МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

На правах рукописи

Балуян Тигран Григорьевич

ИССЛЕДОВАНИЕ НИЗКОТЕМПЕРАТУРНОГО МАГНИТНОГО ФАЗОВОГО ПЕРЕХОДА В СВЕРХСТРУКТУРАХ СЕЛЕНИДА ЖЕЛЕЗА Fe₇Se₈

Специальность 01.04.07 – физика конденсированного состояния

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена на кафедре физики твердого тела физического факультета МГУ имени М.В.Ломоносова

НаучныйНоваковаАллаАндреевна,докторфизико-руководитель:математических наук, профессор

Официальные Глезер Александр Маркович, доктор физикооппоненты: математических наук, профессор, директор института металловедения имени Г.В. Курдюмова, Федеральное государственное унитарное предприятие «Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина»

Грановский Александр Борисович, доктор физикоматематических наук, профессор, МГУ имени М.В. Ломоносова, Физический факультет, Кафедра магнетизма, профессор

Черепанов Валерий Михайлович доктор физикоматематических наук, старший научный сотрудник, Национальный исследовательский центр "Курчатовский институт"

Защита диссертации состоится «19» декабря 2019 г. в 15 часов 30 минут на заседании диссертационного совета МГУ.01.01 Московского государственного университета имени М.В.Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, д.1, с.2, МГУ, физический факультет.

E-mail: laptin@polly.phys.msu.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/241699405/

Автореферат разослан «18» ноября 2019 г.

Ученый секретарь

диссертационного совета,

кандидат физ.-мат. наук

Лаптинская Т.В.

Общая характеристика работы

Актуальность работы

Контролируемые изменения магнитного упорядочения в веществах широко используются в спинтронике для изменения направления и особенностей протекания спиновых токов. Проведенное в настоящей работе сравнительное исследование выявило температурные интервалы протекания спиновой переориентации в соединениях 3с-и 4с-Fe₇Se₈ и позволило предложить детальную модель механизма ее протекания с изменением температуры. Наблюдаемое в исследуемых соединениях резкое изменение магнитного момента с температурой позволяет использовать эти селениды в качестве рабочего тела для детекторов, затворов и селективных пропускающих устройств в этих температурных интервалах, а индивидуальные особенности протекания магнитного фазового перехода для каждой из магнитных подрешеток селенида железа открывают перспективы для создания нелинейных спинтронных элементов и поляризационных фильтров.

Цель работы

Основной целью этой работы было.изучить влияние от введения дополнительной атомной плоскости с уникальной конфигурацией ваканский в сверхструктуру 4c-Fe₇Se₈ (по сравнению с 3c-Fe₇Se₈) на магнитные и термодинамические свойства селенида железа Fe₇Se₈.

Научная новизна работы

Для этой работы в лаборатории профессора Томаса Палстры (Унивеситет Гренингена, Голландия) были получены однофазные образцы 3*c*-Fe₇Se₈ и 4*c*-Fe₇Se₈ (рентгеновски однофазный образец 4*c*-Fe₇Se₈ был синтезирован впервые). В результате исследования этих образцов:

- Рассчитаны температуры Дебая исследуемых образцов (245 ± 3 К для 3*c*-Fe₇Se₈ и 225 ± 4 К для 4*c*-Fe₇Se₈). Температура Дебая образца 4*c*-Fe₇Se₈ рассчитана впервые.
- 2) Разработана и применена методика анализа температурных зависимостей эффективных магнитных полей мессбауэровских

спектров, при помощи которой определена динамика спиновой переориентации для каждой магнитной подрешетки исследуемых образцов селенида железа Fe_{7s}e_{8;}

Научная и практическая значимость

В настоящей работе было проведено исследование образцов однофазных 3*с*- и 4*с*-Fe₇Se₈. В ходе работы была разработана методика анализа температурных зависимостей эффективных магнитных полей компонент мессбауэровских спектров, при помощи которой была восстановлена детальная картина протекающих в образцах исследуемых спиновой переориентации. Полученная информация соединений позволяет определить границы и механизм использования исследуемых соединений в качестве спиновых фильтров для цепей спинового тока. Разработанная методика может быть использована для детального исследования процессов изменения магнитной структуры в любых железосодержащих соединениях с магнитным упорядочением, таких, например, ферриты, ортоферриты и соединеиния железа с как, редкоземельными металлами.

Достоверность и обоснованность результатов

Результаты, представленные в работе, получены в коллаборации с группами ученых из разных стран на сертфицированном Росстандартом оборудовании (рентгеновском дифрактометре Empyrean PanAlytical, вибрационном магнитометре VSM LakeShore 7407 и мессбауэровском MS1104Em) применением сертфицированного спектрометре с программного обеспечения. Достоверность представленных результатов обусловлена непротиворечивостью также И согласованностью результатов, полученных методами рентгендифракционного анализа, измерений и мессбауэровской спектроскопии, магнитных а их обоснованность успешным применением разработанной И использованной методики расчета динамических параметров мессбауэровских спектров не только в рамках данной работы, но и для соединений органической природы.

