На правах рукописи

ДОРОНИНА Евгения Павловна

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПЕНТАКООРДИНИРОВАННОГО КРЕМНИЯ, СОДЕРЖАЩИХ ДАТИВНЫЕ СВЯЗИ Р=О→Si И Р→Si

Специальность 02.00.08 - химия элементоорганических соединений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Иркутск - 2009

Работа выполнена в Учреждении Российской академии наук Иркутском институте химии им. А.Е. Фаворского Сибирского отделения РАН

Научный руководитель

Официальные оппоненты:

Ведущая организация

доктор химических наук, профессор Сидоркин Валерий Фёдорович

доктор химических наук, профессор Борисов Юрий Андреевич

доктор химических наук, профессор Тимохин Борис Васильевич

НИИ физической и органической химии Южного федерального университета

Защита состоится 24 ноября 2009 года в 9 часов на заседании совета по защите докторских и кандидатских диссертаций Д 003.052.01 при Иркутском институте химии им. А.Е. Фаворского СО РАН по адресу: 664033, Иркутск, ул. Фаворского, 1.

С диссертацией можно ознакомиться в библиотеке Иркутского института химии им. А.Е. Фаворского СО РАН.

Автореферат разослан 23 октября 2009 г.

Ученый секретарь совета д.х.н.

Тимохина Л.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> Неослабевающий интерес (подкрсплённый сотнями публикаций) исследователей к устойчивым внутримолекулярным комплексам кремния (ВКК) с тригонально-бипирамидальным (ТБП) расположением его связей обусловлен, в основном, двумя обстоятельствами. Во-первых, ключевой ролью ТБП интермедиатов в ряде химических превращений (S_N^2 замещение, межлигандный обмен и т.д.) соединений элементов 14 группы. Во-вторых, повышенная реакционная способность кремнийорганических гипервалентных структур и продемонстрированная на ряде примеров биологическая активность позволяют отнести их к числу перспективных для практического использования. Поэтому, несомненно, актуальным является поиск и исследование новых классов соединений Si^V.

В литературе хорошо представлены ВКК с дативными контактами C=O \rightarrow Si и N \rightarrow Si. Напротив, крайне скудны сведения о пространственном и фактически отсутствуют об электронном строении ВКК, стабилизированных редкими и практически неизученными связями Si с жестким (фосфорильная группа) и мягким (атом трехвалентного фосфора) п-акцепторными центрами. Остается открытым вопрос о возможности существования каркасных структур XSi(-L-)₃P с ориентацией НЭП фосфора внутрь клетки. Неоднократные попытки синтеза XSi(OCH₂CH₂)₃P – силатрановых аналогов были безуспешными.

<u>Цель работы.</u> 1. Определение методами MP2 и DFT (B3LYP) факторов, благоприятствующих существованию эндо изомеров силафосфанов XSi(-L-)₃P с дативной связью P-Si. 2. Квантово-химическое исследование строения силилметилированных производных фосфорных кислот R₂P(O)ZCH₂SiMe_{3-n}Hal_a (Z = O, NR['], CH₂, S), устойчивости и чувствительности к эффектам среды их [P(O)-Si]хелатных форм. 3. Изучение природы P-Si и P=O-Si взаимодействия с привлечением квантово-топологических подходов AIM (атомы в молекулах) и ELF (электронная функция локализации).

Работа выполнена в соответствии с планом НИР Иркутского института химии им. А.Е. Фаворского СО РАН по теме «Химия органических производных гипо- и гипервалентного кремпия: синтез, строение, реакционная способность» (номер государственной регистрации 01200107930). Исследование поддерживалось грантом РФФИ № 04-03-32673-а «Новое поколение органических соединений гипервалентного кремпия, содержащих внутримолекулярные координационные связи Р=O-Si и Р(III)-Si» (2004-2006), Советом по грантам Президента Российской Федерации для государственной поддержки ведущих научных школ Российской Федерации (HIII-7545.2006.3, HIII-255.2008.3).

