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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Процесс диагностики большого 

числа заболеваний осуществляется с использованием микроскопической 

техники. Так, микроскопия применяется в диагностике онкологических, 

эндокринных и инфекционных заболеваний (А. В. Мордык и др., 2013, 

Е. С. Филимонова и др., 2014, Z. Xu et al., 2015). Одним из заболеваний, при 

диагностике которого также применяется микроскопическое исследование, 

является туберкулез легких (Приказ Министерства здравоохранения Российской 

Федерации от 21.03.2003 №109 «О совершенствовании противотуберкулезных 

мероприятий в Российской Федерации»). Бактериоскопическое исследование, на 

предмет наличия в мокроте пациентов кислотоустойчивых микобактерий, 

является практически единственным доступным для общей лечебной сети 

методом выявления больных туберкулезом бактериовыделителей. 

Однако качество бактериоскопической диагностики туберкулеза в 

клинико-диагностических лабораториях общей лечебной сети остается не на 

должном уровне. Это связано, в первую очередь, с довольно длительной и 

рутинной методикой просмотра микроскопических препаратов, согласно 

которой необходимо на одном препарате мокроты просмотреть от 20 до 300 

полей зрения, при этом у каждого пациента с подозрением на туберкулез 

необходимо провести данное обследование трехкратно. Во-вторых, с тем, что 

общая укомплектованность кадрами клинико-диагностических лабораторий в 

учреждениях общей лечебной сети, по данным некоторых авторов, составляет 

63%, а врачами-бактериологами – чуть более 50% (А. Г. Чередниченко и др., 

2014). Это приводит к большому числу ошибок при проведении 

бактериоскопической диагностики туберкулеза (Н. И. Мезенцева и др., 2015) и 

учреждения общей лечебной сети постепенно перестают осуществлять 

бактериоскопическую диагностику, что подтверждается тем, что доля больных 

туберкулезом, выявленных бактериоскопическим методом от впервые 

выявленных бактериовыделителей в 2014 году составила лишь 0,23% 

(Н. И. Еремеева и др., 2015). 

Использование автоматизированного анализа цифровых 

микроскопических изображений препаратов мокроты, окрашенной по методу 

Циля-Нильсена, позволит свести к минимуму перечисленные выше недостатки 

путем исключения необходимости в квалифицированном враче при проведении 

бактериоскопического обследования, исключения человеческого фактора из 

процесса диагностики и повысить эффективность выявления больных 

туберкулезом бактериоскопическим методом. 

Степень разработанности темы исследования. Вопросами 

автоматизированной бактериоскопической диагностики посвящено 

значительное число научных работ (J. J. Lewis et al., 2012, R. Santiago-Mozos et 

al., 2014, K. de Jager et al., 2014, J. Chang et al., 2012, A. Tapley et al., 2013, E. Priya 

et al., 2013), авторами которых были предложены алгоритмы сегментации 

цифровых микроскопических изображений и математические модели 

распознавания на них объектов.  
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Как правило, процесс автоматизированного анализа изображений 

представляет собой несколько этапов: предобработка изображения, его 

сегментация и идентификация или распознавание объектов, находящихся на 

изображении (В. Н. Порев, 2002, Н. Э. Косых и др., 2011, M. K. Agoston, 2005). 

Предобработка изображения заключается в его преобразовании в более удобный 

для дальнейшего анализа вид, либо в расчете характеристик изображения, с 

помощью которых осуществляется дальнейший анализ. Основной целью 

сегментации изображения является исключение тех участков изображения, 

которые не имеют ценности для дальнейшего анализа. В заключении 

производится идентификация или распознавание оставшихся после сегментации 

частей изображения (В. А. Сойфер, 1996, D. Liu et al., 2016). 

Однако, применение данных алгоритмов и математических моделей 

ограничено использованием при люминесцентной окраске мокроты и 

соответственно люминесцентной микроскопии. В Российской Федерации, как и 

во многих зарубежных странах (B. Damelin et al., 2001) для массового 

бактериоскопического выявления больных туберкулезом применяется окраска 

мокроты по методу Циля-Нильсена с использованием простой световой 

микроскопии. 

Таким образом, проблема бактериоскопической диагностики туберкулеза 

в связи с отсутствием алгоритмов и математических моделей, совокупность 

которых позволила бы сформировать автоматизированную систему анализа 

цифровых микроскопических изображений мокроты, окрашенной по методу 

Циля-Нильсена, определила цель и задачи настоящего исследования. 

Цель исследования: разработка автоматизированной системы 

бактериоскопической диагностики туберкулеза, осуществляющей анализ 

цифровых микроскопических изображений мокроты, окрашенной по методу 

Циля-Нильсена. 

Задачи исследования. 

1. Оценить качество сегментации цифровых микроскопических 

изображений мокроты, окрашенной по методу Циля-Нильсена, с применением 

известных алгоритмов обработки изображений. 

2. Разработать алгоритм сегментации цифровых микроскопических 

изображений мокроты, окрашенной по методу Циля-Нильсена, для повышения 

ее качества. 

3. Определить перечень параметров, описывающих 

кислотоустойчивые микобактерии в качестве объектов на цифровых 

изображениях, и провести их анализ. 

4. Построить математическую модель классификации объектов на 

цифровых микроскопических изображениях мокроты, окрашенной по методу 

Циля-Нильсена. 

5. Разработать требования к программно-аппаратной системе 

автоматизированной бактериоскопической диагностики туберкулеза, 

осуществляющей анализ цифровых микроскопических изображений мокроты, 

окрашенной по методу Циля-Нильсена. 
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Научная новизна исследования. В результате выполнения 

диссертационного исследования получены следующие результаты, 

характеризующиеся научной новизной: 

1. Модифицирован существующий алгоритм пороговой бинаризации 

для сегментации цифровых изображений мокроты, окрашенной по методу Циля-

Нильсена, учитывающий яркость фона изображения и позволяющий повысить 

качество сегментации цифровых изображений по сравнению с базовым 

алгоритмом пороговой бинаризации с используемым в качестве порога средним 

коэффициентом яркости изображения. 

2. Разработаны собственные алгоритмы сегментации цифровых 

микроскопических изображений мокроты, окрашенной по методу Циля-

Нильсена: алгоритмы сегментации с использованием многослойной 

искусственной нейронной сети, самоорганизующейся карты Кохонена и 

вейвлет-преобразования Mexican Hat. 

3. Проведено формализованное описание оптических (цветовых) и 

геометрических (морфометрических) свойств, а также вариаций данных свойств 

кислотоустойчивых микобактерий, как объектов на цифровых изображениях 

мокроты, окрашенной по методу Циля-Нильсена. 

4. Разработан метод оценки информативности параметров для их 

отбора и последующего применения в классификационных математических 

моделях. Разработанный метод «пересечений» позволяет получить 

максимальный результат классификации при наименьшем числе используемых 

в модели классификации параметров. 

5. Построена математическая модель искусственной нейронной сети, 

которая позволяет классифицировать объекты, выделяемые на цифровых 

микроскопических изображениях мокроты, окрашенной по методу Циля-

Нильсена, в качестве кислотоустойчивых микобактерий и иных объектов. 

6. Формализован способ определения значений морфометрических 

параметров объектов, выделяемых на микроскопических изображениях 

мокроты, окрашенной по методу Циля-Нильсена, пригодных для классификации 

с применением разработанных математических моделей при изменении 

увеличения и разрешения цифровой съемки изображений. 

7. Разработаны требования, предъявляемые к автоматизированной 

системе бактериоскопической диагностики туберкулеза легких, осуществляемой 

путем сегментации изображений и распознавании объектов на основе 

разработанных алгоритмов и математических моделей. 

Теоретическая и практическая значимость работы. Разработанные и 

модифицированные алгоритмы сегментации цифровых изображений могут 

применяться в различных задачах компьютерного распознавания цифровых 

изображений, в том числе микроскопических. Метод «пересечений» может быть 

использован для отбора признаков при решении задач классификации объектов 

с применением различных математических классификационных моделей, таких 

как: логистическая регрессия, деревья классификации и дискриминантные 

уравнения. 
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Представленное описание морфометрических и цветовых характеристик 

кислотоустойчивых микобактерий как объектов на цифровых изображениях и 

методики определения морфометрических параметров объектов, выделяемых 

при микроскопии с различным увеличением и различным разрешением 

цифровой съемки изображений, позволяют разрабатывать автоматизированные 

системы анализа микроскопических изображений сторонними разработчиками 

без проведения изучения данных объектов. 

Предложенные в работе методы сегментации изображений, модели 

распознавания объектов, а также схема и требования к программно-аппаратной 

системе составляют основу построения интеллектуальной системы 

автоматизированной бактериоскопической диагностики туберкулеза, 

основанной на автоматизированном анализе цифровых микроскопических 

изображений мокроты, окрашенной по методу Циля-Нильсена. 

Положения, выносимые на защиту: 

1. Применение существующих, широко описанных в литературе 

методов сегментации цифровых изображений позволяет осуществлять 

сегментацию цифровых микроскопических изображений мокроты, окрашенной 

по методу Циля-Нильсена, для выделения объектов на данном типе изображений 

только при применении алгоритмов пред- и/или постобработки. 

2. Применение метода сегментации, основанного на вейвлет-

преобразовании Mexican Hat цифрового изображения, позволяет осуществлять 

исключение с микроскопического изображения мокроты, окрашенного по 

методу Циля-Нильсена, частей не требующих дальнейшего анализа, и выделение 

объектов, потенциально являющихся кислотоустойчивыми микобактериями. 

3. Разработанный метод «пересечений», по сравнению с методами 

оценки информативности, позволяет получить лучшее качество классификации 

объектов при меньшем числе входящих в классификационную модель 

признаков. 

4. Построенная математическая модель искусственной нейронной сети 

для классификации объектов позволяет осуществлять их распознавание на 

цифровых изображениях мокроты, окрашенной по методу Циля-Нильсена. 

5. Применение программно-аппаратного комплекса 

автоматизированной бактериоскопической диагностики туберкулеза, 

соответствующего предъявляемым требованиям, позволяет выполнять 

бактериоскопическую диагностику туберкулеза с минимальным участием 

человека, а также повышает эффективность выявления больных туберкулезом 

бактериоскопическим методом. 

Степень достоверности результатов исследования. Достоверность 

исследования обеспечена корректностью применения современных методик 

сбора и обработки исходной информации, правильным подбором объектов 

наблюдения, достаточным объемом исследуемой выборочной совокупности, 

использованием апробированного математического аппарата, 

непосредственным участием автора в получении исходных данных и результатов 

исследования, и подтверждается проверкой, обсуждением результатов 



7 

 

исследования на международных и всероссийских научных конференциях, 

публикациями результатов исследования в рецензируемых научных изданиях. 

Внедрение результатов работы в практическое здравоохранение. 
Результаты работы внедрены в технологический и производственный процессы 

ОАО «НПП «Радиосвязь», в производственный процесс разработки 

телемедицинских систем КГБУЗ «Красноярский краевой медицинский 

информационно-аналитический центр», в работу бактериологической 

лаборатории КГБУЗ «Красноярский краевой противотуберкулезный диспансер 

№ 1». Также результаты исследования внедрены в учебный процесс кафедр 

медицинской кибернетики и информатики, микробиологии им. доц. Б.М. 

Зельмановича ФГБОУ ВО КрасГМУ им. проф. В.Ф. Войно-Ясенецкого 

Минздрава России, а также кафедры высшей и прикладной математики 

Института математики и фундаментальной информатики ФГАОУ ВО 

«Сибирский федеральный университет». 