4

Основные положения, выносимые на защиту

В качестве основных положений, выносимых на защиту, выделяются следующие:

- Магнитные характеристики селенида железа Fe₇Se₈ существенно зависят от расположения в его структуре упорядоченных вакансий. Эти различия проявляются в величине магнитного момента разных сверхструктур этого селенида и разных температурных интервалах протекания в этих сверхструктурах низкотемпературного магнитного фазового перехода.
- 2) Различия в структуре 3c- и 4c-Fe₇Se₈ приводят к различию их термодинамических свойств: температура Дебая 3c-Fe₇Se₈ составляет $245 \pm 3 K$, а температура Дебая 4c-Fe₇Se₈ $225 \pm 4 K$.
- Магнитные фазовые превращения, протекающие в исследуемых соединениях, представляют собой переориентацию магнитных моментов, индивидуальную для каждой из магнитных подрешеток в структурах 3*c*- и 4*c*-Fe₇Se₈.
- С использованием авторской методики показано, что в ходе спиновой переориентации магнитные моменты А-подрешетки и В- и С- подрешеток исследуемых образцов поворачиваются в разные стороны.
- 5) Показано, что в 3*c*-Fe₇Se₈ и 4*c*-Fe₇Se₈ магнитные моменты *A*-подрешеткок поворачиваются на меньший угол, чем магнитные моменты *B* и *C*-подрешеток за счет изменения направления поворота. Такое различие в величинах углов поворотов магнитных моментов подрешеток приводит к общему уменьшению магнитного момента обеих сверхструктурных модификаций селенида железа.

Личный вклад автора

Автором совместно с научным руководителем были сформулированы цели и задачи научного исследования. Изложенные в диссертационной работе результаты получены автором лично или при его непосредственном участии. В ходе работы автор лично проводил эксперименты методами рентгендифракционого анализа и

мессбауэровской спектроскопии. Измерения магнитного момента исследуемых образцов проводились в лаборатории проф. Перова Н.С. под его руководством. Автор также занимался подготовкой образцов исследуемых соединений для электронной микроскопии, проводимой в кафедры молекулярных процессов и экстремальных лаборатории состояний вещества Карауловым В.Ю. Также совместно с научным руководителем автор готовил материалы для публикаций статей по теме о результатах работы для работы И доклады выступления на международных научных конференциях.

Апробация работы

Результаты представленной работы опубликованы в восьми печатных работах, в том числе:

3 статьи в рецензируемых журналах:

1) T.G. Baluyan, L.V Khenkin, A.A. Novakova Lattice dynamics of iron complexes embeddings in PMAA hydrogel Mossbauer study // Hyperfine Interactions, 2014, Vol.226, №.1-3, pp.643-647. (Scopus, Web of Science, IF 0.3)

2) G. Li, B. Zhang., T. Baluyan, P. Wu, A. Novakova, P. Rudolf, G. Blake, R. *de Groot., Th. Palstra* Metal-insulator transition induced by spin reorientation in Fe₇Se₈ grain boundaries // Inorganic Chemistry, 2016, T.55, Вып.24, cc.12912-12922. (Scopus, Web of Science, IF 4.513)

3) T. Baluyan, A. Novakova, M. Khairullin Magnetic investigation of low temperature phase transition in iron selenides // EPJ Web of Conferences, 2018, Vol.185, pp.04019(1-3). (Scopus, Web of Science, IF 0.943)

5 тезисов докладов на международных конференциях:

4) T.G. Baluyan, L.V. Khenkin, A.A. Novakova Lattice dynamics of iron complexes embedding in PMAA hydrogel Mossbauer study // Book of Abstracts ICAME-2013, Opatija, Croatia, 2013.

5) Т.Г. Балуян, А.А. Новакова Исследование магнитных фазовых превращений в частицах селенида железа, полученных гидротермальным способом// Сборник материалов X Международной научной конференции «Сорокинские чтения», Москва, 2016, с.51.

6) T. Baluyan, A. Novakova, N. Perov Magnetic investigation of low temperature magnetic phase transition in iron selenides // Book of Abstracts MISM, 2017, Moscow, Russia, 2017, p.819.

7) *T. Baluyan, A. Novakova, N. Perov* Comparative investigation of low temperature magnetic phase transition in 3*c*- and 4*c*-Fe₇Se₈ // International Conference on the Applications of the Mössbauer Effect, St.Petersburg, 2017, p. 92.

8) *T. Baluyan, A. Novakova* Detailed Mossbauer investigation of the magnetic spin reorientation in Fe₇Se₈ // The 3rd International Baltic Conference on Magnetism, Kaliningrad, Russia, 2019, p.35.

Результаты работы были доложены на следующих конференциях:

International Conference on the Applications of the Mossbauer Effect (Опатия, Хорватия, 2013)

XIV Международная конференция "Мессбауэровская спектроскопия и ее применения" (Казань, Россия, 2016)

Moscow International Symposium on Magnetism (MISM 2017), (Москва, Россия, 2017)

The International Conference on the Applications of the Mossbauer Effect (Санкт-Петербург, Россия, 2017)

3rd International Baltic Conference on Magnetism 2019 (Светлогорск, Калининградская область, 2019)

Также методика проведения мессбауэровского эксперимента, примененная в данной работе, отражена в статье автора, не включенной в список публикаций по теме данной работы:

V.V. Spiridonov, I.G Panova., L.A. Makarova, S.B. Zezin, A.A. Novakova, **T.G. Baluyan**, A.V. Sybachin, V.V Kuznetsov., A.A Yaroslavov Magneto-sensitive hybrid nanocomposites of water-soluble sodium alginate cross-linked with calcium ions and maghemite // Express Polymer Letters, 2018, T.12, Вып.5, cc.452–461. (Scopus, Web of Science, IF 3.064)

Содержание работы

Во введении рассказывается об основных аспектах настоящей работы, указана ее научная новизна, научная и практическая значимость, обоснована ее актуальность и достоверность.