Научная новизна и практическая значимость работы. Впервые доказана возможность существования каркасных силафосфанов XSi(-L-)₃P с 1,5 (X = F, L = $C_{10}H_6$; X = F, Me, L = SC₆H₄) и 1,6 (X = F, Me, L = YCH₂CH₂Z, Y = O, NH, CH₂, Z = NH, CH₂; X = F, L = YC₆H₄Z, Y, Z = NH, CH₂; X = Me, L = NHC₆H₄NH) мостиковыми атомами Si и P исключительно в форме эндо изомеров с координационным взаимодействием P-Si. Среди них находится структура FSi(NHC₆H₄NH)₃P, примечательная коротким дативным контактом P-Si (всего на ~ 0.03 Å! длиниее стандартной связи Si^{TV}P^{III}) и конфигурацией связей её пентакоординированного атома кремния, отвечающей практически идеальной ТБП.

Выяснена причина неудачных попыток синтеза потенциально гипервалентных соединений XSi(OCH₂CH₂)₃P – силатрановых аналогов. Она заключается в высокой напряженности трёх пятичленных гетероциклов SiOCCP эндо изомера и, тем самым,

его термодинамической нестабильности по отношению к альтернативному без аттрактивного взаимодействия Р->Si.

Природа связи $P \rightarrow Si$ в эндо формах $XSi(-L-)_3P$ в зависимости от свойств окружения мостиковых атомов кремния и фосфора и размеров боковых цепочек L изменяется от ионной до ковалентной.

Получены первые сведения о строении 4с-6е гипервалентного аниона [FSi(C₈H₃N)₃PF]⁻, устойчивого ($\Delta E = 101.4$ ккал/моль, MP2) к распаду на исходный силафосфан FSi(C₈H₅N)₃P и F⁻. Анион содержит неизвестный ранее ковалентный контакт Si^V-P^V.

Впервые установлено, что факторы, благоприятствующие (интенсивность орбитально-зарядово контролируемой координации О \rightarrow Si) и не благоприятствующие (напряжение гетероцикла \overrightarrow{OPZCSi}) исключительному существованию молекул R₂P(O)ZCH₂SiMe_{3-n}Hal_n в хелатной форме, оптимальным образом сочетаются в Si-содержащих амидах фосфорных кислот R₂P(O)NR⁷CH₂SiMe_{3-n}Hal_n.

Впервые на примере молекул R₂P(O)NMeCH₂SiMe_{3-n}Hal_n установлена тенденция к симбатному изменению энергии образования (ΔE_k) хелатных форм, длины дативного контакта (d_{SiO}) и координационного химического сдвига ($\Delta \delta^{29}$ Si). Линейная корреляция величин ΔE_k и $\Delta \delta^{29}$ Si является существенно более грубой (R = 0.794), чем $\Delta \delta^{29}$ Si и d_{SiO} (R = 0.959). Использование на практике величины $\Delta \delta^{29}$ Si для оценки относительной прочности дативной связи в сопоставляемых ВКК получило теоретическую поддержку.

Проведенное исследование вносит важный вклад в теорию строения органических соединений пентакоординированного кремния. Полученные результаты можно использовать для планирования химического эксперимента и создания новых классов гипервалентных структур.

Апробация работы и публикации. Материалы диссертации докладывались и обсуждались на 5-ой Всероссийской конференции «Молекулярное моделирование» (Москва, 2007) и XV Междупародном симпозиуме по кремнийорганической химии (Jeju, Korea, 2008). Результаты работы отражены в 2 статьях и тезисах 3 докладов.

Объем и структура работы. Диссертация изложена на .9.6 страницах, содержит .1.6. таблиц. .2.6 рисунков и список литературы из 15.3 наименований. Работа состоит из введения, четырёх глав, выводов и списка цитируемой литературы. Глава I представляет собой литературный обзор. В главах II и III изложены и обсуждены полученные результаты. В главе IV кратко описаны используемые методы и подходы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Каркасные силафосфаны с дативной связью Р-ЭSi

Каркасные силафосфаны XSi(-L-), Р (1-43) могут, в принципе, иметь геометрию

X = Me (a), F (b) L = YCH₂Z (1-16); YCH₂CH₂Z (26-34); ____(35-43) (25); (21-24); Y. Z = O. NH. CH₂, S иа экзо форма

Р-→Si координацию.