Методология и методы исследования. Для решения указанных задач в 

работе использованы методы лабораторных исследований, математического и 

компьютерного моделирования, математической статистики, системного 

анализа, оценки информативности.  

Апробация работы. Основные положения диссертации доложены и 

обсуждены на:  

1. IV Конгрессе Национальной ассоциации фтизиатров (г. Санкт-

Петербург, 19-21.11.2015 г.) – победа в «Конкурсе молодых ученых – 2015» в 

номинации «Молодой кандидат наук»; 

2. IV ежегодной научной конференции, организованной 

Новосибирским НИИ туберкулеза Минздрава России и посвященной Дню 

Российской науки (г. Новосибирск, 08.02.2016 г.) – победа в конкурсе научных 

работ в номинации «Оригинальность решения поставленной задачи»; 

3. Научно-практической конференции с международным участием 

«Туберкулёз: инновационные решения – от идеи до практики», посвящённой 

памяти основателя Сибирской школы фтизиатров, члена-корреспондента РАМН 

Игоря Григорьевича Урсова (г. Новосибирск, 15-17.06.2017 г.); 

4. VI конгрессе Национальной ассоциации фтизиатров (г. Санкт-

Петербург, 23-25.10.2017 г.);  

5. VI Ежегодной молодежной научной конференции с международным 

участием, посвящённой Дню Российской науки «Туберкулез: последние 

достижения и тенденции» (г. Новосибирск, 09.02.2018 г.). 

Личный вклад автора. Диссертация является результатом 

самостоятельной научно-исследовательской работы, выполненной на кафедре 

медицинской кибернетики и информатики ФГБОУ ВО КрасГМУ им. проф. В.Ф. 

Войно-Ясенецкого» Минздрава России по основному плану НИР, номер 

государственного учета – АААА-А19-119031990021-0. Автором лично 

выполнен весь объем исследования, выполнен обзор отечественной и 

иностранной литературы по изучаемой проблеме, проведен логический и 

статистический анализ результатов исследования, разработаны алгоритмы, 
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математические модели и программы для ЭВМ, сформулированы выводы и 

практические рекомендации, оформлена диссертация и автореферат. 

Соответствие диссертации паспорту специальности. Диссертация 

соответствует паспорту специальности 03.01.09 Математическая биология, 

биоинформатика, пп. 6. Компьютерное распознавание и синтез изображений в 

биологических и медицинских исследованиях; 8. Математические модели, 

численные методы и программные средства применительно к процессам 

получения, накопления, обработки и систематизации биологических и 

медицинских данных и знаний; 12. Решение задач медицинской диагностики, 

прогнозирования исходов заболеваний, оценки эффективности медицинских 

вмешательств и технологий с помощью математического аппарата и 

вычислительных алгоритмов. 

Публикации по теме диссертации. По теме диссертации опубликовано 

34 работы, в том числе в рецензируемых научных изданиях – 23, свидетельств о 

регистрации программ для электронно-вычислительных машин (ЭВМ) – 7. 

Объем и структура диссертации. Диссертация изложена на 280 

страницах машинописного текста (266 страниц без приложений) и состоит из 

введения, обзора литературы, материалов и методов, 4 глав собственных 

исследований, заключения, выводов, практических рекомендаций, списка 

сокращений и условных обозначений, списка литературы и списка 

иллюстративного материала. Иллюстрирована 23 таблицами и 71 рисунком. 

Библиографический указатель включает 129 отечественных и 247 зарубежных 

источников. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

В первой главе при использовании данных отечественной и зарубежной 

литературы представлен анализ эпидемиологической ситуации по туберкулезу в 

Российской Федерации и подходов к выявлению данного заболевания среди 

населения, использования компьютерных и математических технологий в 

медицине, применения изображений в медицинской практике, а также этапов 

автоматизированного анализа изображений.  

Во второй главе представлены материалы и методы, применяемые при 

проведении исследования. На первом этапе осуществлялся анализ возможности 

применения существующих алгоритмов для сегментации цифровых 

изображений мокроты, окрашенной по методу Циля-Нильсена, после чего 

производилась разработка собственных алгоритмов сегментации изображений 

данного класса. На данном этапе исследования использовалась 1000 цифровых 

изображений, полученных при микроскопии мазков мокроты, окрашенной по 

методу Циля-Нильсена. Мазки изготавливались из мокроты пациентов с 

подозрением на туберкулез. Обработка мокроты методом Циля-Нильсена 

подразумевает обработку мокроты карболовым фуксином с дальнейшим 

обесцвечиванием 5% раствором серной кислоты или 3% солянокислым спиртом 

и докрашиванием 0,25% раствором метиленового синего. Микроскопия 

производилась с помощью тринокулярного микроскопа Микромед 1 вар. 3-20 

при увеличении 10×60 с установленной цифровой камерой ToupCam 

UCMOS01300KPA с разрешением 0,3 мегапикселя (MP). Каждое изображение 
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имело разрешение 572х422 пикселей. Анализ времени выполнения алгоритмов 

на данном этапе осуществлялся на персональном компьютере со следующими 

характеристиками: процессор Intel® Core™ i5-3330S 2,70 GHz, оперативная 

память 4,00 ГБ, 32-разрядная операционная система Microsoft Windows 7 

Корпоративная Service Pack 1. 

На втором этапе осуществлялось изучение параметров объектов, 

выделенных с помощью вейвлет-преобразования Mexican Hat (Мексиканская 

шляпа). На данном этапе также осуществлялся отбор признаков для дальнейшей 

классификации объектов с применением методов оценки информативности и 

разработанного метода «пересечений». Материалом на данном этапе 

исследования явились 343 687 объекта. Среди выделенных объектов 6 708 

объектов являлись кислотоустойчивыми микобактериями, а 336 979 объектов – 

иными объектами (артефакты, скопления мокроты, части клеток и т.д.). 

Изучение объектов производилось по 240 цветовым и морфометрическим 

признакам. Данные признаки разделены на 3 группы, которые подразделяется на 

подгруппы. Для анализа использована следующая классификация признаков: 

1. Основные морфометрические признаки объектов: 

а) попиксельная площадь объектов (в пикселях); 

б) размер объектов по оси X (в пикселях); 

в) размер объектов по оси Y (в пикселях). 

2. Радиальные размеры объектов и их соотношения: 

а) размеры от центра объекта до его края (всего 72 параметра); 

б) соотношения противолежащих размеров от центра объекта до 

его края (всего 36 параметров); 

в) соотношения перпендикулярных размеров от центра объекта 

до его края (всего 72 параметра); 

г) соотношения перпендикулярных размеров от одного края 

объекта до его противоположного края (всего 36 параметров). 

3. Цветовые признаки объектов: 

а) характеристики цвета объектов в цветовой схеме RGB (всего 9 

параметров); 

б) характеристики цвета объектов в цветовой схеме HSV (всего 9 

параметров); 

в) характеристики цвета объектов в оттенках серого (всего 3 

параметра).  

На третьем этапе исследования осуществлялось построение моделей 

классификации объектов на два класса: кислотоустойчивые микобактерии и 

иные объекты. Так, входными данными для разрабатываемых 

классификационных моделей являлись 235 морфометрических признака, а 

выходными – класс объекта (кислотоустойчивые микобактерии или иные 

объекты). Часть измеряемых признаков не использовалась ввиду того, что у всех 

анализируемых объектов, 5 признаков были константами. Для уравновешивания 

априорной вероятности и важности объектов обоих классов при построении 

моделей классификации производилось случайное размножение объектов, 

являющихся кислотоустойчивыми микобактериями, что является одним из 
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стандартных подходов ресемплинга для построения классификационных 

моделей при существенно различающихся объемах классов (H. He et al., 2009, D. 

Mease et al., 2007). Таким образом, построение моделей осуществлялось на 

данных о 341 370 объектах: 170 685 – случайных образом размноженных из 6 708 

кислотоустойчивых микобактерий и 170 685 – иных объектов. 

На заключительном четвертом этапе исследования осуществлялась 

разработка требований к программно-аппаратной системе автоматизированной 

бактериоскопической диагностики туберкулеза и ее прототипов. На данном 

этапе исследования материалом служили нормативные требования к процессу 

бактериоскопической диагностики туберкулеза, установленные приказом 

Министерства здравоохранения Российской Федерации от 21.03.2003 №109 «О 

совершенствовании противотуберкулезных мероприятий в Российской 

Федерации», а также возможности разработанных на предыдущем этапе 

алгоритмов и математических моделей. Тестирование прототипа программной 

части программно-аппаратной системы осуществлялось на 10 459 цифровых 

микроскопических изображениях мокроты, окрашенной по методу Циля-

Нильсена, полученных с использованием 80 микроскопических препаратов 

мокроты пациентов с подозрением на туберкулез легких. Из 80 

микроскопических препаратов при проведении простой световой микроскопии в 

40 препаратах было установлено наличие кислотоустойчивых микобактерий, в 

40 препаратах – наличие кислотоустойчивых микобактерий не установлено. 

На каждом из четырех этапов исследования использовались различные 

методы. На первом этапе исследования при анализе возможностей 

существующих методов для сегментации цифровых изображений мокроты, 

окрашенной по методу Циля-Нильсена применялись следующие алгоритмы 

сегментации:  

1. пороговая бинаризация со средней яркостью в качестве порога 

(В. Н. Порев, 2002);  

2. метод бинаризации Оцу (N. Otsu, 1979);  

3. детектор границ Робертса (A. Rosenfeld, 1981);  

4. детектор границ Собеля (X. Wang, 2007);  

5. детектор границ Превитта (A. K. Cherri et al., 1989);  

6. детектор границ Робинсона (G. Robinson, 1977);  

7. детектор границ Кенни (J. F. Canny, 1986);  

8. детектор углов Харриса (C. Harris et al., 1988);  

9. Features from Accelerated Segment Test (FAST-алгоритм) (E. Rosten et 

al., 2006);  

10. функция поиска контуров библиотеки OpenCV (В. В. Воронин и др., 

2013, М. И. Сорокин, 2017, A. Kaehler, 2016).  

Все алгоритмы были реализованы в среде Matlab, ImageJ или в 

собственных программах для ЭВМ, разработанных на языке программирования 

Object Pascal. На данном этапе осуществлялась визуальная оценка качества 

сегментации изображений. 

Для разработки собственных алгоритмов сегментации цифровых 

изображений мокроты использовался математически аппарат искусственной 
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нейронной сети, самоорганизующейся карты Кохонена и вейвлет-

преобразования Mexican Hat (Мексиканская шляпа) (F. Jin et al., 2014). Для этого 

использовались цветовые модели RGB и HSV. Исходя из значений цвета каждого 

пикселя каждого анализируемого изображения рассчитывались следующие 

параметры пикселей: значение красного цвета пикселя согласно цветовой 

модели RGB (R), значение зеленого цвета пикселя согласно цветовой модели 

RGB (G), значение синего цвета пикселя согласно цветовой модели RGB (B), 

значение коэффициента яркости пикселя (Y), значение оттенка пикселя согласно 

цветовой модели HSV (H), значение насыщенности цвета пикселя согласно 

цветовой модели HSV (S), значение яркости пикселя согласно цветовой модели 

HSV (V). Построение искусственной нейронной сети для сегментации цифровых 

изображений производилось с использованием статистического пакета StatSoft 

Statistica v.6 путем нескольких итераций обучения методом обратного 

распространения ошибки.  