В первой главе представлен обзор литературных данных по исследуемым в работе соединениям и методикам проводимого исследования.

В первом параграфе первой главы дается характеристика исследуемых сверхструктур селенида железа 3*c*- и 4*c*-Fe₇Se₈: перечислены известные особенности соединений с упорядоченными вакансиями и веществ, кристаллизующихся в различных формах (полиморфных веществ).

Указано, исследуемые что соединения проявляют ферримагнитные свойства. Рассмотрены феноменологические теории особенности ферримагнетизма, указано, что ферримагнитного упорядочения связаны с обменными процессами и рассмотрены типы обменных процессов. Помимо этого даны необходимые элементы зонной теории магнетизма, поскольку для полного описания наблюдаемых в исследуемых соединениях эффектов требуется понимание их зонной структуры.

Рассмотрены структурные (рис.1) и магнитные характеристики 3*c*и 4*c*-Fe₇Se₈, полученные на основе рентенографических И нейтронографических данных. Указано о некоторых данных ПО низкотемпературному магнитному фазовому переходу в этих соединениях.

Рис.1 Элементарные ячейки 4с-Fe₇Se₈ (слева) и 3с-Fe₇Se₈ (справа). Черные точки обозначают атомы железа, белые кружки – вакансии. Атомы селена опущены. Зеленым цветом обозначен дополнительный атомный слой с уникальным расположением вакансий в структуре 4с-Fe₇Se₈ [1].

Во втором параграфе рассмотрены известные механизмы и теории ориентационных магнитных фазовых переходов. Приведены теории фазовых переходов Ландау, элементы введены понятия магнитной анизотропии И констант анизотропии. Рассмотрены способы спиновой различные реализации переориентации в упорядоченных магнетиках.

В третьем параграфе приведены элементы теории эффекта Мессбауэра И мессбауэровской спектроскопии. Описаны мессбауэровские параметры: изомерный сдвиг, эффективное магнитное поле на ядрах железа и вероятность эффекта, приведены формулы их зависимостей. Рассмотрена температурных связь параметров мессбауэровских спектров И температуры Дебая исследуемого соединения.

В последнем, четвертом параграфе первой главы дана постановка задачи: исследовать магнитные свойства образцов 3*c*- и 4*c*-Fe₇Se₈ и протекающие в них низкотемпературные магнитные переходы, выявить их различия и связать разницу в темепературных интервалах переходов с различиями в структурах исследуемых образцов.

Во второй главе настоящей работы описываются исследуемые образцы и примененные методики исследования.

В первом параграфе описана примененная сотрудниками проф. Томаса Палстры из университета Гренингена методика синтеза 3*с*- и 4*с*-Fe₇Se₈. Представлены электронные микрофотографии обоих полученных образцов (рис.2), установлен средний размер кристаллита в 30-70 микрометров и хорошая степень кристаллизации обоих образцов.

Рис.2 Электронные микрофотографии (SEM) полученных образцов 3с-Fe₇Se₈ (слева) и 4с-Fe₇Se₈ (справа).

Во втором параграфе описана методика проведенного в работе рентгендифракционного эксперимента. Измерения проводились на рентгеновском дифрактометре Empyrean PanAlytical с медным анодом с длиной волны $\lambda = 1,5406$ Å и оснащенном PIXcel 3D детектором. дифрактометра Особенность данного состоит В горизонтальном размещении образца, что позволяет повысить точность измерений при образцов. исследовании порошковых Образцы помещались на безотражательную кремниевую кювету. Измерения проводились в геометрии Брэгга-Брентано 0-20. Радиус гониометра составлял 240 мм. На выходе из рентгеновской трубки помещалась щель Соллера с угловым размером 0,02 радиана, а на входе в детектор - щель Соллера с угловым размером 0,02 радиана и фиксированная противорассеивающая щель с угловым размером 1°. Исследование проводилось при комнатной температуре. Время съемки каждого образца составляло 2 часа. Рентгеновская трубка работала в режиме 40кВ/40мА.

В третьем параграфе описаны проведенные в работе магнитные измерения. Измерения магнитного момента проводились в лаборатории профессора Н.С. Перова на кафедре магнетизма физического факультета МГУ им. М.В. Ломоносова на вибрационном магнитометре VSM LakeShore 7407 в температурном интервале от 80 K до 320 K во внешних магнитных полях величиной 1 кЭ и 10 кЭ для сравнения магнитных характеристик образцов исследуемых селенидов железа в состоянии насышения И вне насыщения. Определение величины внешнего магнитного поля, при котором в исследуемых образцах наступает насыщение проводились при помощи измерения полевых зависимостей магнитного момента 3c- и 4c-Fe7Se8 в интервале температур от 80 K до 293 К. Кривые нагревания были получены с шагом в 15 К.