с ориентацией НЭП атома фосфора внутрь их полости (эндо), благоприятной для се ДА взаимодействия с орбигалями фрагмента XSiY₃ или вне (экзо), исключающей На поверхности потенциальной энергии всех соединений 1-43 методами MP2 и B3LYP с привлечением базисов 6-31G(d) и 6-311+G(d) обнаружены два минимума, отвечающие их эндо и экзо изомерам.

1.1. Силафосфаны, содержащие 1,5 мостиковые атомы Si и P (производные 1сила-5-фосфабицикло[3.3.3]ундеканов).

Независимо от природы окружения мостиковых атомов Si и P, силафосфаны XSi(YCH₂Z)₃ (1-9) существуют в изолированном состоянии и в полярном растворе (PCM, ε =46.7) исключительно в экзо форме. Ее энергетическая предпочтительность над эндо изомерами составляет более 10 ккал/модь (рис. 1)^{*}.

Рисунок 2. АІМ ((MP2(full)/6-31G(d)) молекулярные графы эндо и экзо изомеров силафосфана FSi(Ch₂CH₂CH₂)₃P. Заштрихованными квадратиками обозначены связевые критические точки ВСР (3, -1), пустыми кружочками – кольцевые критические точки RCP (3, +1), а звёздочкой – клеточные критические точки CCP (3, +3).

Рисунок 1. Относительная устойчивость (ΔE) и межъядерные расстояния SiP (d_{SiP}) эндо и экзо изомеров XSi(YCH₂Z)₃P.

На первый взгляд ситуация выглядит достаточно неожиданной. Присущие 1(эндо)-9(эндо) межъядерные расстояния Si--P (d_{SiP}) гораздо меньше суммы ВДВ радиусов Si и P ~3.9 Å, что, несомненно, свидетельствуст о реальности существования в них дативной связи P--Si. Это поддерживается и AIM анализом молекул 1(эндо)-9(эндо), который обнаружил три кольцевые критические точки RCP (3, +1), отвечающие циклам SiYCH₂ZP, и связевую критическую точку BCP (3, -1) в межъядерной области Si--P (рис. 2)^{**}. Экзо формы 1-9 характеризуются тремя RCP (3, +1) и одной клеточной критической точкой ССР (3, +3).

Наличие короткого связывающего Si-P контакта в 1(эндо)-9(эндо) не смогло обеспечить их повышенную стабильность по сравнению с альтернативными экзо структурами. Вероятной причиной этого являются неблагоприятные стерические факторы для существования 1(эндо)-9(эндо). Подтверждение сказанному можно получить с использованием метода AIM при сопоставлении значений сумм отклонений (по модулю) $\sum_{i} [(\alpha_{i}^{i} - \alpha_{i}^{i})]$ геометрических валентных углов XYZ (α_{e}) от углов между связевыми путями XY и YZ (α_{b}) в рассматриваемых изомерах. Оказалось, что деформация α_{e} гетероциклических остовов 1(эндо)-9(эндо) превышает

^{*} Значения ЛЕ и d_{SIP}, рассчитанные методами MP2/6-31G(d) и B3LYP в базисах 6-31G(d) и 6-311+G(d) и PCM B3LYP/6-31G(d), не выходят за границы интервалов, указанных на рисунке 1.

[&]quot;На рисунке 2 молекулярные графы представлены только для фрагмента SiCCCPCCC (в эндо форме он естественно бициклический, а в экзо – моноциклический). Каркасное строение силафосфанов 1-9 не позволяет представить их полный молекулярный граф в наглядной форме.

таковую, свойственную 1(экзо)-9(экзо). Например, в молекуле FSi(OCH₂CH₂)₃P величина $\sum |(\alpha'_b - \alpha'_c)|$ для структуры со связью Р—Si составляет 89°, а без – 79°.

Разпость энергий атомизации (ΔE_{ar}) силафосфановых изомеров можно приближённо (Дашевский, 1974г.) представить следующим образом:

 $\Delta E_{ar} = E_{ar}^{3830} - E_{ar}^{3830} = -E_{SiP} + (E_{nanp}^{3830} - E_{hanp}^{3830})$ (1), где E_{SiP} – энергия связи SiP, а E_{hanp} – энергия напряжения соответствующих циклов.