Метод сегментации основанный на самоорганизующейся карте Кохонена, 

реализован на графическом процессоре по технологии CUDA и обучен на 

фрагментах изображений размером 10x10 пикселей, вырезанных из 

микроскопических снимков, полученных на первом этапе исследования. Для 

формирования набора обучающих фрагментов изображений выполнялся проход 

окном размером 10x10 пикселей с шагом 5 пикселей по 30 микроскопическим 

снимкам мокроты. Всего набор обучающих фрагментов состоял из 8 314 952 

образцов. Обучение самоорганизующейся карты Кохонена и сегментация 

микроскопических изображений выполнялись на персональном компьютере со 

следующими характеристиками: процессор Intel® Core™ i5-7500 3,40 GHz, 

оперативная память 16 ГБ, видеокарта GeForce GTX 1050Ti, твердотельный 

накопитель Intel 545s объемом 256Гб, 64-разрядная операционная система 

Ubuntu Server 17.10. 

Для автоматизированной сегментации изображений также использовалось 

следующее двумерное вейвлет-преобразование (Mexican Hat Wavelet): 

𝜑(𝑥, 𝑦) =
1

𝜋𝜎2
∗ (1 −

1

2
∗

𝑥2+𝑦2

𝜎2 ) ∗ 𝑒
−

1

2
∗

𝑥2+𝑦2

𝜎2 ,     (1) 

где x – координата пикселя по оси X, y – координата пикселя по оси Y, φ (x, y) – 

значение цвета преобразованного пикселя с координатами x и y, π – число Пи (≈ 

3,142…), e – число Эйлера (≈ 2,718…), σ – стандартное отклонение. 

Единственным параметром данного вейвлет-преобразования, который 

может изменяться в зависимости от задачи применения данного преобразования, 

является параметр σ. Для подбора оптимального значения параметра σ проведено 

преобразование всех изображений вейвлетом Mexican Hat (Мексиканская шляпа) 

с использованием значений σ в диапазоне от 2,0 до 4,0 с шагом 0,01.  

Для оценки оптимальности подбора значения параметра σ использовались: 

среднее число объектов, выделенных на изображениях после преобразования, 

доля пропущенных кислотоустойчивых микобактерий на изображениях от 

имеющихся на них кислотоустойчивых микобактерий и следующие критерии 

оценки качества сегментации изображений: критерий однородности 

(M. D. Levine et al., 1985), комплексные критерии F, F’ и Q (M. Borsotti et al., 
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1998, J. Liu et al., 1994). Оптимальными значениями параметра σ считались 

значения, при которых получаемые изображения имели наименьшее среднее 

число объектов после преобразования, наименьшую долю пропущенных 

кислотоустойчивых микобактерий на всех изображениях от имеющихся на них 

кислотоустойчивых микобактерий, наибольшее среднее значение критерия 

однородности для анализируемых цветовых признаков и наименьшие средние 

значения критериев F, F’ и Q. Для реализации данного этапа разметка 

(определение кислотоустойчивых микобактерий на изображениях) цифровых 

микроскопических изображений мокроты, окрашенной по методу Циля-

Нильсена, осуществлялась с использованием программы «Разметка цифровых 

микроскопических изображений мокроты» (свидетельство о регистрации 

программы для ЭВМ в Федеральной службе по интеллектуальной собственности 

№2018664451 от 16.11.2018 г.).  

На втором этапе исследования осуществлялся анализ параметров 

кислотоустойчивых микобактерий, совершалась оценка информативности 

данных признаков, а также производилась разработка метода «пересечений» для 

отбора признаков для моделей классификации. Для описания цветовых 

характеристик объектов рассчитывались: среднее арифметическое (M), 

среднеквадратическое отклонение (σ), коэффициент вариации (Vσ) и 

коэффициент осцилляции (VR). Для морфометрических характеристик объектов 

рассчитывались: M и σ по всем объектам. 

Оценка информативности признаков изучаемых объектов осуществлялась 

с помощью методов накопленных частот, Шеннона, Кульбака, Фишера и 

ранговый метод (В. В. Быкова и др., 2016, Н. Г. Загоруйко, 1999, 

С. И. Колесникова, 2009, С. Кульбак, 1967, Е. А. Шлыкова и др., 2014, 

С. А. Айвазян и др., 1989, К. Шеннон, 1963). После определения 

информативности всех признаков формировался упорядоченный список, в 

котором на первом месте находился признак с наибольшей информативностью, 

а на последнем месте – признак с наименьшей информативностью.  

Сравнение результатов отбора признаков с использованием методов 

оценки информативности осуществлялось следующим образом. На первом шаге 

использовался один параметр объектов, который имел максимальную 

информативность по каждому из приведенных выше методов. С использованием 

данного параметра осуществлялось построение различных классификационных 

моделей для идентификации объектов, по результатам которой оценивалась 

точность классификации (%).  

На следующем шаге использовались два параметра, которые имели 

наибольшую информативность по каждому из методов оценки информативности 

с последующим повторением процедуры построения классификационных 

моделей. Таким образом, на завершающем этапе использовались 15 параметров 

объектов, которые по результатам применения каждого из методов оценки 

информативности имели большую ценность для идентификации объектов. В 

качестве классификационных моделей использовались методы: логистической 

регрессии, дерева классификации и дискриминантный анализ. Построение 

данных моделей осуществлялось в аналитической системе RapidMiner Studio 
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v.8.2. Наилучшим методом отбора признаков для идентификации объектов 

считался метод, с использованием которого было получено максимальное 

значение точности классификации при минимальном числе параметров, 

входящих в классификационные модели. 

На третьем этапе исследования осуществлялась разработка 

математических моделей классификации выделенных на предыдущих этапах 

объектов на 2 класса: класс кислотоустойчивых микобактерий и класс иных 

объектов. В качестве моделей классификации были рассмотрены логистические 

регрессионные уравнения, деревья классификации, трехслойная и 

четырехслойная нейронные сети прямого распространения. Построение данных 

моделей осуществлялось в статистической системе IBM SPSS Statistics v.19. 

Отбор признаков для включения в уравнение логистической регрессии 

осуществлялся с помощью следующих 7 методов: enter, включение (условное), 

включение (Вальда), включение (отношение правдоподобия), исключение 

(условное), исключение (Вальда), исключение (отношение правдоподобия). 

Формирование деревьев классификации осуществлялось с применением 4 

методов построения: CHAID, Исчерпывающий CHAID, CRT и QUEST. При 

построении деревьев классификации использовались следующие условия: 

минимальное число объектов в родительском узле – 500, в дочернем узле – 100. 

Построение математических моделей трехслойной и четырехслойной 

искусственной нейронной сети осуществлялось по следующему принципу. На 

первой итерации в качестве входных параметров искусственной нейронной сети 

использовались все 235 измеряемых у объектов признаков. После построения 

нейронной сети и оценки качества классификации проводился анализ важности 

входных параметров искусственной нейронной сети. На следующей итерации 

построения искусственной нейронной сети использовались уже 234 признака с 

исключением из перечня входного параметра, который имел наименьшую 

важность. Таким образом, последняя итерация построения осуществлялась с 

применением одного входного признака, не исключенного на предыдущих 

итерациях. При построении искусственных нейронных сетей использовался 

автоматический выбор архитектуры с минимальным числом нейронов в скрытых 

слоях – 1, максимальным – 50. Для построения приведенных математических 

моделей использовалось 70% объектов, а для тестирования – 30%. Оценка 

качества классификации полученными моделями осуществлялась на основании 

ошибки классификации, как на обучающей, так и на тестовой выборке, а также с 

использованием показателей чувствительности, специфичности.  

На четвертом этапе осуществлялась разработка схемы работы и 

требований, предъявляемых к программно-аппаратному комплексу 

автоматизированной бактериоскопической диагностики туберкулеза. Для 

реализации данного этапа использовались методы декомпозиции и 

формализованного представления систем (структурно-логического 

моделирования, логический и графический), являющиеся методами системного 

анализа. Ввиду того, что окончательная разработка и применение 

автоматизированных систем бактериоскопической диагностики туберкулеза 

может осуществляться в различных условиях, зависящих от типа осветителя, 
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различных параметров резкости цифровой камеры, дефектов окраски, для 

повышения воспроизводимости результатов предложенных методов были 

сформированы допустимые границы характеристик цифровых изображений, 

которые могут анализироваться с применением разработанных методов. В 

качестве таких характеристик использовались: средний коэффициент яркости, 

абсолютная и относительная яркостная контрастность, тоновая контрастность, 

тоновая насыщенность (Н. Г. Захарченко и др., 2018), размытость изображения 

(Д. Г. Асатрян, 2017) и цветовая температура (C. S. McCamy, 1992). 

В третьей главе представлены результаты применения существующих 

методов для сегментации цифровых микроскопических изображений мокроты, 

окрашенной по методу Циля-Нильсена, разработки собственных методов 

сегментации, а также результаты сравнения работы данных алгоритмов 

сегментации. Для оценки качества сегментации изображений оценивались 

возможность использования сегментированных на изображении объектов для 

дальнейшего распознавания. На рисунке 1 приведено оригинальное цифровое 

микроскопическое изображение мокроты, окрашенной по методу Циля-

Нильсена, на котором будут иллюстрироваться примеры применения методов 

сегментации.  

 

 
Рисунок 1 – Оригинальное цифровое микроскопическое изображение мокроты, 

окрашенной по методу Циля-Нильсена 

 

При использовании методов пороговой бинаризации с выбранной в 

качестве порога бинаризации средней яркостью изображения и метода 

бинаризации Оцу были получены изображения, приведенные на рисунке 2. 
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Рисунок 2 – Бинаризованные изображения: а – с применением пороговой 

бинаризации с выбранной в качестве порога средней яркости изображения, б – 

с применением метода бинаризации Оцу 

 

На рисунке 2а видно, что в результате пороговой бинаризации с выбранной 

в качестве порога средней яркостью изображения исключается значительная 

часть изображения. При этом мелкие объекты на цифровом изображении после 

использования данной бинаризации неотделимы от оставшегося фона, что не 

позволяет использовать результаты такой сегментации для дальнейшего 

распознавания объектов без дополнительной обработки.  

Применение алгоритма бинаризации Оцу (рисунок 2б) дает визуально 

более лучший результат с более четкими границами сегментированных 

объектов, но его использование для сегментации цифровых изображений 

мокроты, окрашенной по методу Циля-Нильсена также не представляется 

возможным ввиду представленных недостатков алгоритма простой пороговой 

бинаризации.  

Использование детекторов границ, таких как: операторы Робертса, Собеля, 

Превитта, Робинсона и Кенни (рисунок 3) дают результаты, использование 

которых в качестве сегментированного изображения для дальнейшего 

распознавания объектов также не представляется возможным.  

Объекты на изображениях имеют довольно маленькие размеры и 

использование приведенных выше детекторов границ приводит к слиянию 

выделенных границ объектов, что не позволяет выделить объекты для 

дальнейшего распознавания. Кроме того, у многих объектов границы 

выделяются не полностью, что требует дополнительного применения 

алгоритмов, замыкающих данные границы для выделения целого объекта, а не 

его части. Применение операторов Собеля, Превитта и Робинсона (рисунок 3) 

дает визуально практически один и тот же результат, использование которого, 

ввиду слияния большого числа границ, не представляется возможным. Довольно 

четкие и однообразные по яркости границы позволяет получить применение 

оператора Кенни. Однако, как уже было отмечено выше, многие границы имеют 

незавершенный характер, что затрудняет использование получаемых 

результатов для дальнейшего распознавания объектов. 