В четверетом параграфе описана методика проведенного мессбауэровского эксперимента. Мессбауэровские спектры были получены в традиционной геометрии на пропускание гамма-излучения источника Co⁵⁷(Rh) на мессбауэровском спектрометре MC-1104Eм. Регистрация гамма-квантов велась с использованием сцинтилляционного NaJ(Tl). детектора кристаллом Калибровка с спектрометра осуществлялась относительно α-Fe. В работе использовался криостат, позволяющий проводить измерения в любой точке температурного \pm 1 Κ Математическая обработка интервала точностью с проводилась экспериментальных спектров с использованием программного обеспечения UnivemMS, которое позволяет осуществлять первичную обработку полученных спектров, а затем их дальнейший математический анализ.

Для проведения эксперимента образцы селенидов помещались в специальные кюветы. 0,47 г образца помещались в кювету исходя из того, чтобы насыпная поверхностная плотность образцов составляла 0,15 г/см² для обеспечения достаточной тонкости образца, увеличения точности эксперимента и оптимизации времени измерений. Атомы железа в исследуемых соединениях находятся в окружении большого количества тяжелых атомов селена, которые нерезонансно поглощают гамма-кванты, что приводит к увеличению фона. Поэтому достижение оптимального соотношения сигнал-шум требует большого времени набора спектра (пять-шесть суток). Полученные спектры сглаживались и аппроксимировались необходимым в каждом случае количеством секстетов. Все полученные спектры подвергались математическому анализу, определялись их сверхтонкие параметры (изомерный сдвиг, квадрупольное расщепление, эффективное магнитное поле на ядрах вероятность эффекта Мессбауэра), железа И затем строились температурные зависимости этих параметров.

В третьей главе описано проведенное исследование низкотемпературного магнитного фазового перехода в сверхструктурах селенида железа и обсуждаются его результаты.

B первом параграфе рентгендифракционное описано исследование. Была получена дифрактограмма 3c-Fe₇Se₈. Расчет параметров решетки по полученному угловому расположению рефлексов показывают значения $a = 7.21 \pm 0.03$ Å, $c = 17.61 \pm 0.03$ Å, что с высокой степенью точности соответствует эталонной дифрактограмме из базы данных JSPDS PDF4. Затем была получена дифрактограмма 4*c*-Fe₇Se₈. Важно отметить, что ранее никем не было получено чистой фазы 4с-Fe₇Se₈, по этой причине эталонной дифрактограммы этого соединения в базе данных JSPDS PDF4 обнаружено не было.

Для обработки полученной дифрактограммы исследуемого соединения 4c-Fe₇Se₈ в программе VESTA [2] моделировалась элементарная ячейка 4c-Fe₇Se₈ с параметрам, указанными А. Оказаки [1], моделировался рентгендифракционный эксперимент с образце с такой элементарной ячейкой, определялись дифракционные пики, характерные для 4c-Fe₇Se₈ и не встречающиеся в 3c-Fe₇Se₈, и сравнивались положения этих рефлексов с рефлексами на полученной дифрактограмме 4c-Fe₇Se₈. Положения характерных пиков этой сверхструктуры приведены в таблице 1.

При совмещении дифрактограмм 3*с*- и 4*с*-Fe₇Se₈ наглядно видно появление рефлексов, характерных для 4*с* сверхструктуры (рис. 3).

Были получены параметры ячейки этого соединения: $a = 12,51 \pm 0,03$ Å, $b = 7,22 \pm 0.03$ Å, $c = 23,54 \pm 0.03$ Å, $\alpha = 89,3 \pm 0,1^{\circ}$, $\beta = 89,1 \pm 0,1^{\circ}$, $\gamma = 90,0 \pm 0,1^{\circ}$.

Таблица 1. Расчетные и наблюдаемые значения сверхструктурных пиков 4*c*-Fe₇Se₈.

Индексы Миллера	20 (Расчетное	20 (Наблюдаемое
	значение), °	значение), °
11-3	18,74	18,84±0,22
311	25,16	26,05±0,12
33-3	46,93	46,85±0,09

Рентгендифракционный анализ синтезированных образцов показал, что они действительно представляют собой однофазные селениды железа с 3*c*- и 4*c*- сверхструктурами соответственно.

Во втором параграфе описаны температурные измерения магнитных моментов обоих образцов селенида железа Fe₇Se₈.

Для выявления характерных особенностей изменения магнитных свойств исследуемых образцов с температурой проводились измерения их магнитных моментов в интервале температур от 80 K до 320 K (рис.4). Образец сперва охлаждался до 80 K, а затем нагревался со скоростью 2 K/мин.

Наблюдается резкое падение магнитного момента при охлаждении в области от 125 *K* до 80 *K* для 3*c*-Fe₇Se₈ и в области от 150

K до 100 K для 4c-Fe₇Se₈. Такое резкое падение магнитного момента при охлаждении говорит о протекающих в магнитных структурах образцов фазовых переходах.

Рис.3 Совмещенная рентгеновская дифрактограмма 3с-Fe₇Se₈ (красная) и 4с-Fe₇Se₈ (синяя).

Рис. 4 Сводный график температурных зависимостей магнитного момента 3c-Fe₇Se8 (черный) и 4c-Fe₇Se₈ (красный).