Повышенная стабильность экзо форм 1-9 по сравнению с эндо ($\Delta E_{ar} > 0$) следует из (1) при выполнении условия: ($E_{\text{напр}}^{3H20} - E_{\text{напр}}^{3930}$) > [E_{SiP}]. Количественное представление о таком неравенстве становится возможным, если провести оценку E_{SiP} . С этой целью мы воспользовались аппроксимацией MP2/6-31G(d) зависимости относительных энергий ΔE в области минимума 1(эндо)-9(эндо) от d_{SiP} потенциалом Морзе. В нелинейной модели метода наименьших квадратов мы нашли для молекулы FSi(OCH₂CH₂)₃P **3b** значение $E_{\text{SiP}} = 44.0$ ккал/моль. Оно является, по понятным причинам, не очень надёжным. Тем не менее, d_{SiP}, свойственное **3b**, всего на ~0.07 Å превышает среднюю длину одинарной связи Si^{IV}-P^{III} (d_{SiP} ~2.3 Å), энергия которой ~72 ккал/моль (Zachariah, 1997г.). Для AIM оценки энергии какого-либо контакта AB привлекают уравнение: $E_{AB} = -D(AB) = V_e/2$ (2) (Espinosa, 2000г.; Zhurova, 2006г.). В нём V_e – плотность потенциальной энергии в BCP, расположенной в межьядерной области A-B. Вычисленная по (2) E_{SiP} для **3b** (30.8 ккал/моль) существенна по величине и на ~13 ккал/моль меньше E_{SiP} , определенной через потенциал Морзе.

Таким образом, эндо изомеры 1-9 XSi(YCH₂Z)₃P содержат прочную координационную связь Р→Si. Однако они являются высоконапряжёнными и, тем самым, термодинамически нестабильными по отношению к альтернативным 1(экзо)-9(экзо). Поэтому становится понятной причина неудачных попыток синтеза потенциально гипервалентных XSi(OCH₂CH₂)₃P – сидатрановых аналогов.

Может ли это обстоятельство быть непреодолимым препятствием для каркасных соединений $XSi(-L-)_3P$ с 1,5 мостиковыми Si и P находиться исключительно в форме с пентакоординированным атомом кремния? Оказалось, что если в качестве трёх L использовать SC_6H_4 или 1,8-нафтильные $C_{10}H_6$ группировки, то эндо изомеры молскул $XSi(SC_6H_4)_3P$ (20a, 20b) и $FSi(C_{10}H_6)_3P$ (25b) в газовой фазе и в полярном растворе энергетически предпочтительней альтернативных экзо: ΔE (ккал/моль): 20a -6.7 (B3LYP); 20b -14.0 (B3LYP) и -9.0 (MP2); 25b -8.9 (B3LYP) и -10.5 (PCM B3LYP, ε =47).

Рисунок 3. B3LYP/6-31G(d) и MP2/6-31G(d) (полужирный шрифт) оптимизированная геометрия (длины связей, А, и валентные углы, градусы) экдо изомсра 20b.

Степень пентакоординации Si, η_e (Tamao, 1992г.) в 20a(эндо), 20b(эндо) и 25b(эндо) очень высока, а расстояния SiP незначительно превышают (см. рис. 3) сумму ковалентных радиусов Si и P (2.27 А). Судя по свойствам ВСР (SiP): 20a $\rho(\mathbf{r}_c) = 0.516$ $e/Å^3$, $\nabla^2 \rho(\mathbf{r}_c) = -0.495 e/Å^5$, $E(\mathbf{r}_c) = -0.33$ hartree/Å³; 20b $\rho(\mathbf{r}_{c}) = 0.537 \text{ e/Å}^{3}, \nabla^{2}\rho(\mathbf{r}_{c}) = -0.016 \text{ e/Å}^{5}, E(\mathbf{r}_{c}) = -0.35$ hartree/Å³; 25b $\rho(\mathbf{r}_{c}) = 0.489 \text{ e/Å}^{3}, \nabla^{2}\rho(\mathbf{r}_{c}) = 1.005 \text{ e/Å}^{5},$ $E(\mathbf{r}_{c}) = -0.30$ hartree/Å³), контакт SiP в 20a, 20b можно уверенно описать как ковалентный, а в 25b - как ковалентно-полярный (Cremer, 1984г., 1995г., 1996г). Оценка Esip по (2) для 20a, 20b, 25b и, для сравнения, молекулы H₃SiPH₂ приводит к 31, 32.7, 29.2 и 37.5 ккал/моль, соответственно.