 

 б 
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Рисунок 3 – Преобразованные изображения с применением: а – оператора 

Робертса, б – оператора Собеля, в – оператора Превитта, г – оператора 

Робинсона, д – оператора Кенни 

 

Использование детектора углов Харриса, FAST-алгоритма и функции 

поиска контуров также дает неудовлетворительный результат при визуальной 

оценке полученных изображений (рисунок 4). Так детектор углов Харриса 

позволяет выделить только довольно четко очерченные границы, которые как 

правило на цифровых микроскопических изображениях мокроты, окрашенной 

по методу Циля-Нильсена отсутствуют. FAST-алгоритм позволил получить 

лишь более контрастное изображение представленное в оттенках серого, а 

функция поиска контуров библиотеки OpenCV позволила оставить на 

изображении лишь довольно четкие объекты, имеющиеся на цифровом 

изображении, и зачастую незавершенные контуры, которые требуют 

дополнительного применения алгоритмов их замыкания. 

Полученные результаты свидетельствуют о том, что применение 

представленных алгоритмов невозможно без дополнительной пред- или 

постобработки цифровых микроскопических изображений мокроты, 

окрашенной по методу Циля-Нильсена, что несомненно увеличит число 

проходов по изображению и, соответственно, время сегментации таких 

а б 

в г 

д 
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изображений. В связи с этим необходима модификация существующих или 

разработка новых алгоритмов, позволяющих осуществлять сегментацию 

используемого класса изображений с минимальным числом проходов по 

изображению и, соответственно, минимальным временем выполнения. 

 

 
Рисунок 4 – Преобразованное изображение с применением: а – детектора углов 

Харриса, б – FAST-алгоритма, в – функции поиска контуров библиотеки 

OpenCV 

 

В ходе исследования произведена модификация алгоритма пороговой 

бинаризации цифровых изображений. Первая модификация заключалась в 

конвертации цветного изображения в изображение в оттенках серого. Для этого 

использовался не классический подход с определением яркости пикселей, а все 

три цветовых составляющих каждого пикселя приравнивались к наибольшему из 

значений цветовой схемы. В таком случае получаемое в оттенках серого 

изображение обладает большей контрастностью, чем при использовании 

классического подхода. Второй модификацией классического метода пороговой 

бинаризации является выбор порогового значения.  

Предложено определять пороговое значение коэффициента яркости 

исходя из предположения, что на изображении большую площадь занимает фон 

и среднее арифметическое яркости определяемое на одном из предыдущих 

этапов смещается в сторону яркости фона. В связи с этим определение пороговой 

яркости предлагается осуществлять следующим образом: 

𝑦порог = 𝑌 − 𝜎,       (2) 

где yпорог – пороговое значение яркости, Y – среднее арифметическое яркости 

изображения, σ – стандартное отклонение яркости изображения. 

Итогом применения модифицированного алгоритма бинаризации является 

сегментированное изображение, представленное на рисунке 5.  

а б 

в 
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Рисунок 5 – Бинаризованные изображения с применением пороговой 

бинаризации с выбранной в качестве порога разностью между средней 

яркостью изображения и стандартным отклонением яркости изображения 

 

Сравнение результатов сегментации с использованием данного алгоритма 

с результатами применения не модифицированного метода пороговой 

бинаризации (рисунок 2) свидетельствует о том, что выбор в качестве порога 

разности между средней яркостью и стандартным отклонением яркости 

изображения позволяет получить более ограниченные и контрастные объекты, 

но при использовании данного подхода к сегментации цифровых 

микроскопических изображений мокроты, окрашенной по методу Циля-

Нильсена, также крупные объекты являются неотделимыми от более мелких.  

В результате реализации данного этапа исследования разработана 

программа для ЭВМ «Компьютерная система выделения объектов на цифровых 

изображениях микроскопических препаратов» (свидетельство о регистрации 

программы для ЭВМ в Федеральной службе по интеллектуальной собственности 

№2016619934 от 01.09.2016 года).  

В последующем был разработан алгоритм сегментации с применением 

математического аппарата искусственной нейронной сети. Работа алгоритма 

осуществляется исходя из цветовых значений пикселей в цветовой схеме HSV. 

Задача сегментации изображения с применением данного алгоритма сводится к 

подбору минимальных и максимальных границ параметров H, S и V, внутри 

которых пиксели относятся к классу объектов кислотоустойчивых 

микобактерий, а за пределами, которых – к другим объектам на изображении. 

Большинство из этих границ в процессе исследования установлены 

экспериментально путем ручного подбора. Однако, нижние границы H и S 

экспериментально установить не удалось.  

В качестве математического аппарата разрабатываемого алгоритма 

сегментации изображения была принята математическая модель искусственной 

многослойной нейронной сети прямого распространения. В качестве входов 

нейронной сети рассматривался 191 параметр, который был получен на каждом 

изображении (таблица 1).  

В качестве выходов нейронной сети использовались вручную 

подобранные на каждом изображении нижние границы H и S, при использовании 
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которых на изображении оставались только кислотоустойчивые микобактерии 

или объекты, по визуальным характеристикам похожие на них. Следовательно, 

производилось построение двух нейронных сетей. Первая для подбора на основе 

191 параметра нижней границы H, вторая – нижней границы S. 

 

Таблица 1 – Рассчитываемые на каждом изображении параметры 

Параметры Количество 

параметров 

Средние значения R, G, B, Y, H, S и V 7 

Стандартные отклонения значений R, G, B, Y, H, S и V 7 

Дисперсия значений R, G, B, Y, H, S и V 7 

Минимальные значения R, G, B, Y, H, S и V 7 

Максимальные значения R, G, B, Y, H, S и V 7 

Гистограмма значений R с интервалом 10 единиц 25 

Гистограмма значений G с интервалом 10 единиц 25 

Гистограмма значений B с интервалом 10 единиц 25 

Гистограмма значений Y с интервалом 10 единиц 25 

Гистограмма значений H с интервалом 10 единиц 36 

Гистограмма значений S с интервалом 10 единиц 10 

Гистограмма значений V с интервалом 10 единиц 10 

Всего параметров изображения 191 

 

Для подбора нижней границы H после 12 итераций обучения и удаления из 

перечня входных параметров всех параметров имеющих низкую важность, а 

также подбора наиболее оптимальной топологии была получена следующая 

нейронная сеть: число нейронов входного слоя – 14, число нейронов скрытого 

слоя – 14, число нейронов выходного слоя – 1. В качестве функции активации 

нейронов скрытого слоя использована функция гиперболический тангенс, а в 

качестве функции активации нейрона выходного слоя использована 

экспоненциальная функция. Точность подбора нижней границы H с 

применением данной нейронной сети составила 98,5%, относительная ошибка – 

1,5%. 

На следующем этапе осуществлялось построение нейронной сети для 

подбора нижней границы S. После 24 итераций обучения и удаления из перечня 

входных параметров всех параметров имеющих низкую важность, а также 

подбора наиболее оптимальной топологии была получена следующая нейронная 

сеть: число нейронов входного слоя – 8, число нейронов скрытого слоя – 7, число 

нейронов выходного слоя – 1. В качестве функции активации нейронов скрытого 

слоя также, как и при построении первой нейронной сети использована функция 

гиперболический тангенс, а в качестве функции активации нейрона выходного 

слоя использована синусоидная функция. Точность подбора нижней границы S 

с применением данной нейронной сети составила 90,8%, относительная ошибка 

– 9,2%. На основе результатов, полученных в ходе реализации данного этапа 

исследования, была разработана программа «NeuroSegment» (свидетельство о 
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регистрации программы для ЭВМ в Федеральной службе по интеллектуальной 

собственности №2018664587 от 19.11.2018 г.).  

Следующим разработанным алгоритмом сегментации является метод с 

использованием самоорганизующейся карты Кохонена. Для сегментации 

цифровых изображений была обучена самоорганизующаяся карта Кохонена, 

состоящая из 1024 нейронов, расположенных в виде прямоугольной сетки с 

ребром в 32 нейрона. Каждый нейрон имел 300 весов, расположенных в памяти 

видеокарты. Для создания глобального упорядочивания карты было произведено 

предварительное сглаживание в течение 1 эпохи со сглаживающим ядром, 

имеющим ширину окрестности равной 2/3 размера карты. Каждый обучающий 

фрагмент преобразовывался в вектор, состоящий из 300 компонент, которые 

содержат R, G, B составляющие цвета пикселей данного фрагмента (10 х 10 

пикселей х 3 составляющих цвета). Полученные векторы обучающих 

фрагментов записывались в текстовый файл, объем которого составил 13 ГБ. Код 

самоорганизующейся карты Кохонена для графического процессора был 

реализован в соответствии с технологией CUDA на языке С. 

Процесс вычисления наименьшего евклидового расстояния между весами 

нейронов самообучающейся карты Кохонена и обучающим примером, а также 

процесс обновления весов нейронов выполнялись параллельно. Учитывая это, 

для обработки действий, связанных с нейроном, создавался блок потоков, в 

котором каждый поток обрабатывал отдельный компонент вектора весов 

данного нейрона и компонент вектора обучающего фрагмента. При поиске 

наименьшего евклидового расстояния между весами нейронов и обучающим 

примером, а также обновления весов создавалось 1024 блока потоков, по 1 блоку 

для нейрона. В каждом блоке создавалось 300 потоков, по 1 потоку на 1 вес.  

После этапа предварительного сглаживания производилось обучение 

карты в течение 5 эпох со сглаживающим ядром, имеющим ширину окрестности 

равной 1/5 размера карты c постепенным уменьшением с течением времени в 

зависимости от эпохи до 0.  

Для определения нейронов, откликающихся только на фрагменты с 

кислотоустойчивыми микобактериями, был выполнен проход окном 10x10 

пикселей по вертикали и горизонтали с шагом 1 пиксель по первоначальным 

снимкам мокроты размером 2290x1690. Для фрагмента изображения, 

оказавшегося в данном окне, определялся нейрон победитель. Для всех 1024 

нейронов было подсчитано, на каком количестве фрагментов он являлся 

победителем. По такому же принципу был выполнен подсчет для 6596 

изображений, содержащих микобактерии. Из количества откликов нейронов, 

подсчитанных на 6596 изображений, содержащих кислотоустойчивые 

микобактерии, было вычтено количество откликов на фрагментах из 

первоначальных снимков, содержащих 1649 выделенных микобактерий. 

Нейроны, у которых количество откликов осталось положительным являются 

нейронами, которые откликаются на фрагменты, содержащие 

кислотоустойчивые микобактерии. На рисунке 6 данные нейроны выделены 

красной рамкой и образуют кластер. Все остальные нейроны откликаются на 

элементы фона. 
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Рисунок 6 – Визуализация весов самоорганизующейся карты Кохонена с 

выделенными нейронами, откликающимися на фрагменты, содержащие 

кислотоустойчивые микобактерий 

 

Следующим методом сегментации являлся метод на основе вейвлет-

преобразования Mexican Hat (Мексиканская шляпа). Работа алгоритма 

осуществляется исходя из цветовых значений пикселей в цветовых схемах RGB 

и HSV. Двумерное вейвлет-преобразование изображения представляет собой 

попиксельное преобразование таким образом, что конечное значение цвета 

пикселя является произведением его первоначального значения и значений его 

окружающих пикселей на определенные коэффициенты. Вейвлет Mexican Hat 

является набором данных коэффициентов.  

Вейвлет-преобразование Mexican Hat позволяет значения цветов всех 

пикселей на изображении перевести в цвета с различными комбинациями 

максимальных и минимальных значений параметров R, G и B (всего 8 цветов). 

Таким образом, независимо от количества цветов пикселей в исследуемом 

изображении, после его преобразования оно состоит только из 8 цветов:  

1. черный (R=0, G=0, B=0);  

2. синий (R=0, G=0, B=255);  

3. зеленый (R=0, G=255, B=0);  

4. голубой (R=0, G=255, B=255);  

5. красный (R=255, G=0, B=0);  

6. малиновый (R=255, G=0, B=255); 

7. желтый (R=255, G=255, B=0);  

8. белый (R=255, G=255, B=255).  