Для 3c-Fe₇Se₈ в области 320 - 125 K поведение магнитного момента нормальное. В области 130 - 80 K наблюдается падение магнитного момента от значения 0,40 ети/грамм до 0,29 ети/грамм при 80 K (в полтора раза). Эти данные позволяют локализовать величину и температурную область температурного перехода для 3c-Fe₇Se₈: фазовый переход протекает в области 80 - 125 K, а магнитный момент образца в результате этого перехода падает в полтора раза.

В 4c-Fe₇Se₈ область резкого падения магнитного момента лежит в интервале 150 – 100 *К*. Магнитный момент падает от максимального значения в 2,49 ети/грамм до 0,61 ети/грамм, то есть в 4,1 раза.

В третьем параграфе описано мессбауэровское исследование низкотемпературного фазового перехода в изучаемых селенидах железа.

Мессбауэровские спектры исследуемых образцов были получены в интервале 80 – 293 К. В области 100-120 К шаг составлял 10 К, в области 120-160 К шаг составлял 5 К. Полученные спектры образцов 3*c*- и 4*c*- Fe₇Se₈ при температуре 80 К представлены на рисунке 36.

Съемки в каждой температурной точке занимали от трех до шести суток.

Рис. 5 Мессбауэровские спектры 3с-Fe₇Se₈ (слева) и 4с-Fe₇Se₈ (справа) при температуре 80К.

Спектры 3c-Fe₇Se₈ описываются тремя секстетами по числу магнитных подрешеток в структуре образца, а спектры 4c-Fe₇Se₈ описываются по тому же принципу четырьмя секстетами в соответствие

с количеством неэквивалентных положений атомов железа в кристаллической структуре образцов. В 3c-Fe₇Se₈ выделяются три неэквивалентных положения: A, B и C, а в 4c-Fe₇Se₈ – четыре: A_1, A_2, B и C. Распределение неэквивалентных положений атомов железа по кристаллической структуре исследуемых соединений представлено на рис. 6. Для обоих образцов были построены кривые температурных зависимостей эффективного магнитного поля, изомерного сдвига для каждой подрешетки, а также логарифмы суммарных площадей полученных мессбауэровских спектров.

Рис. 6 Распределение неэквивалентных положений атомов железа по структуре 3c- Fe_7Se_8 (слева) и 4c- Fe_7Se_8 (справа). А-подрешетка показана красным (в 4c- $Fe_7Se_8 A_1$ и A_2 подрешетки показаны красным и оранжевым соответственно), В-подрешетка синим, С-подрешетка зеленым.

Температурные зависимости изомерных сдвигов использовались для расчета эффективной массы ионов железа в структуре образца Эффективная масса – это динамический мессбауэровский параметр, который можно получить из температурной зависимости изомерного сдвига компоненты мессбауэровского спектра [3] по формуле:

$$M_{eff} = -\frac{3}{2} \frac{k}{c \frac{dI_s}{dT}},\tag{1}$$

где k – постоянная Больцмана, c – скорость света, $\frac{dI_s}{dT}$ - производная температурной зависимости изомерного сдвига, обусловленной эффектом Доплера второго порядка.

В случае полностью ковалентной связи иона железа со своим локальным окружением в колебании участвует только ионы железа, и эффективная масса оказывается равной 57 а.е.м. В случае уменьшения степени ковалентности связи ионы железа вовлекают в колебательные процессы часть своего локального окружения, и эффективная масса оказывается больше 57 а.е.м. Результаты расчетов эффективных масс для ионов железа 3*c*-Fe₇Se₈ представлены в таблице 2.

Подрешетка	$rac{dI_s}{dT}$, MM/cK	$M_{e\!f\!f}$, а.е.м.
A	$-6,15 * 10^{-4}$	68±2
В	$-7,21 * 10^{-4}$	57±2
С	-6,72 * 10 ⁻⁴	62±2

Таблица 2. Эффективные массы ионов железа для 3с-Fe₇Se₈

Такое распределение эффективных масс ионов железа хорошо согласуется с распределением упорядоченных вакансий по структуре 3c-Fe₇Se₈. В кристаллографических плоскостях, параллельных базисной плоскости *ab* происходит взаимодействие ионов железа между собой, в то время как вдоль оси с происходит взаимодействие ионов железа с ионами селена. Как видно из рисунка 6, ионы в А-подрешетке находятся в слоях с вакансиями, что оставляет им больше места для колебаний, за счет чего они могут увлекать в своих колебаниях некоторую часть локального окружения легких (относительно селена) атомов железа. В

результате этого эффективная масса ионов железа в A-подрешетке оказывается самой большой (68 ± 2 а.е.м.). Слои, содержащие ионы B- и C-подрешеток не содержат вакансий, однако расположены между слоями, содержащими вакансии, таким образом, что в этих слоях над или под ионами C-подрешетки присутствуют вакансиии, в результате чего у ионов селена, связанных с ионами железа C-подрешетки, появляется дополнительное место для колебаний (рис. 6). Ионы C-подрешетки увлекают часть этих ионов селена в своих колебаниях и их эффективная масса оказывается равной 62 ± 2 а.е.м. Ионы B-подрешетки, в свою очередь, жестко закреплены в слое железа, а вакансий над ними нет. Эффективная масса ионов B-подрешетки таким образом оказывается равной 57 ± 2 а.е.м, то есть можно утверждать, что, в пределах точности эксперимента, ионы железа из B-подрешетки абсолютно ковалентно связаны с окружающими их ионами селена.