1.2. Силафосфаны, содержащие 1,6 мостиковые атомы Si и P (производные 1сила-6-фосфабицикло[4.4.4] тетрадеканов).

Рисунок 4. Относительная устойчивость (ΔE) и межъядерные расстояния SiP (d_{SiP}) эндо-экзо изомеров XSi(YCH₂CH₂Z)₃P.

Значения d_{sip} в 26(эндо)-34(эндо) являются промежуточными по величине между суммой ВДВ и ковалентных радиусов Si и P, т.е. находятся в интервале 3.9 + 2.27 Å. Они подчиняются следующим соотношениям: $(3.9 - d_{sip}) \sim 1 \div 1.5$ Å и ($d_{sip} - 2.27$) ~ 0.2 ÷ 0.8 Å. По величине такого рода разности характерны также для координационных контактов SiO в (CO-Si) монохелатах (Kost, 1998 г.) и SiN в оксисилатранах (Лукевиц, 1996г.). Замещение Ме группы на F у кремния в ряду 26(эндо)-34(эндо) уменьшает d_{sip} на ~ 0.2 + 0.4 Å. Строение координационного узла XSiY₃P эндо силафосфанов 26-34 отвечает (рис. 5) искажённой бипирамиде. Значения валентных углов тригональной X-Si-Y (~ 95 ÷ 104°) и Y-Si-Y (~ 114 ÷ 119°) в 26(эндо)-34(эндо) находятся между таковыми в идеальной ТБП (90°, 120°) и тетраэдре (109.5°).

Большинство молекул 26-34 существуют, в принципиальном отличии от 1-9, исключительно в эндо форме (см. рис. 4 и сноску на стр.5). Исключение составляют 7 соединений из 18 рассмотренных. В шести из них 26, 29, 32 донорный центр Р окружают атомы кислорода, а в структуре 27a NH группа при Y=O. Экзо изомеры этих 7 молекул энергетически предпочтительнее эндо на ~ 5 – 14 ккал/моль.

Отметим, что для относительно стабильных эндо структур 26-34 выполняется неравенство: $E_{\text{напр}}^{\text{эндо}} < E_{\text{напр}}^{\text{эндо}}$.

Рисунок 5. B3LYP/6-31G(d), MP2/6-31G(d) (полужирный прифт) и B3LYP/6-311+G(d) (курсив) оптимизированная геометрия (длины связей, Å, и валентные углы, градусы) соединения 31b.

Рисунок 6. АІМ (слева, MP2(full)/6-31G(d)). Карты лапласиана электронной плотности для аксиального фрагмента XSiP эндо изомеров силафосфанов 30a (Y = Z = NH), 28b (Y=O, Z=CH₂) и 31b (Y=NH, Z=CH₂). ВСР (3, -1) обозначены заштрихованными квадратиками. Пунктирные линии соответствуют $\nabla^2 \rho(\mathbf{r}) > 0$ (область декопцентрации заряда), а сплошные – $\nabla^2 \rho(\mathbf{r}) < 0$ (область концентрации заряда). Контуры $\nabla^2 \rho(\mathbf{r})$ соответствуют $\pm 0.002 \ e/a_0^3, \pm 0.004 \ e/a_0^5$. ELF = 0.83 (справа, HF/6-31G(d)). Красным цветом окрашены остовные бассейны, заленым – валентные дисинаптические бассейны, голубым – моносинаптические бассейны, а бледпозсленым – домены связи СН.

Во всех метильных производных 28а, 30а, 31а, 33а, 34а и в одной молекуле 28b (Y=O, Z=CH₂) координационный контакт SiP следует описать (AIM и ELF анализ) как ионный, а в оставшихся пяти силафосфанах 27b, 30b, 31b, 33b, 34b - как ковалентнополярный (рис. 6).

1.3. Бензоаналоги силафосфанов XSi(YCH2CH2Z)3P. ΔE. ккал/моль 4.2 - 12.7 Z = NH, CH2 (39, 40, 42, 43) d_{siP}, Å 2.312 2.648

Рисунок 7. Относительная устойчивость (ΔЕ) и межъядерные расстояния SiP (dsip) эндо-экзо изомеров XSi(YC6H4Z)3P.