Пример результатов такого преобразования представлен на рисунке 7. 

В последующем исключение черных, синих, зеленых и голубых пикселей, 

имеющих значение R равное 0, позволяет оставить на изображении только 

объекты, которые с большой вероятностью являются кислотоустойчивыми 

микобактериями, и исключить те объекты, которые точно кислотоустойчивыми 

микобактериями не являются. 
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Рисунок 7 – Микроскопическое изображение мокроты, окрашенной по методу 

Циля-Нильсена, после Mexican Hat преобразования 

 

На рисунке 8 представлены результаты такого исключения пикселей с 

изображения.  

Таким образом, сегментация изображения с использованием вейвлет-

преобразования Mexican Hat осуществляется путем лишь одного прохода по 

изображению. 

 

 
Рисунок 8 – Микроскопическое изображение мокроты, окрашенной по методу 

Циля-Нильсена, после Mexican Hat преобразования и исключения объектов, не 

являющихся кислотоустойчивыми микобактериями 
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В результате реализации данного этапа исследования разработан 

программный комплекс «MexicanHatSegmentation» (свидетельство о 

регистрации программы для ЭВМ в Федеральной службе по интеллектуальной 

собственности №2018664452 от 16.11.2018 г.), состоящий из нескольких 

модулей.  

Модуль простой сегментации изображения позволяет сегментировать 

цифровое изображение с помощью вейвлета Mexican Hat с заданным параметром 

«сигма».  

Модуль сегментации позволяет формировать из списка цифровых 

изображений базу объектов, полученных после сегментации изображений 

вейвлетом Mexican Hat с заданным параметром «сигма», а модуль 

автоматической сегментации позволяет сегментировать указанные цифровые 

изображения вейвлетом Mexican Hat с различными параметрами «сигма» в 

заданном диапазоне. 

Основным недостатком применения вейвлет-преобразования Mexican Hat 

для сегментации цифровых изображений является необходимость выбора 

оптимального параметра σ. На дальнейшем этапе произведена оценка 

соответствия, определенного эмпирическим путем значения параметра σ, 

наиболее оптимальным значениям данного параметра на основе критериев 

оценки качества сегментации изображений. На рисунке 9 представлено 

изменение среднего числа объектов на преобразованных вейвлетом Mexican Hat 

изображениях в зависимости от параметра σ.  

При увеличении параметра σ до 2,40 происходит увеличение среднего 

числа объектов на изображениях, что приводит к увеличению времени 

распознавания объектов на последующих этапах автоматизированного анализа 

таких изображений. При дальнейшем увеличении параметра σ до 3,0 происходит 

существенное снижение среднего числа объектов на изображениях, а при его 

изменении от 3,0 до 4,0 наблюдается наименьшее среднее число объектов. 

 

 
Рисунок 9 – Изменение среднего числа объектов на изображениях в 

зависимости от параметра σ вейвлета Mexican Hat 
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Как представлено на рисунке 10, среднее значение критерия F, не 

учитывающего количество мелких объектов на сегментированном изображении, 

в зависимости от параметра σ практически не меняется.  

При этом средние значения критериев F’ и Q, учитывающих количество 

мелких объектов, при увеличении параметра σ от 2,0 до 2,4 возрастают, а при 

дальнейшем увеличении данного параметра средние значения критериев F’ и Q 

снижаются, что свидетельствует о повышении качества сегментации 

изображений. При изменении параметра σ от 3,0 до 4,0 наблюдается постепенное 

снижение средних значений критериев качества сегментации F’ и Q. Полученные 

результаты свидетельствуют о том, что применение критерия F для оценки 

качества сегментации цифровых изображений мокроты, окрашенной по методу 

Циля-Нильсена нецелесообразно ввиду отсутствия учета данным критерием 

количества мелких объектов и отсутствия существенного изменения при 

изменении параметра σ вейвлета Mexican Hat. 

 

 
Рисунок 10 – Изменение средних значений комплексных критериев оценки 

качества сегментации изображений в зависимости от параметра σ вейвлета 

Mexican Hat 

 

Анализ изменения доли пропущенных кислотоустойчивых микобактерий 

в зависимости от параметра σ вейвлета Mexican Hat (рисунок 11) показывает, что 

при изменении его значения до 3,1 на изображениях не происходит пропуск 

кислотоустойчивых микобактерий.  

При увеличении параметра σ с 3,1 до 4,0 происходит существенный рост 

доли пропущенных кислотоустойчивых микобактерий, что, несмотря на 

улучшение значений критериев качества классификации на данном интервале не 

позволяет использовать такие значения параметра σ, так как при анализе в целом 

качества автоматизированного анализа изображения будет наблюдаться 

существенное увеличение ложноотрицательных результатов. 
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Рисунок 11 – Доля пропущенных кислотоустойчивых микобактерий в 

зависимости от параметра σ вейвлета Mexican Hat 

 

Таким образом, наиболее оптимальными значениями параметра σ вейвлета 

Mexican Hat для сегментации цифровых изображений мокроты, окрашенной по 

методу Циля-Нильсена, являются значения в интервале от 2,90 до 3,09. При 

таких значениях параметра σ наблюдаются: наименьшее среднее число объектов 

после преобразования, наименьшая доля пропущенных кислотоустойчивых 

микобактерий на всех изображениях от имеющихся на них кислотоустойчивых 

микобактерий и наименьшие средние значения критериев F’ и Q. В связи с этим 

можно констатировать, что используемое эмпирически подобранное значение 

параметра σ вейвлета Mexican Hat соответствует диапазону оптимальных 

значений данного параметра, определенного на основе критериев качества 

сегментации цифровых изображений.  

В результате реализации данного этапа исследования разработана 

компьютерная программа «QualitySegmentation» (свидетельство о регистрации 

программы для ЭВМ в Федеральной службе по интеллектуальной собственности 

№2018664450 от 16.11.2018 г.). Данная программа для ЭВМ позволяет в 

автоматизированном режиме рассчитывать вышеописанные критерии качества 

сегментации цифровых изображений. 

Помимо оценки качества сегментации цифровых изображений, которое 

может оцениваться как визуально, так и с применением критериев качества 

сегментации, важнейшим условием применимости метода сегментации в 

реальной задаче распознавания цифровых изображений является время работы 

алгоритма.  

Результаты оценки времени работы всех рассматриваемых в работе 

методов сегментации изображений представлены в таблице 2. Наибольшее время 
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необходимо для сегментации изображения с применением искусственной 

нейронной сети. Наименьшее время для сегментации изображения получено при 

использовании FAST-алгоритма и детектора границ Кенни. Однако визуальное 

качество сегментации изображений с помощью данных методов не 

соответствует необходимому для последующего распознавания объектов на 

сегментированных изображениях. 

Из разработанных нами алгоритмов, имеющих приемлемое качество 

сегментации (искусственная нейронная сеть, вейвлет-преобразование Mexican 

Hat и самоорганизующаяся карта Кохонена) наиболее оптимальное соотношение 

качества и скорости сегментации изображений имеет вейвлет-преобразование 

Mexican Hat.  

В связи с тем, что большинство других сравниваемых методов 

сегментации имеют значительно меньшее время работы, то их использование 

возможно в качестве одного из этапов сегментации изображения. Они могут 

применяться либо на заранее предобработанном изображении, либо с 

использованием дополнительной постобработки после их применения. 

 

Таблица 2 – Время работы методов сегментации 

№ Метод Время, сек 

1 Пороговая бинаризация, порог – средняя яркость 0,016 

2 Пороговая бинаризация, порог – разность между средней и 

стандартным отклонением яркости 
0,025 

3 Метод бинаризации Оцу  0,139 

4 Детектор границ Робертса 0,016 

5 Детектор границ Собеля 0,022 

6 Детектор границ Превитта 0,015 

7 Детектор границ Робинсона 0,016 

8 Детектор границ Кенни 0,010 

9 Детектор углов Харриса 0,051 

10 FAST-алгоритм 0,009 

11 Искусственная нейронная сеть 3,158 

12 Вейвлет-преобразование Mexican Hat 0,591 

13 Самоорганизующаяся карта Кохонена  0,687 

14 Функция поиска контуров библиотеки OpenCV 0,030 

 

В четвертой главе рассмотрен анализ 219 морфометрических и 21 

цветового параметров, описывающих кислотоустойчивые микобактерий в 

качестве объектов на цифровых микроскопических изображениях мокроты, 

окрашенной по методу Циля-Нильсена. Средние значения и 

среднеквадратическое отклонение радиальных размеров объектов 

кислотоустойчивых микобактерий представлены на рисунке 12.  

Как видно из данных приведенных на рисунке 12, средние значения 

радиальных размеров объектов кислотоустойчивых микобактерий напоминают 
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форму «палочки», в виде которой кислотоустойчивые микобактерии 

описываются с позиции микробиологии.  

 

 
Рисунок 12 – Среднее арифметическое и стандартное отклонение радиальных 

размеров кислотоустойчивых микобактерий 

 

Так как изучение морфометрических характеристик объектов 

кислотоустойчивых микобактерий осуществлялось на цифровых изображениях, 

имеющих определенное разрешение (572х422 пикселей), и полученных при 

определенном увеличении (10×60), то представленные морфометрические 

параметры являются непостоянными при изменении разрешения и увеличения. 

Однако, при изменении разрешения цифрового изображения или увеличения, 

при котором делается цифровая фотосъемка, отсутствует необходимость 

повторного изучения морфометрических характеристик объектов 

кислотоустойчивых микобактерий. Данные параметры могут быть получены 

расчетным путем на основании полученных нами результатов. 

Для определения радиальных размеров при изменении разрешения 

цифровой фотосъемки без изменения соотношения размеров сторон 

изображения можно воспользоваться следующей формулой: 

𝑟𝑖 = √
𝑥∗𝑦

241384
∗ 𝑟0,𝑖,      (3) 

где ri – итоговая длина радиального размера объекта под углом i, x – число 

пикселей изображения по горизонтали, y – число пикселей изображения по 

вертикали, 241384 – число пикселей на изучаемых нами изображениях 
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(572*422=241 384 пикселя), r0,i – длина радиального размера объекта под углом i 

на изучаемых нами изображениях. 

Также может быть определена и попиксельная площадь объектов при 

изменении разрешения цифровой фотосъемки:  

𝑆 =
𝑥∗𝑦

241384
∗ 𝑆0,      (4) 

где S – итоговая попиксельная площадь объекта, x – число пикселей изображения 

по горизонтали, y – число пикселей изображения по вертикали, 241384 – число 

пикселей на изучаемых нами изображениях, S0 – попиксельная площадь объекта 

на изучаемых нами изображениях. 

Необходимо отметить, что формула определения площади объектов при 

изменении разрешения изображения может применяться независимо от того 

меняется ли соотношение сторон изображения или нет. Для определения 

радиального размера при изменении разрешения цифровой фотосъемки с 

изменением соотношения размеров сторон изображения для начала необходимо 

определить относительные координаты края объекта (x0; y0), к которому 

построен отрезок данного размера: 

𝑥0 = {
𝑟0,𝑖 ∗ cos(𝑖 − 90) , при 𝑖 ≥ 90

𝑟0,𝑖 ∗ cos(𝑖 + 360 − 90), при 𝑖 < 90
,    (5) 

где x0 – координата по оси x, r0,i – длина радиального размера объекта под углом 

i на изучаемых нами изображениях. 

