергается деградации (дорожки 1 и 2). Лизат, полученный из митохондрий селезенки облученных мышей (дорожка 4), обладает значительно большей нуклеазной активностью по сравнению с лизатом митохондриального матрикса клеток головного мозга (дорожка 3).

Рис.15 Электрофореграммы ДНК тимуса теленка после ее инкубации с фракциями цитозоля из клеток головного мозга и селезенки контрольных и облученных мышей. Фракции цитозоля получали из тканей животных через 24 часа после облучения в дозе 5 Гр. [1,3] — фракции матрикса митохондрий из клеток головного мозга. [1]- контроль, [3]- облучение. [2,4] — фракции матрикса митохондрий из клеток селезенки. [2]- контроль, [4]- облучение.

Таким образом, индуцирует очевидно, что ИР нуклеазную активность митохондриального матрикса, что является дополнительным фактором появления двунитевых разрывов в мтДНК, накопления в матриксе делетированных фрагментов и возрастающего, вследствие действия ИР, уровня гетероплазмии. Если учитывать тот факт, что Эндо-G, как наиболее вероятный вследствие своей субстратной специфичности фермент, принимает активное участие во фрагментации мтДНК, то резонно возникает вопрос, - почему в нормальных физиологических условиях Эндо-G не фрагментирует мтЛНК? Самым очевидным ответом может служить факт локализации данного фермента в межмембранном пространстве митохондрий, где он не имеет прямого доступа к субстрату. Кроме того, то, что в большей степени, Эндо-G проявляет нуклеазную активность по отношению к ДНК, содержащим модифицированные основания, индуцированные ИР, может свидетельствовать о том, что повреждения структуры ДНК и активация Эндо-С являются взаимосвязанными процессами.

Другим объяснением увеличивающейся, вследствие действия ИР, нуклеазной активности митохондриального матрикса может являться увеличение синтеза de novo

Эндо-G, тем более, известно, что ИР индуцирует транскрипцию большого числа белков. В связи с этим мы определяли уровень экспрессии ядерного гена *endog* (Рис.16).

Рис. 16 Уровень экспрессии гена endog в клетках головного мозга и селезенки облученных в дозе 10 Гр мышей относительно уровня экспрессии в тканях необлученных мышей. R=1 уровень транскрипции endog контрольных мышей.

Из рис.16 видно, что при облучении мышей происходит увеличение транскрипции гена endog. В клетках головного мозга уже через 5 часов после облучения в дозе 10 Гр резко возрастает количество транскриптов данного гена. Спустя сутки уровень транскриптов возвращается к норме, а затем вновь повыщается. Иную картину мы можем наблюдать в селезенке. Можно видеть, что в первые часы после облучения уровень транскриптов изменяется крайне незначительно, однако, уже к 24 часам уровень транскриптов гена endog заметно возрастает, а затем возвращается к норме. В настоящее время в литературе широко обсуждается роль Эндо-G в апоптозе, а именно, ее участие в нуклеосомной деградации яДНК по каспаз-независимому мехапизму [van Loo et al., 2001, 2002; Davies et al., 2003]. Вместе с тем, сведения о вовлеченности этого фермента в деградацию мтДНК отсутствуют. Исходя из результатов, полученных при исследовании мтДНК клеток головного мозга, мы полагаем, что Эндо-G является ферментом, участвующим во фрагментации мтДНК и образовании делеций, как в условиях физиологической нормы, так и в условиях окислительного стресса. По-видимому, это связано с необходимостью удаления поврежденных участков мтДНК, возникающих в результате высокого уровня радикалов в митохондриях.

Экспрессия endog при действии блеомицина

Сходную картину увеличения транскрипции *endog* мы наблюдали и после введения мышам блеомицина (Рис.17). Инъекция блеомицина в предельной дозе приводит к 9-порядковому увеличению количества траснскриптов *endog* в клетках селезенки (приблизительно в миллиард раз). В клетках головного мозга количество траскриптов этого гена увеличивается почти в 3 млн. раз.

Рис. 17 Транскрипция гена endog в головном мозге и селезенке мышей при введении блеомицина (1,5 мг/мышь). R=1 уровень транскрипции endog контрольных мышей.

Известно, что блеомицин, также как и облучение, индуцирует окислительный стресс. При действии блеомицина и при действии ИР мы наблюдаем схожие процессы изменения репликации мтДНК, транскрипции митохондриальных генов и ядерного гена *endog*. Таким образом, ответ клеток на действие окислительного стресса является универсальным вне зависимости от природы генотоксического агента.

ЗАКЛЮЧЕНИЕ

Митохондриальная ДНК млекопитающих — кольцевая двуцепочечная молекула, кодирующая 13 полипептидов дыхательной цепи. Поскольку мтДНК не содержит некодируемые последовательности, она транскрибируется как единый полицистронный блок и любые нарушения в ней являются патогенетическими. В настоящем исследовании установлено, что в условиях окислительного стресса, вызванного либо облучением, либо действием блеомицина, в мтДНК разных по радиочувствительности тканях (головной мозг и селезенка) возникает крупная делеция (около 5000 п.н.), т.е. практически треть всего митохондриального генома не участвует в процессах репликации и транскрипции. Несомненно, что подобная дисфункция мтДНК, например: многократная утрата гсна nd4, отразится на процессах окислительного фосфорилирования и синтеза АТФ.