Конфигурация связей Si^V нём отвечает В практически идеальной ТБП. В эндо структурах 39a. 39b и 40b контакт SiP следует описать как ковалентный (AIM и ELF анализ), а в 42b и 43b он содержит и ионную составляющую.

Структурные параметры силафосфанов 1-43, рассчитанные трудоёмким методом МР2 и B3LYP, находятся в хорошем согласии между собой. Максимальное расхождение по результакоординационного там наблюдается для контакта SiP (~ 0.06 Å). По длинам всех остальных связей и по валентным углам оно не превышает 0.02 Å и 3°, соответственно. Различие MP2 и B3LYP значений ΔЕ для 1-43 не больше 4 ккал/моль.

Введение B каждую боковую цепочку соединений 26(эндо)-34(эндо) бензольного приводит кольца к уменьшению числа термодинамически стабильных эндо изомеров от 11 для XSi(YCH₂CH₂Z)₃P (26-34) до 5 для XSi(YC₆H₄Z)₃P (35-43) и к сокращению контакта SiP, Δd_{SiP} (рис. 4, 7 и сноска на стр.5). В максимальной степени этот эффект усиления Р->Si взаимодействия проявился для эндо изомера 39a (Δd_{SiP} = 0.49 Å!). Тем не менее, более короткое (на ~0.04Å) расстояние Si-Р наблюдается для силафосфана 39b (рис. 8).

Рисунок 8. B3LYP/6-31G(d), MP2/6-31G(d) (полужирный шрифт) и B3LYP/6-311+G(d) (курсив) оптимизированные геометрии (длины связей, А, и валентные углы, градусы) силафосфана 39b.

1.4. Силафосфановые анионы, стабилизированные четырехцентровой шестиэлектронной (4с-бе) связью X-Si-P-Y.

Аксиальный 3с-4е фрагмент X-Si-P рассмотренных выше молекул 1(эндо)компоненту Si^V-P^{IV}. содержит дативную В структурах 43(эндо) этих координационный потенциал атома фосфора использован не в полной мере. Поэтому возникает интригующий вопрос. Возможно ли существование силафосфанов с контактом Si(V)-P(V)? По некоторым причинам его формирование можно было ожидать в анионах типа [XSi(C10H6)] PY] (44-46) и [XSi(C8H5N)] PY] (47-49) (X, Y = F, Cl). Наиболее интересным строением отличаются анионы [FSi(C₈H₅N)₃PF] (47) и [CISi(C₈H₅N)₃PF] (49). Им присуще расстояние Si-P, которое всего на ~0.3 Å больше длины (2.26Å) 'нормальной' связи Si^{TV}-Р^{III}. В структуре 47 длины аксиальных связей SiF и PF выравнены. Координационные узлы (КУ) FSiC₃P и FPN₃Si в 47 имеют

геометрию близкую к ТБП (рис. 9). Фрагмент F–Si–P–F 47 характеризуется в AIM подходе (рис. 9) тремя ВСР: в межядерных областях SiP, SiF и PF. Отрицательный знак лапласиана $\nabla^2 \rho(\mathbf{r}_c) (\nabla^2 \rho(\mathbf{r}_c) = -0.894 \text{ e/A}^5)$ в ВСР (SiP) является несомненным сви-

Рисунок 9. ВЗLYP/6-31G(d), ВЗРW91/6-31G(d) (курсив) и MP2/6-31G(d) (полужирный шрифт) оптимизированная геометрия (длины связей, Å, валентные углы, градусы) и MP2(full)/6-31G(d) карта лапласиана электронной плотности структуры 47. деством ковалентной природы контакта $Si^{V}-P^{V}$ в анионе 47. Обе его аксиальные связи SiF и PF, судя по свойствам BCP (SiF) и BCP (PF), относяться к ионноковалентному типу.

Образование 47 при взаимодействии FSi(C₈H₅N)₃P с анионом F^{*} является термодинамически выгодным процессом: E(47) – (E(FSi(C₈H₅N)₃P)+E(F^{*})) = -101.4 ккал/моль (MP2/6-31G(d)).