В 4*c*-Fe₇Se₈ ситуация оказывается схожей. Результаты расчетов эффективных масс для ионов железа 4*c*-Fe₇Se₈ представлены в таблице 3.

Подрешетка	$\frac{dI_s}{dT}$, мм/с K	М _{еff} , а.е.м.
A_1	-5,91 * 10 ⁻⁴	71±2
A_2	$-6,02 * 10^{-4}$	69±2
В	-7,0 * 10 ⁻⁴	59±2
С	-6,66 * 10 ⁻⁴	63±2

Таблица 3. Эффективные массы ионов железа для 4с-Fe₇Se₈

Эффективные массы ионов железа *А*-подрешеток 4*c*-Fe₇Se₈ оказываются в среднем на 2 а.е.м. выше, чем эффективные массы ионов железа *А*подрешетки 3*c*-Fe₇Se₈ из-за наличия в 4*c*-сверхструктуре дополнительного атомного слоя с большим количествов вакансий.

Температурные зависимости площадей мессбауэровский спектров использовались для расчетов температур Дебая для 3*c*-Fe₇Se₈ и 4*c*-Fe₇Se₈. Вероятность эффекта Мессбауэра *f* связана с температурой Дебая следующим соотношением [4]:

$$\ln f = -\frac{3E_R}{2k} \left(1 + 4 \left(\frac{T}{\theta_D} \right)^2 \int_0^{\frac{\theta_D}{T}} \frac{x dx}{e^x - 1} \right) + c, \qquad (2)$$

где *E_R* – энергия испускаемого гамма-кванта, *k* – постоянная Больцмана, θ_D - температура Дебая, *c* – аддитивная константа.

Температурные зависимости логарифмов площадей спектров аппроксимировались этим выражением и температура Дебая расчитывалась как параметр аппроксимации.

Для 3c-Fe₇Se₈ было получено значение температуры Дебая 245 \pm 3 *K*, что хорошо согласуется со значением, полученным Х.Н. Оком в работе [5]. Для 4c-Fe₇Se₈ было получено значение температуры Дебая 225 \pm 4 *K*. Литературных данных по расчетам температуры Дебая этого соединения обнаружено не было.

По ходу расчетов были построены графики температурных зависимостей изомерных сдвигов и логарифма вероятности эффекта Мессбауэра для 3*c*-Fe₇Se₈ и 4*c*-Fe₇Se₈. На графиках нет особенностей и они хорошо аппроксимируются линейными функциями. Этот факт позволяет утверждать, что в наблюдаемых соединениях в температурной области 80 – 293 К не происходит структурных изменений, так что аномалии в температурных зависимостях эффективных магнитных полей на ядрах железа в образцах селенида Fe₇Se₈ будут характеризовать исключительно особенности изменения их магнитной структуры.

Температурные зависимости эффективных магнитных полей для всех подрешеток образцов 3c-Fe₇Se₈ и 4c-Fe₇Se₈ были построены в температурном интервале $80 - 160 \ K$. Для сверхструктуры 3c-Fe₇Se₈ этот график представлен на рис. 7. Обычно температурная зависимость эффективного магнитного поля описывается функцией Бриллюэна, но на рис.7. видно, что эффективное магнитное поле A-подрешетки падает при охлаждении ниже температуры 125 K, а эффективное магнитное поле Cподрешетки испытывает рост при охлаждении нижей этой температуры, более резкий, чем ожидается от бриллюэновской функции.

В 4*c*-Fe₇Se₈ ситуация несколько отличается от наблюдаемой в 3*c* образце (рис.8). A_1 и A_2 подрешетки также имеют максимумы в окрестности точки 140 *K*, однако испытывают при дальнейшем понижении температуры более резкое падение и выражают тенденцию к выходу на «насыщение» уже в интервале 80 - 100 *K*. Эффективное магнитное поле *C*-подрешетки ведет себя аналогично эффективному

магнитному полю *C*-подрешетки образца 3c-Fe₇Se₈, однако испытывает более сильный скачок в интервале 130-140 *К*. Скачок эффективного магнитного поля *B*-подрешетки, так же как и в 3c-Fe₇Se₈, выражен слабее, чем у других подрешеток.

Рис.7 Температурная зависимость эффективных магнитных полей для подрешеток 3с-Fe₇Se₈

Рис.8 Температурная зависимость эффективных магнитных полей для подрешеток 4*c*-Fe₇Se₈

Рассмотрим факторы, которые дают вклад в эффективное магнитное поле:

$$H_{eff}(T) = H_{eff}^{B}(T) + H_{eff}^{R}(T),$$
(3)

где $H_{eff}(T)$ - экспериментально наблюдаемое эффективное магнитное поле подрешетки, $H_{eff}^B(T)$ – бриллюэновская компонента температурной зависимости эффективного магнитного поля, $H_{eff}^R(T)$ - компонента температурной зависимости эффективного магнитного поля, связанная с протекающими в исследуемых образцах 3c-Fe₇Se₈ и 4c-Fe₇Se₈ магнитными фазовыми переходами (далее – переориентационная компонента).