𝑦0 = {
𝑟0,𝑖 ∗ sin(𝑖 − 90) , при 𝑖 ≥ 90

𝑟0,𝑖 ∗ sin(𝑖 + 360 − 90), при 𝑖 < 90
,    (6) 

где y0 – координата по оси y, r0,i – длина радиального размера объекта под углом 

i на изучаемых нами изображениях. 

Далее необходимо пересчитать значения новых относительных координат 

края объекта, к которому будет построен отрезок искомого радиального размера 

после изменения разрешения изображения: 

𝑥𝑛𝑒𝑤 = 𝑥0 ∗
𝑤𝑖𝑑𝑡ℎ

572
,      (7) 

где xnew – новая координата по оси x, x0 – координата по оси x, width – ширина 

изображения в пикселях, 572 – ширина изучаемых нами изображений в пикселях. 

𝑦𝑛𝑒𝑤 = 𝑦0 ∗
ℎ𝑒𝑖𝑔ℎ𝑡

422
,      (8) 

где ynew – новая координата по оси y, y0 – координата по оси y, height – высота 

изображения в пикселях, 422 – высота изучаемых нами изображений в пикселях. 

И далее, используя новые координаты края объекта, можно рассчитать 

длину отрезка искомого радиального размера после изменения разрешения 

изображения: 

𝑟𝑖 = √𝑥𝑛𝑒𝑤
2 + 𝑦𝑛𝑒𝑤

2 ,             (9) 

где ri – итоговая длина радиального размера объекта под углом i, xnew – новая 

координата по оси x, ynew – новая координата по оси y.  

При изменении увеличения, при котором осуществляется цифровая 

фотосъемка, соотношение сторон изображения не изменяется, в связи с чем 
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определение радиальных размеров объектов может осуществляться с 

использованием данной формулы: 

𝑟𝑖 = √
𝑍

600
∗ 𝑟0,𝑖,             (10) 

где ri – итоговая длина радиального размера объекта под углом i, Z – увеличение, 

600 – увеличение при получении изучаемых нами изображений (10*60=600), r0,i 

– длина радиального размера объекта под углом i на изучаемых нами 

изображениях. 

Попиксельная площадь объектов определяется: 

𝑆 =
𝑍

600
∗ 𝑆0,             (11) 

где S – итоговая попиксельная площадь объекта, Z – увеличение, 600 – 

увеличение при получении изучаемых нами изображений, S0 – попиксельная 

площадь объекта на изучаемых нами изображениях. 

Необходимо отметить, что цветовые характеристики объектов не 

подвержены изменению при изменении разрешения изображения или 

увеличение при микроскопии.  

Для отбора признаков объектов по каждому изучаемому параметру у 

группы объектов кислотоустойчивых микобактерий определялись минимальное 

и максимальное значение.  

Дальнейшим этапом являлось определение числа объектов, не являющихся 

кислотоустойчивыми микобактериями, которые по значению своих параметров 

входят в интервал между минимальным и максимальным значениями 

параметров объектов группы кислотоустойчивых микобактерий. Чем меньше 

таких объектов определялось, тем больше по данному параметру объекты 

группы кислотоустойчивых микобактерий отличались от иных объектов. Так, 

основным показателем, оцениваемым при использовании данного подхода 

(метод «пересечений») по каждому из изучаемых параметров, являлась доля 

объектов среди не кислотоустойчивых микобактерий, которые не входили в 

интервал между минимальным и максимальным значениями у объектов 

кислотоустойчивых микобактерий.  

Данные, представленные на рисунке 13, свидетельствуют о том, что 

наибольшие различия между объектами кислотоустойчивыми микобактериями 

и иными объектами имеются по попиксельной площади данных объектов. Далее 

по мере снижения степени различия объектов находятся такие цветовые 

характеристики объектов, как среднее значение параметров B и G цветовой 

схемы RGB, максимальное значение параметра B и максимальное значение 

параметра H цветовой схемы HSV.  

На следующем этапе был произведен отбор признаков объектов с 

применением следующих методов оценки информативности: накопленных 

частот, Кульбака, Шеннона, Фишера и ранговый метод. После чего произведено 

сравнение результатов классификации объектов с использованием признаков 

отобранных с помощью метода «пересечений», метода оценки информативности 

накопленных частот, Шеннона, Кульбака, Фишера и рангового метода (рисунок 

14).  
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Рисунок 13 – Результаты оценки различий групп объектов с использованием 

минимальных и максимальных значений параметров объектов 

кислотоустойчивых микобактерий 

 

Рисунок 14 – Результаты классификации с использованием логистической 

регрессии 
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Как следует из данного рисунка худшие показатели точности 

классификации были получены с включением в модель параметров объектов, 

информативность которых определялась с применением рангового метода. Так 

при включении в логистическое регрессионное уравнение только одного 

параметра, имеющего максимальную информативность по данному методу, 

точность классификации составила 50,5%, а при включении 15 признаков – 

81,3%.  

Значительно отличающееся на первом этапе классификации качество 

позволило получить включение в уравнение логистической регрессии 

признаков, имеющих наибольшую информативность, определенную с 

применением метода Кульбака. Так, при включении в логистическое 

регрессионное уравнение только одного параметра, имеющего максимальную 

информативность по данному методу, точность классификации составила 74,2%, 

что существенно превышало качество классификации с использованием одного 

параметра объекта, имеющего наибольшую информативность по ранговому 

методу. Но при включении всех 15 признаков, отобранных методом Кульбака, 

качество классификации оказалось хуже (79,8%), чем с применением рангового 

метода.  

Использование метода накопленных частот с целью отбора признаков для 

построения логистической регрессии, как и метода Фишера, также не позволило 

получить максимально возможный результат классификации. Результаты 

классификации, полученные с использованием данных методов получить 

практически идентичные результаты классификации с помощью логистического 

регрессионного уравнения. На начальном этапе при применении обоих методов 

была получена точность классификации – 85,8%, при включении в уравнение 15 

признаков, отобранных с помощью метода накопленных частот – 86,0%, а метода 

Фишера – 86,1%.  

Наилучшие показатели точности классификации с использованием 

логистического регрессионного уравнения были получены при отборе признаков 

методами «пересечений» и Шеннона. Так, с использованием метода Шеннона на 

3 шаге была получена точность 86,8%, что превышало точность при применении 

метода «пересечений» (86,1%). Однако, на 9 шаге с использованием метода 

«пересечений» была получена точность равная 87,6%, а на 15 шаге – 87,9%.  

Максимальная точность, полученная с использованием метода Шеннона, 

на всех 15 шагах построения логистического регрессионного уравнения 

составила 87,5%. Таким образом, лучшим методом отбора признаков для 

построения логистического регрессионного уравнения в нашем исследовании 

является метод «пересечений». Практически такие же результаты были 

получены и при использовании дерева классификации и дискриминантного 

уравнения для классификации объектов. 

В ходе реализации данного этапа исследования была разработана 

программа для ЭВМ «Компьютерная система для определения характеристик 

объектов в больших объемах данных» (свидетельство о регистрации программ 

для ЭВМ в Федеральной службе по интеллектуальной собственности 

№2017663554 от 07.12.2017 года). Данная программа для ЭВМ позволяет в базах 
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данных, содержащих информацию об объектах, и имеющих существенный 

размер определять по каждому признаку объектов информативность с 

применением методов «пересечений», накопленных частот, Шеннона, Кульбака, 

Фишера и рангового метода. 

Необходимо отметить, что применение метода «пересечений» для отбора 

признаков, включаемых в классификационные модели обоснованно при 

решении оперативных задач, требующих минимального времени для построения 

классификационных моделей. В решении задачи классификации объектов на 

цифровых микроскопических изображениях мокроты, окрашенной по методу 

Циля-Нильсена, рассмотренной в следующей главе, данный метод отбора 

признаков не применялся ввиду отсутствия временных ограничений и 

использования для отбора признаков встроенных в классификационные 

алгоритмы методов. 

В пятой главе представлены результаты разработки математических 

моделей классификации объектов на цифровых микроскопических 

изображениях мокроты, окрашенной по методу Циля-Нильсена.  

Для классификации объектов на цифровых изображениях 

микроскопических препаратов мокроты, окрашенной по методу Циля-Нильсена, 

были построены 6 уравнений логистической регрессии с применением 

различных методов отбора признаков.  

Показатели чувствительности, специфичности, точности, а также доли 

ложноотрицательных и ложноположительных результатов были практически 

одинаковые у всех полученных уравнений. Однако, наименьшее число 

признаков, включенных в уравнение, было получено при применении метода с 

их прямым пошаговым включением на основе отношения правдоподобия. В 

данное уравнение включено 34 признака объектов при следующих 

классификационных характеристиках: чувствительность – 88,9%, 

специфичность – 88,2%, точность – 88,6%/ 

Построенные с использованием различных методов деревья 

классификации также позволяют осуществлять автоматическое распознавание 

объектов, выделяемых на цифровых микроскопических изображениях мокроты, 

окрашенной по методу Циля-Нильсена. При этом наилучшими показателями, 

характеризующими диагностическую способность данных моделей, для 

решения текущей задачи обладает дерево классификации, построенное методом 

CHAID: чувствительность – 94,0%, специфичность – 92,1%, точность – 92,2%. 

Помимо этого, данное дерево классификации позволяет осуществлять 

классификацию объектов с использованием наименьшего количества 

параметров объектов, что ускоряет скорость его работы. 

С использованием математического аппарата искусственных нейронных 

сетей построены модели с различным числом входных параметров. Ошибка 

классификации четырехслойной нейронной сетью на обучающей и тестовой 

выборках на протяжении всех 235 итераций обучения представлена на рисунке 

15.  

Наилучшие показатели трехслойной нейронной сети, характеризующие 

качество классификации объектов, были получены на 92 итерации обучения: 
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чувствительность – 94,7%, специфичность – 90,8, ошибка классификации на 

тестовой выборке – 7,2%, а наилучшие показатели четырехслойной нейронной 

сети – на 75 итерации: чувствительность – 96,7%, специфичность – 93,0%, 

ошибка классификации на тестовой выборке – 5,2%.  

 

 
Рисунок 15 – Ошибка классификации четырехслойной нейронной сетью на 

обучающей и тестовой выборках 

 

Данные математические модели искусственной нейронной сети могут 

быть использованы для распознавания объектов (кислотоустойчивых 

микобактерий и иных объектов) в автоматизированных системах 

бактериоскопической диагностики туберкулеза. Причем предпочтительным 

является использование построенной четырехслойной нейронной сети, так как 

данная модель позволяет осуществлять классификацию объектов на цифровых 

микроскопических изображениях мокроты, окрашенной по методу Циля-

Нильсена, с наилучшими показателями качества классификации. 

В шестой главе представлена схема работы и требования к программно-

аппаратному комплексу для автоматизированной бактериоскопической 

диагностики туберкулеза. Рассматриваемая автоматизированная система 

бактериоскопической диагностики туберкулеза должна включать в себя две 

составляющие: аппаратную и программную.  

Задачей аппаратной части программно-аппаратного комплекса является 

автоматизация получения цифровых изображений. Прежде всего был определен 

функционал и требования к аппаратной части данной системы (таблица 3).  

Аппаратная часть представляет собой модернизированный микроскоп, 
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микроскопическую фотосъемку препаратов мокроты, окрашенной по методу 

Циля-Нильсена, и осуществлять передачу полученных изображений на 

компьютер для дальнейшего анализа с помощью программной части 

рассматриваемой системы.  

 

Таблица 3 – Необходимые функции аппаратной части программно-аппаратного 

комплекса бактериоскопической диагностики туберкулеза 

№ Функция Назначение 

1.  