Само накопление фрагментов мтДНК в митохондрии является деструктивным процессом и выход фрагментов мтДНК из органеллы сокращает пул поврежденных молекул мтДНК. Вполне возможно, что при функционировании митохондрий в условиях нормы единичные поврежденные молекулы мтДНК также удаляются при участии РТР. В условиях же окислительного стресса, когда количество делеций многократно возрастает, наблюдается постоянный процесс выхода фрагментов мтДНК. Дозозависимое накопление фрагментов в

цитозоле клеток головного мозга при облучении мышей и сохранении их в течение нескольких недель увеличивает риск проникновения фрагментов мтДНК в ядро.

Процесс выхода фрагментов мтДНК из митохондрий коррелирует со временем увеличения числа копий мтДНК, однако, в большей степени происходит ущербное восстановление, поскольку огромная часть копий мтДНК представляет собой урезанный геном – минициркли.

В процессе фрагментации мтДНК под действием генотоксических агентов, повидимому, участвует неспецифическая эндонуклеаза —G, так как и при облучении и при действии блеомицина происходит увеличение активности данного фермента и резко возрастает транскрипция гена endog.

Таким образом, в условиях окислительного стресса, инициированного длействием генотоксических агентов, изменяются процессы репликации и транскрищци митохондриальных генов, нарушается целостность мтДНК, образуются фрагменты разной всличины, крупные делеции фрагментов мтДНК выходят в цитозоль клеток, что представляет собой потенциальную угрозу стабильности ядерного генома.

выводы

- Впервые показано, что увеличение числа копий мтДНК в клетках головного мозга мышей при действии генотоксических агентов является компенсаторной реакцией митохондрий на уменьшение количества генов.
- Обнаружено, что при действии генотоксических агентов механизмы регуляции транскрипции мтДНК являются универсальными для разных по радиочувствительности тканей (селезепка и головной мозг).
- 3. Действие генотоксических агентов инициирует процессы фрагментации мтДНК.
- 4. Впервые показано, что генотоксические агенты индупируют транскрипцию эндонуклеазы G и увеличение пуклеазной активности митохондриального матрикса.
- 5. Впервые продемонстрировано, что фрагменты митохондриальной ДНК выходят из митохондрий при участии РТР.
- 6. Впервые зарегистрирован выход мтДНК из митохондрий клеток головного мозга облученных мышей.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи

- Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev A. Mitochondrial permeability transition triggers the release of mtDNA fragments. // Cell Mol Life Sci., 2004, V.61, P. 3100-3103
- Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev AI. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. // Mitochondrion. 2006 V.6 P. 43-47
- 3. <u>Патрушев М.В.</u>, Патрушева В.Е., Касымов В.А., Евдокимовский Э.В., Ушакова Т.Е., Газиев А.И. Элиминация мтДНК из митохондрий и активация ее репликации в клетках тканей облученных мышей. // Цитология, 2006, том 48, вып. 8, стр. 684-695

Тезисы докладов

- 1. <u>Патрушев М.В.</u>, Зобова В.Е., Касымов В.А., Ушакова Т.Е., Газиев А.И. Выход ДНК из митохондрий мозга гамма-облученных мышей. // Сборник тезисов VIII междупародной школы-конференции молодых ученых «Биология наука XXI века» Пущино, (17-21 мая 2004), изд. ПНЦ РАН, Пущино, стр.90
- Касымов В.А., <u>Патрушев М.В.</u>, Зобова В.Е., Ушакова Т.Е., Исследование механизмов выхода митохондриальной ДНК в цитозоль. // Сборник тезисов VIII международной школы-копференции молодых ученых «Биология – наука XXI века» Пущино, (17-21 мая 2004), изд. ПНЦ РАН, Пущино, стр.90
- E.V. Evdokimovsky, M.V. Patrushev, T.E. Ushakova, A.I. Gaziev. Change in mtDNA
 replication and transcription in the blood cells of mice after treatment with X-rays and bleomycin.
 // The 35th Annual Meeting of the European Radiation Research Society, Kiev (22-25.08.2006)
- Евдокимовский Э.В., <u>Патрушев М.В.</u>, Ушакова Т.Е., Газиев А.И. Нестабильность мтДНК в крови мышей при действии рентгеновского облучения и цитостатических антибиотиков // Сборник тезисов X международной школы-конференции молодых ученых «Биология наука XXI века» Пущино, (17-21 апреля 2006), изд. ПНЦ РАН, Пущино, стр.
- 5. <u>Патрушев М.В.,</u> Ушакова Т.Е., Губина Н.Е., Мерекина О.С., Газиев А.И. Выход фрагментов МТДНК из митохондрий клеток мозга после облучения мышей. // Материалы V съезда по радиационным исследованиям «радиобиология, радиоэкология, радиационная безопасность» Москва, (10-14 апреля 2006), изд. «11-й ФОРМАТ», Москва, стр.61-64
- 6. Евдокимовский Э.В., <u>Патрушев М.В.</u>, Ушакова Т.Е., Газисв А.И.. Исследование повреждающего действия рентгеновского облучения и антибиотика блеомицина на

- фрагментацию и репликацию митохондриальной ДНК в крови мыши // Материалы V съезда по радиационным исследованиям «радиобиология, радиоэкология, радиационная безопасность» Москва, (10-14 апреля 2006), изд. «11-й ФОРМАТ», Москва.
- Patrushev M.V., Evdokimovsky E.V., Gubina N.E., Merekina O.S., Ushakova T.E., Gogvadze V.G., Gaziev A.I.. Alterations of mtDNA functionality in brain and spleen after irradiation. // The 35th Annual Meeting of the European Radiation Research Society, Kiev (22-25.08.2006)

Принято к исполнению 18/09/2006 Исполнено 18/09/2006 Заказ № 634 Тираж: 100 экз.

ООО «11-й ФОРМАТ» ИНН 7726330900 Москва, Варшавское ш., 36 (495) 975-78-56

www.autoreferat.ru