Для детального описания процесса спиновой переориентации необходимо проанализировать температурную зависимость величины $H_{eff}^{R}(T)$. Поскольку мессбауэровский эксперимент проводился на поликристаллических образцах, наиболее эффективным оказывается рассмотрение не самой величины эффективного магнитного поля, а ее производной по температуре. Бриллюэновская зависимость эффективного магнитного поля от температуры описывается следующим выражением [6]:

$$H_{eff}^{B}(T) = H_0 B_J(x) = H_0(\frac{4}{3} \operatorname{cth} \frac{4}{3} \frac{\alpha}{T} - \frac{1}{3} \operatorname{cth} \frac{1}{3} \frac{\alpha}{T}), \qquad (4)$$

где H_0 — эффективное магнитное поле при 0 *K*, α - постоянная. Параметры H_0 для каждой из подрешеток можно расчитать из наших экспериментальных данных, построив зависимость:

$$H_{eff}^{i}(T_{i}) = H_{0}(\frac{4}{3}\operatorname{cth}\frac{4}{3}\frac{\alpha}{T_{i}} - \frac{1}{3}\operatorname{cth}\frac{1}{3}\frac{\alpha}{T_{i}}),$$
(5)

где $H_{eff}^i(T_i)$ – значение эффективного магнитного поля каждой из подрешеток при температуре T_i , тогда сооветствующие значения H_0 и а будут получены как параметр аппроксимации экспериментально полученной кривой температурной зависимости магнитного поля бриллюэновской функцией при помощи метода наименьших квадратов. Аппроксимацию необходимо проводить по температурным точкам в области, в которой заведомо не происходит спиновая переориентация.

Для каждой подрешетки исследуемых образцов необходимо рассчитать производную соотвестующей компоненты:

$$\frac{dH_{eff}^{R}(T)}{dT} = \frac{d(H_{eff}(T) - H_{eff}^{B}(T))}{dT} = \frac{dH_{eff}(T)}{dT} - \frac{dH_{eff}^{B}(T)}{dT}.$$
 (6)

 $\frac{dH_{eff}(T)}{dT}$ Член можно рассчитать численно ИЗ имеюшихся экспериментальных температурных зависимостей эффективного $dH_{eff}^{B}\left(T\right)$ магнитного поля соответствующих подрешеток, а член рассчитывается аналитически дифференцированием по температуре выражения (4).

В конченом итоге, получается следующую формула для расчета производной переориентационной компоненты температурной зависимости эффективного магнитного поля:

$$\frac{dH_{eff}^{R}(T)}{dT} = \frac{dH_{eff}(T)}{dT} + H_0 \left(\frac{16}{9} \frac{\alpha}{T^2 (\sinh\frac{4\alpha}{3T})^2} - \frac{1}{9} \frac{\alpha}{T^2 (\sin\frac{\alpha}{3T})^2}\right).$$
 (7)

Результаты расчетов переориентационной компоненты температурной зависимости эффективного магнитного поля для 3*c*-Fe₇Se₈ представлены на рис.9.

Рис.9 Температурные зависимости производной реориентационной компоненты эффективных магнитных полей подрешеток 3c-Fe₇Se₈.

Производная температурной зависимости эффективного магнитного поля А-подрешетки меняет свой знак. Поскольку мы отделили переориентационную компоненту температурной зависимости эффективных полей, знак производной можно однозначно связать с направлением вращения магнитных моментов в ходе фазового перехода. Исходя из этого, динамика спиновой переориентации в 3c-Fe₇Se₈ описывается следующим образом: при температуре около 145 К магнитные моменты всех трех подрешеток начинают поворачиваться в одну сторону. Этот поворот не виден при измерении магнитного момента, поскольку происходит примерно с одинаковыми скоростями, однако на участке 135 – 127 К поворот магнитных моментов Сподрешетки резко ускоряется. Для компенсации этого эффекта, поворот магнитных моментов в А-подрешетке сперва замедляется, а потом, при температуре 125 К, поворачивается в противоположную сторону. Эту смену направления поворота магнитных моментов А-подрешетки мы и видим на температурной зависимости магнитного момента образца 3с-Fe₇Se₈ (рис.9). В точке 115 К магнитные моменты А-подрешетки останавливают свое вращение, но магнитные моменты В- и Сподрешеток продолжают испытывать переориентацию. При этом скорость поворота магнитных моментов В-подрешетки мала по сравнению со скоростями А- и С-подрешеток. Характерно, что при температурах ниже 115 K, магнитные моменты A- и C- подрешеток продолжают поворот к оси с, хоть этот процесс и замедляется.

Результаты расчетов переориентационной компоненты температурной зависимости эффективного магнитного поля для 4с-Fe₇Se₈ представлены на рис.10. В этом образце динамика спиновой переориентации следующая: при температуре 152 К магнитные моменты всех подрешеток поворачиваются в одну сторону, причем сильнее и быстрее всего вплоть до температуры 143 К испытывают поворот магнитные моменты A_1 -подрешетки. При температуре 138 K магнитные моменты A_{I} -И *А*₂-подрешеток меняют направление поворота относительно поворота магнитных моментов В- и С- подрешеток образца 4c-Fe₇Se₈. При этом в *B*- и *C*- подрешетках спиновая переориентация протекает медленнее и слабее, чем в А-подрешетке исследуемого соединения. При температуре 90 K поворот магнитных моментов всех подрешеток прекращается, что мы видим на температурной зависимости магнитного момента образца 4c-Fe₇Se₈ как выход на плато (рис. 4).