Автоматическая смена 

предметных стекол 

(опционально) 

Максимальное исключение роли человека 

в процессе просмотра мазков мокроты и 

уменьшение времени на их просмотр 

2.  

Автоматическая фокусировка 

(передвижение предметного 

стекла микроскопа по 

вертикальной оси) 

Максимальное исключение роли человека 

в процессе просмотра одного мазка 

мокроты и уменьшение времени на его 

просмотр 

3.  

Перемещение предметного 

стекла в горизонтальной 

плоскости 

Получение цифровых изображений 

различных полей зрения 

4.  

Цифровая съемка Получение цифрового материала для 

дальнейшего анализа в программной 

части автоматизированной системы 

5.  

Передача изображения на 

компьютер 

Передача цифрового изображения в 

программную часть автоматизированной 

системы 

6.  
Анализ сигналов от 

программной части 

Остановка или продолжение цифровой 

съемки различных полей зрения 

 

Аппаратная часть должна обеспечивать три основополагающих функции. 

Во-первых, снизить роль человека в процессе получения цифрового материала 

для анализа путем автоматизации данного процесса. В таком случае роль 

человека заключается только в подготовке мазков мокроты, их окраске по методу 

Циля-Нильсена и загрузке полученных предметных стекол в аппаратную часть 

автоматизированной системы.  

Во-вторых, съемка необходимого числа полей зрения. Необходимое число 

полей зрения определяется на основании инструкции по унифицированным 

методам микроскопических исследований для выявления кислотоустойчивых 

микобактерий в клинико-диагностических лабораториях лечебно-

профилактических учреждений, утвержденной приказом Минздрава России от 

21.03.2003 №109 «О совершенствовании противотуберкулезных мероприятий в 

Российской Федерации» (таблица 4). Согласно данной инструкции решение о 

необходимом для просмотра числе полей зрения должно приниматься 

оперативно в процессе непосредственного просмотра мазка мокроты. 

Руководствуясь представленными в таблице 4 правилами, минимально 

необходимое для анализа число полей зрения равно 20. Такого числа полей 
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зрения достаточно только в том случае, когда в каждом из 20 полей зрения 

определяется более 10 кислотоустойчивых микобактерий. В том случае, когда 

это условие не выполняется необходима дополнительная съемка 30 полей зрения 

и так далее. Таким образом, для констатации отрицательного результата 

бактериоскопического исследования необходима цифровая съемка 300 полей 

зрения, осуществляемая на одном мазке мокроты. Такая технология требует 

оперативного анализа, получаемых программной частью цифровых 

изображений, и оперативного сигнала в аппаратную часть о продолжении или 

приостановлении съемки дополнительного числа полей зрения.  

 

Таблица 4 – Правила определения необходимого числа полей зрения для 

бактериоскопической диагностики туберкулеза 

Получаемый в оперативном режиме 

результат 

Минимальное 

число полей 

зрения 

Результат 

бактериоскопического 

исследования 

Кислотоустойчивые микобактерии не 

обнаружены в 300 полях зрения 
300 Отрицательный 

1 – 2 кислотоустойчивых 

микобактерии в 300 полях зрения 
300 Не оценивается 

1 – 9 кислотоустойчивых 

микобактерий в 100 полях зрения 
100 Положительный 

10 – 99 кислотоустойчивых 

микобактерий в 100 полях зрения 
100 Положительный 

1 – 10 кислотоустойчивых 

микобактерий в 1 поле зрения 
50 Положительный 

Более 10 кислотоустойчивых 

микобактерий в 1 поле зрения 
20 Положительный 

 

В-третьих, одной из основных функций аппаратной части является 

передача цифровых изображений в программную часть. В связи с тем, что в 

процессе бактериоскопической диагностики туберкулеза существенное значение 

уделяется скорости просмотра предметных стекол, то передачу цифровых 

изображений предпочтительно осуществлять с помощью USB или 

беспроводного канала Wi-Fi. Примером аппаратной части программно-

аппаратного комплекса автоматизированной бактериоскопической диагностики 

туберкулеза могут служить сканирующие микроскопы 4-О9 и 8-O9 с загрузкой 

до 4/8 стекол, робот 200-O9 с загрузкой до 200 стекол фирмы «Мекос».  

В наших исследованиях, направленных на разработку технологий 

автоматизированного анализа цифровых микроскопических изображений 

мокроты, окрашенной по методу Циля-Нильсена, применялись тринокулярный 

микроскоп Микромед 1 вар. 3-20 с увеличением 10х60 и установленной 

цифровой камерой ToupCam UCMOS09000KPB в режиме съемки с разрешением 

0,3 MP (для ручного получения цифровых изображений) и модернизированный 

нами микроскоп Микромед Р-1 LED (таблица 5).  
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Таблица 5 – Технические характеристики модернизированного микроскопа 

Элемент 

микроскопа 
Технические характеристики 

Цифровая 

камера 

ToupCam UCMOS01300KPA с разрешением 0,3 MP, связь с 

компьютером через USB-интерфейс 

Двигатель 

№1 и №2 

Шаговый двигатель PL20H28-D4 с шагом поворота 1,8 градуса, 

управление через микросхемы драйверов A3982 в режиме 

полушага, минимальный шаг перемещения – 2,5 мкм, диапазон 

перемещения по X – 60 мм, по Y – 25 мм, максимальная скорость 

по X – 3000 мм/мин, по Y – 1500 мм/мин 

Двигатель 

№3 

Шаговый двигатель PL20H28-D4 с шагом поворота 1,8 градуса и 

редуктор 7:1 для увеличения усилия, управление через 

микросхемы драйверов A3984 в режиме микрошага 1:16, 

минимальный шаг перемещения– 0,3 мкм, диапазон 

перемещения – не ограничен, максимальная скорость – 200 

мм/мин. 

Контроллер Микроконтроллер AT90USB162, связь с компьютером 

обеспечивается через USB интерфейс 

Питание 220 В 

 

Модернизированный микроскоп Микромед Р-1 LED обеспечивает 

реализацию большинства представленных функций, предъявляемых к 

аппаратной части программно-аппаратного комплекса автоматизированной 

бактериоскопической диагностики туберкулеза, таких как, перемещение 

предметного стекла в горизонтальной плоскости и по вертикальной оси, 

цифровая съемка, передача изображения на компьютер и анализ сигналов от 

программной части.  

Таким образом, модернизированный нами микроскоп Микромед Р-1 LED 

может использоваться в качестве прототипа при разработке программной части 

программно-аппаратного комплекса бактериоскопической диагностики 

туберкулеза. 

Основными задачами программной части программно-аппаратного 

комплекса автоматизированной бактериоскопической диагностики туберкулеза 

являются непосредственный анализ изображений и передача оперативных 

сигналов в аппаратную часть для остановки или продолжения цифровой съемки 

дополнительных полей зрения. Программная часть автоматизированной 

системы бактериоскопической диагностики туберкулеза должна содержать 7 

основных блоков, которые представлены на рисунке 16. 

После передачи 20 цифровых изображений одного микроскопического 

препарата в программную часть, необходимо осуществление сегментации 

данных изображений. Этап сегментации изображений необходим для удаления с 

изображений областей, которые не будут использоваться для дальнейшего 

анализа, то есть которые не содержат искомые объекты – кислотоустойчивые 

микобактерии. По результатам наших исследований наиболее подходящим по 
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качеству и скорости, которая играет немаловажную роль в анализе изображений, 

является вейвлет-преобразование изображения вейвлетом Mexican Hat 

(Мексиканская шляпа). 

 

 
Рисунок 16 – Схема программной части автоматизированной системы 

бактериоскопической диагностики туберкулеза 

 

После сегментации изображений необходимо осуществление поиска и 

выделения объектов, который может осуществляется с помощью рекурсивного 

алгоритма. Данный алгоритм предусматривает нахождение первого 

попавшегося не белого пикселя на изображении и обследование вокруг него на 
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наличие другого не белого пикселя. Если в округе находится еще один такой 

пиксель, то осуществляется поиск вокруг него. После нахождения всех объектов 

на изображении необходимо осуществление измерения их параметров, на основе 

которых будет осуществляться распознавание или идентификация данных 

объектов.  

На первом этапе идентификации объектов необходимо исключение тех 

объектов, которые имеют один или несколько цветовых и/или 

морфометрических параметров, отличающихся от диапазона данных параметров 

у кислотоустойчивых микобактерий. Блок идентификации объектов должен 

иметь возможность изменения данных диапазонов при проведении дальнейших 

исследований параметров кислотоустойчивых микобактерий как объектов на 

цифровых изображениях, а также при изменении разрешения цифровой съемки 

и увеличения, при котором осуществляется микроскопия.  

На втором этапе необходима классификация объектов, которые не удалось 

исключить на основании цветовых и морфометрических параметров, на два 

класса – кислотоустойчивые микобактерии и иные объекты. Для классификации 

могут быть использованы различные математические интеллектуальные модели 

и алгоритмы. Нами для данных целей построена четырехслойная нейронная сеть 

прямого распространения, которая учитывает 161 из представленных выше 

параметров.  

Блок идентификации объектов должен подразумевать возможность 

замены интеллектуальной составляющей данной системы. Это необходимо в 

связи с тем, что накопление данных позволит дообучать или строить новые 

математические модели распознавания объектов, обладающие меньшей 

ошибкой распознавания объектов. 

После распознавания объектов осуществляется подсчет числа 

кислотоустойчивых микобактерий и определение критерия остановки цифровой 

съемки полей зрения. Если изображений, на которых представлены различные 

поля зрения достаточно, то процесс съемки бактериоскопического препарата 

заканчивается и в случае наличия функции автоматической смены предметных 

стекол, осуществляется переход к съемке другого препарата, а информация об 

анализе сохраняется в базу данных и может быть распечатана для вкладывания 

в медицинскую документацию пациента. Если изображений недостаточно, то 

осуществляется дополнительная съемка препарата до выполнения критерия 

остановки. 

Основными требованиями к программной части программно-аппаратного 

комплекса автоматизированной бактериоскопической диагностики являются 

скорость и качество распознавания объектов на изображениях. В связи с тем, что 

для принятия решения об остановке или продолжении съемки дополнительных 

полей зрения необходим оперативный анализ количества кислотоустойчивых 

микобактерий, то процесс с момента получения цифрового изображения 

программной частью до определения числа кислотоустойчивых микобактерий 

на изображении должен быть соизмерим с временем получения цифровых 

изображений аппаратной частью. То есть полный цикл анализа 300 цифровых 

изображений мокроты, окрашенной по методу Циля-Нильсена, программной 
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частью не должен превышать 25 минут. Под качеством распознавания объектов 

на изображениях понимается число ошибочных классификаций объектов. 

Данная ошибка должна составлять не более 5,2%. 

Прототипом программной части программно-аппаратного комплекса 

автоматизированной бактериоскопической диагностики туберкулеза может 

являться разработанная нами программа «МикроТуб-Авто» (свидетельство о 

регистрации программы для ЭВМ в Федеральной службе по интеллектуальной 

собственности №2018664586 от 19.11.2018 г.).  

Данная программа позволяет вести картотеку пациентов, от которых 

получены цифровые изображения мокроты, окрашенной по методу Циля-

Нильсена, и которые составляют перечень анализов данных пациентов. В 

программе реализованы стандартные функции добавления, изменения и 

удаления пациентов из базы данных.  