2. Силилметилированные производные фосфорных кислот

На поверхности потенциальной энергии всех соединений из ряда силилметилированных производных фосфорных кислот R₂P(O)ZCH₂SiMe_{3-n}Hal_n (50-

102) обнаружено два основных минимума (B3LYP/6-31G(d), B3PW91/6-31G(d) и MP2/6-31G(d)), отвечающих их некоординированной (открытой) (а) и координированной (закрытой) (b) формам.

2.1. Координированные формы силилметилированных производных фосфорных кислот R₂P(O)ZCH₂SiMe_{3-n}Hal_n.

Из 53 рассмотренных изомеров **b** соединений $R_2P(O)ZCH_2SiMe_{3-n}Hal_n$ в 14 (рис. 10 и подпись к нему) и ещё в трёх (Z = Nt-Bu; R = NEt₂ или NMe₂, n=1, Hal = Cl; R = OMe, n =2, Hal = F) расстояния SiO (d_{SiO}) на 0.3-0.8 Å превышают длину стандартной SiO связи (1.63 Å) и находятся в интервале 1.9-2.4 Å. Он является типичным для значений d_{SiO} [C(O)-Si]-хелатов (Kost, 1998г.).

Рисунок 10. Влияние валентного окружения атомов кремния и фосфора на межъядерное расстояние Si…O (d_{SiO}, B3LYP) в закрытых формах в амидов R₂P(O)NRCH₂SiMe_{3-n}Hal_n (62-69, 72-75) и фосфинокалов R₂P(O)CH₂CH₂SiMe_{3-n}Hal_n (79-90) фосфорных кислог. Белые столбики относятся к хелатам (1.9A < d_{SiO} < 2.4 Å), серые – к исевдохелатам (d_{SiO} > 2.4 Å). Диаграммы для эфиров R₂P(O)OCH₂SiMe_{3-n}Hal_n (50-61) и тисэфиров R₂P(O)SCH₂SiMe_{3-n}Hal_n (91-102) подобны таковым для амидов 62-69, 72-75 и фосфиноксидов 79-90, соответственно.

Геометрия побого типа КУ $OSiC_{4-n}Hal_n$ в этих 17 молекулах отвечает искаженной ТБП (66b, рис.11). Атом кремния в ней существенно уплощён (Δ_{Si} ~ 0.1÷0.3 Å), а степень его пентакоординации (η_a) больше 50% (в открытых формах **a**, содержащих Si^{IV}, $\Delta_{Si} \sim 0.5$ ÷0.6 Å). Дативный контакт О→Si в таких структурах имеет (AIM, MP2(full)/6-31G(d); ELF, HF/6-31G(d) анализ) ионно-ковалентную природу.^{**} Закрытые формы **b**, в которых РО→Si связывание имеет указанные геометрические и электронные характеристики, мы относим к хелатным.

Рисунок 11. ВЗL YP/6-31G(d), ВЗРW91/6-31G(d) (курсив) и МР2/6-31G(d) (полужирный шрифт) оптимизированные геометрии хелатной 66b и исевдохелатной 87b структур.

В остальных 36 закрытых формах **b** силилметилированных производных фосфорных кислот $R_2P(O)ZCH_2SiMe_{3-n}Hal_n: при Z = O$ (52-53, 56-57, 59-61); Z = NMe (64-65, 68-71, 73-75); Z = CH₂ (80-82, 84-90) и при Z = S (92-94, 96-102) значения d_{SiO} не попадают в интервал 1.9-2.4 Å (рис. 10). Результаты AIM анализа указывают на отсутствие BCP в области OSi при $d_{SiO} > 2.9$ Å. Если 2.9 Å > $d_{SiO} > 2.4$ Å, то BCP обнаруживается, но связывание OSi является по своей природе электростатическим. Закрытые формы 36 перечисленных выше сосдинений с такими характеристиками PO-ЭSi контакта лучше отнести к псевдохелатным. В

них донорные и акцепторные фрагменты пространственно подготовлены для реализации взаимодействия P=O->Si, но оно по ряду причин является относительно слабым ($\eta_a < 40\%$, рис. 11, 87b). Судя по значениям энергии комплексообразования, ΔE_{κ}^{***} , (< 2 ккал/моль) псевдохелаты Si-содержащих эфиров, амидов, фосфиноксидов и тиоэфиров существуют в виде равновесной смеси, a <-> b.