*Рис.10 Температурные зависимости производной переориентационной компоненты эффективных магнитных полей подрешеток 4с-*Fe₇Se₈.

Основные результаты и выводы

• Установлено, что магнитные моменты образцов исследуемых соединений при комнатной температуре различаются в 5,9 раза (0,38 ети/грамм для 3c-Fe₇Se₈ и 2,05 ети/грамм для 4c-Fe₇Se₈). Эти различия обусловлены внедрением дополнительного атомного слоя в структуру 4c-Fe7Se8 и определяют разницу магнитных структур исследуемых образцов: магнитная структура ферримагнетика 3c-Fe₇Se₈ включает в себя три магнитные подрешетки (A, B и C), а 4c-Fe₇Se₈ – четыре подрешетки (A_1 , A_2 , B и C).

• В обоих исследуемых соединеннях протекает низкотемпературный магнитный фазовый переход. В 3c-Fe₇Se₈ переход происходит в интервале температур 80 - 125 K, а в 4c-Fe₇Se₈ - 100 - 150 K.

• При помощи разработанной методики определения эффективных масс и температур Дебая по анализу температурных завимостей мессбауровских параметров (изомерных сдвигов и площади спектров) установлена связь между распределением вакансий и жесткостью связей ионов железа в магнитных подрешетках исследуемых селенидов железа. Методика расчета температуры Дебая апробирована на 3c-Fe₇Se₈. Этим методом была впервые определена температура Дебая образца 4c-Fe₇Se₈: $\theta_D = 225 \pm 4$ K.

• На основе анализа температурных зависимостей эффективных магнитных полей для каждой из подрешеток образцов 3*c*- и 4*c*-Fe₇Se₈ показано, что спиновая переориентация в образцах реализуется посредством нескольких фазовых переходов второго рода, каждый из которых представляет собой спиновую переориентацию в определенной подрешетке исследуемого образца.

• Предложена методика анализа динамики фазового перехода в каждой из подрешеток на основании анализа поведения производных температурных зависимостей небрюллиэновских компонент эффективного магнитного поля. С применением этой методики получены следующие результаты:

1) Уточнены температурные области фазовых переходов для каждой из подрешеток в 3*c*-Fe₇Se₈: в температурном интервале 160 – 138

K магнитные моменты всех подрешеток поворачиваются в одну сторону примерно с одной скоростью. Затем на интервале 138 – 128 K скорость поворта магнитных моментов B- и C-подрешеток возрастрает (в особенности, C-подрешетки). В интервале 128 – 115 K магнитные моменты A-подрешетки реагирует на такое резкое изменение ориентации моментов B- и C-подрешеток сперва замедлением скорости поворота, а затем, при температуре 125 K, поворотом в другую сторону. Ниже точки 115 K магнитные моменты A-подрешетки останавливают свою переориентацию, в то время как магнитные моменты B и C подрешеток повороты, причем магнитные моменты B-подрешетки поворачиваются медленее, чем моменты C-подрешетки.

В интервале температур 160 - 143 К магнитные моменты всех 2) поворачиваются подрешеток В одну сторону. Быстрее всего моменты A_1 -подрешетки. Магнитные поворачиваются магнитные моменты С-подрешетки повораваются примерно в два раза быстрее моментов А₂- и В-подешеток. На температурном интервале 143-138 К магнитные моменты А-подрешеток резко замедляют свой поворот, а ниже температуры 138 К поворачиваются в другую сторону. Магнитные моменты В- и С-подрешеток поворачиваются относительно равномерно, причем для С-подрешетки скорость поворота примерно в полтора раза выше скорости поворота магнитных моментов С-подрешетки. Магнитные моменты всех подрешеток этой сверхструктуры при температуре 90 К останавливают свои повороты, и фазовый переход таким образом завершается.

Список цитируемой литературы

- A. Okazaki, The superstructure of iron selenide Fe₇Se₈ // J. Phys. Soc. Jap., 1961,-T.16.-cc.1162–1170.
- 2. *K. Momma and F. Izumi*, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, *J. Appl. Crystallogr.*, 2011, T.44, cc.1272-1276.
- 3. *Y. Chen*, Mossbauer Effect in Lattice Dynamics, M.: WILEY-VCH Verlag GmbH & Co., 2007, c. 428.
- R.L. Mossbauer, W.H. Wiedermann, Nuclear resonance absorption nondopller-broadened gamma radiation in Re // Z. Phys., 1960, T.159, Вып.33, cc.33-48.
- 5. *H.N. Ok, K.S. Back, E.C. Kim,* Mössbauer study of "3c" superstructure of the ferromagnetic Fe₇Se₈ // Solid State Commun., 1993, Т. 87, Вып.12, cc.1169-1172.
- 6. В.И. Гольданский, Химические применения мессбауэровской спектроскопии, М.: «Мир», 1970.