В разработанном нами прототипе добавление изображений в анализ 

пациента осуществляется одним из трех способов: импорт единичного 

изображения, импорт папки с изображениями и мониторинг папки. В связи с тем, 

что выстраивание прямой связи между поступающими из аппаратной части 

изображениями и программной частью сопряжено со значительными 

техническими сложностями (в нашем случае это отсутствие открытого 

исходного кода программного обеспечения цифровой камеры), мониторинг 

папки позволяет косвенным образом выстроить данную связь. Так, в настройках 

системы «МикроТуб-Авто» указывается мониторируемая папка, в которую 

независимо от программной части поступают цифровые изображения. При 

появлении в мониторируемой папке нового цифрового изображения 

осуществляется его импорт в программную часть. 

После получения нового изображения осуществляется его сегментация 

путем вейвлет-сегментации Mexican Hat с параметром σ равным 3,05 (при 

необходимости может изменяться в настройках программы), рекурсивное 

выделение всех оставшихся на изображении после сегментации объектов, 

определение их цветовых и морфометрических параметров и добавление 

объектов с их координатами в список объектов.  

На следующем этапе для уменьшения времени анализа изображения у 

каждого объекта осуществляется определение не всех 240 цветовых и 

морфометрических параметров, а только тех, которые необходимы для 

дальнейшей их классификации с использованием встроенной в программу 

математической модели.  

Необходимо отметить, что в соответствии с требованиями, 

предъявляемыми к программной части программно-аппаратного комплекса, в 

программе «МикроТуб-Авто» предусмотрена возможность редактирования, 

сохранения и загрузки диапазонов значений параметров у кислотоустойчивых 

микобактерий, а также возможность просмотра и загрузки нейронных сетей с 

различной структурой и осуществляющих классификацию объектов на основе 

различного набора параметров. 

В таблице 6 представлено среднее время проведения одного 

автоматизированного бактериоскопического анализа мокроты, окрашенной по 
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методу Циля-Нильсена с помощь разработанных алгоритмов и методов. Для того 

чтобы констатировать отрицательный результат обследования одного мазка 

мокроты необходимо в среднем затратить 24,45 минуты. 

 

Таблица 6 – Среднее время необходимое для получения результатов 

автоматизированной бактериоскопической диагностики  

Получаемый в оперативном 

режиме результат 

Минимальное 

число полей 

зрения 

Результат 

бактериоскопического 

исследования 

Среднее 

время, 

мин. 

Кислотоустойчивые 

микобактерии не обнаружены 

в 300 полях зрения 

300 Отрицательный 24,45 

1 – 2 кислотоустойчивых 

микобактерии в 300 полях 

зрения 

300 Не оценивается 24,45 

1 – 9 кислотоустойчивых 

микобактерий в 100 полях 

зрения 

100 Положительный 8,15 

10 – 99 кислотоустойчивых 

микобактерий в 100 полях 

зрения 

100 Положительный 8,15 

1 – 10 кислотоустойчивых 

микобактерий в 1 поле зрения 
50 Положительный 4,08 

Более 10 кислотоустойчивых 

микобактерий в 1 поле зрения 
20 Положительный 1,63 

 

Полученные данные о времени реализации разработанных алгоритмов и 

методов, позволяющих осуществлять распознавание объектов на цифровых 

микроскопических изображениях мокроты, свидетельствуют о том, что данные 

алгоритмы и методы могут применяться для автоматизированной 

бактериоскопической диагностики туберкулеза. 

Тестирование прототипа программной части на цифровых изображениях 

микроскопических препаратов мокроты, окрашенной по методу Циля-Нильсена, 

с заведомо установленным наличием или отсутствием кислотоустойчивых 

микобактерий показало следующие результаты.  

Среди препаратов, на которых было установлено наличие 

кислотоустойчивых микобактерий с использованием простой световой 

микроскопии (40 препаратов), с применением разработанного прототипа 

положительный результат исследования констатирован в 100% случаев. Среди 

препаратов, на которых было установлено отсутствие кислотоустойчивых 

микобактерий с использованием простой световой микроскопии (40 препаратов), 

с применением разработанного прототипа отрицательный результат 

исследования получен в 92,5% случаев (в 37 препаратах), в 2,5% (1 препарат) – 

ложноположительный результат, а в 5% (2 препарата) – неоцениваемый 
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результат, на основании которого необходимо рекомендовать повторить 

бактериоскопическое исследование.  

Таким образом, чувствительность прототипа программной части составила 

100,0 [92,7; 100,0]%, специфичность – 97,4 [89,7; 97,4]%, точность – 98,7 [91,2; 

98,7]%. 

На основе результатов анализа всех цифровых микроскопических 

изображений мокроты, окрашенной по методу Циля-Нильсена, были 

сформированы допустимые характеристики параметров цифровых изображений, 

которые могут анализироваться с применением разработанных методов, 

представленные в таблице 7. 

 

Таблица 7 – Допустимые характеристики параметров цифровых изображений 

Характеристика изображения 
Минимальное 

значение, абс. 

Максимальное 

значение, абс. 

Коэффициент 

вариации, % 

Средний коэффициент 

яркости 
170,76 189,74 3,29 

Яркостная контрастность 300,45 1564,97 49,06 

Тоновая контрастность 23,40 56,07 27,64 

Размытость 27,87 59,22 23,72 

Цветовая температура 1866,90 1897,48 0,46 

 

Таким образом, разработанная программа «МикроТуб-Авто» 

соответствует схеме и отвечает требованиям, сформированным в предыдущем 

разделе и может использоваться в качестве прототипа программной части 

программно-аппаратного комплекса автоматизированной бактериоскопической 

диагностики туберкулеза путем анализа цифровых изображений, имеющих 

характеристики входящие в полученные диапазоны. 

 

ВЫВОДЫ 

1. Использованные в эксперименте алгоритмы сегментации цифровых 

изображений, такие как пороговая бинаризация, бинаризация Оцу, а также 

детекторы границ Робертса, Собеля, Превитта, Робинсона и Кенни могут быть 

применены для сегментации цифровых микроскопических изображений 

мокроты, окрашенной по методу Циля-Нильсена. Однако, при визуальной 

оценке качества сегментации изображений использование пороговой 

бинаризации со средним коэффициентом яркости в качестве порога и метода 

бинаризации Оцу приводит к отсутствию возможности разделения фона и 

объектов, которые являются кислотоустойчивыми микобактериями, а 

применение детекторов границ приводит к слиянию выделенных границ 

объектов, а также не полному их выделению, что требует разработки и 

применения дополнительных алгоритмов для окончательной сегментации 

изображений. 

2. Разработанные на основе математического аппарата искусственной 

нейронной сети, самоорганизующейся карты Кохонена и вейвлет-
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преобразования Mexican Hat (Мексиканская шляпа) алгоритмы позволяют 

сегментировать цифровые микроскопические изображения мокроты, 

окрашенной по методу Циля-Нильсена, исключая с изображения фон и 

полностью выделяя границы объектов. Наименьшим средним временем 

сегментации одного изображения обладает алгоритм сегментации с помощью 

вейвлет-преобразования Mexican Hat (0,591 сек), что свидетельствует о его 

предпочтительном использовании в задаче автоматизированного анализа 

цифровых микроскопических изображений мокроты, окрашенной по методу 

Циля-Нильсена. 

3. Определен перечень 240 параметров, описывающих 

кислотоустойчивые микобактерии в качестве объектов на цифровых 

изображениях. Перечень параметров включает: морфометрических – 219, 

цветовых – 21. Среди морфометрических параметров наибольшую ценность 

имеют 20 радиальных размеры от центра объекта до его края, а среди цветовых 

– 5. 

4. Среди моделей классификации объектов на два класса (класс 

кислотоустойчивых микобактерий и класс иных объектов) наилучшие 

показатели были получены с применением четырехслойной нейронной сети, 

включающей 161 признак классифицируемых объектов в качестве входных 

параметров: чувствительность – 96,7%, специфичность – 93,0%, ошибка 

классификации на тестовой выборке – 5,2%. 

5. Разработаны требования к программно-аппаратной системе 

автоматизированной бактериоскопической диагностики туберкулеза: 

перемещение предметного стекла в горизонтальной плоскости и по 

вертикальной оси, цифровая съемка, взаимная передача и анализ сигналов между 

программной и аппаратной частями системы, минимальная кратность 

увеличения – 600, минимальное разрешение цифровой камеры – 0,3 MP, 

максимальное время анализа одного микроскопического препарата – 25 минут и 

ошибка распознавания объектов – не более 5,2%. На основе данных требований 

изготовлен прототип данной программно-аппаратной системы.  

6. Использование предложенного прототипа автоматизированной 

системы бактериоскопической диагностики туберкулеза позволило установить – 

среднее время, затрачиваемое на анализ одного цифрового микроскопического 

изображения мокроты, окрашенного по методу Циля-Нильсена, составляет 4,89 

секунды, что в сравнении с зарубежными аналогами в 10,9 раза быстрее. 

Чувствительность прототипа программной части составила 100,0 [92,7; 100,0]%, 

специфичность – 97,4 [89,7; 97,4]%, точность – 98,7 [91,2; 98,7]%, что позволяет 

использовать автоматизированную систему бактериоскопической диагностики 

туберкулеза в клинико-диагностических лабораториях общей лечебной сети для 

выявления бактериовыделителей. 

 

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 

1. При разработке систем автоматизированного анализа 

микроскопических изображений с целью поиска микроскопических объектов, 

имеющих отличающуюся от фона окраску, целесообразно осуществлять 
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сегментацию изображений, основанную на вейвлет-преобразовании Mexican Hat 

с выбором параметра σ, учитывающим потенциальные размеры искомых 

объектов. 

2. При разработке алгоритмов и средств автоматизированного анализа 

цифровых микроскопических изображений мокроты, окрашенной по методу 

Циля-Нильсена рекомендовано учитывать цветовое и морфометрическое 

описание кислотоустойчивых микобактерий, как объектов на цифровых 

изображениях, по 240 параметрам. 

3. Для отбора признаков при решении задач классификации 

рекомендовано применение метода «пересечений» как метода, позволяющего 

получить наилучшее качество классификации при меньшем числе включаемых 

в модель входных признаков. 

4. Среди моделей классификации для распознавания объектов на 

цифровых микроскопических изображениях целесообразно применение 

многослойных нейронных сетей как моделей, позволяющих получить 

наибольшие показатели качества классификации. 

5. При разработке программно-аппаратных систем для 

автоматизированного анализа цифровых микроскопических изображений 

мокроты, окрашенной по методу Циля-Нильсена, рекомендуется основываться 

на сформированных схеме и требованиях к программно-аппаратной системе 

автоматизированной бактериоскопической диагностики туберкулеза. 

6. При проведении скрининговых обследований на туберкулез в 

условиях недостатка специалистов, в отдаленных территориях и в учреждениях 

пенитенциарной системы рекомендуется использование программно-

аппаратных систем разработанных на основе сформированных схемы и 

требованиях к программно-аппаратной системе автоматизированной 

бактериоскопической диагностики туберкулеза. 

 

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 

B – синее составляющее цвета пикселя в цветовой схеме RGB 

FAST – Features from Accelerated Segment Test 

G – зеленое составляющее цвета пикселя в цветовой схеме RGB 

H – оттенок пикселя в цветовой схеме HSV 

M – среднее арифметическое (M) 

MP – мегапиксели 

R – красное составляющее цвета пикселя в цветовой схеме RGB 

S – насыщенность цвета пикселя в цветовой схеме HSV 

Vσ – коэффициент вариации 

V – яркость пикселя в цветовой схеме HSV 

VR – коэффициент осцилляции 

Y – коэффициент яркости пикселя 

σ – среднеквадратическое отклонения 

ЭВМ – электронно-вычислительная машина 
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