Для объяснения зависимости длины контакта SiO в молекулах 50b-102b от валентного окружения их атомов Si и P (рис. 10) были найдены NBO значения (HF/6-31G(d)) средней энергии (ϵ (n₀)) орбитали НЭП фосфорильного кислорода (n₀) и энергии, ϵ (σ^* _{SiHal}), разрыхляющей орбитали связи SiHal (σ^* _{SiHal}) в 48 открытых формах R₂P(O)ZCH₂SiMe_{3-n}Hal_n 50a-69a, 72a-75a, 79a-102a.^{****}

Полученные результаты свидетельствуют:

а) Независимо от природы Z и SiMe_{3-n}Hal_n величина $\varepsilon(n_0)$, а значит и донорная способность n_0 , при варьировании R увеличивается в следующей последовательности [для R₂P(O)NMeCH₂SiF₃ $\varepsilon(n_0)$ в эв]: MeO [-16.0] < Me [-15.4] < Me₂N [-15.2] (3)

б) Независимо от природы R и SiMe_{3-n}Hal_n, значения ε(n₀) возрастают при варьировании Z следующим образом [для (NMe₂)₂P(O)Z CH₂SiF₃ ε(n₀) в эв]:

 $S[-15.8] \le O[-15.6] \le NMe[-15.2] \le CH_2[-15.1]$ (4)

Экспериментально установленное влияние заместителей у атома фосфора на основность связи Р=О (Матросов, 1975г.; Аршинова, 1984г.; Цветков, 1985г.) в

*** $(\Delta E_k = (E_{un}(\mathbf{b}) + ZPE(\mathbf{b})) - (E_{un}(\mathbf{a}) + ZPE(\mathbf{b})))$

 $^{^*\}Delta_{Si}$ - смещение Si из экваториальной плоскости координационного узла OSiC_{4-n}Hal_n

^{**} АІМ: по критерию Кремера-Крака (Cremer, 1984г., 1995г., 1996г.) так как в обнаруженных ВСР (SiO): ρ(r) > 0.2 e/Å³, a | E] > 0.04 hartree/Å³. ELF: Значения населённостей (N) дисивантических бассейнов V(Si,O) находятся в интервале 1.4-1.6 е (для ковалентной связи N=2).

^{****} Параметры $\epsilon(n_0)$ и $\epsilon(\sigma^*_{Sillai})$ орбиталей n_0 и σ^*_{Sillai} , которые по геометрическим причинам не взаимодействуют в апиклических структурах а, предопределяют величину $n_0 \sigma^*_{Sillai}$ сопряжения, т.е. орбитальную стабилизацию альтернативных циклических, b.

соединениях P^{IV} хорошо согласуется с таковым, вытекающим из найденной последовательности (4).

с) С увеличением числа метильных групп во фрагменте SiMe_{3-n}Hal_n величина $\epsilon(\sigma^*_{SiHal})$ [эв], независимо от природы R и Z, уменьшается, т.е. акценторная способность связи SiHal возрастает:

 $12.6 (SiF_3) < 11.9 (SiMeF_2) < 11.6 (SiMe_2F) < 8.8 (SiMe_2Cl)$ (5)

Характер изменения E(no) некоординированных В структурах R₂P(O)ZCH₂SiMe_{3-n}Hal_n при варьировании R и Z определяется совокупностью стереоэлектронных наиболее важных взаимодействий, именно а НЭП. принадлежащих окружению Р^{IV}, (n_R, n_Z, n_O) с разрыхляющими орбиталями о связей PR, PZ, и PO. В их числе взаимодействия, способствующие как понижению (no, σ*PZ; $n_{0,\sigma} \sigma^{*}_{PR}; ...)$, так и повышению ($n_{R_{J}} \sigma^{*}_{PO}; n_{Z_{J}} \sigma^{*}_{PO}; ...)$ донорных свойств фосфорильного Поэтому назвать какое-либо одно ответственным кислорола. ИЗ них 3a последовательности (3) и (4) не представляется возможным.

С учётом (3) легко объяснить, почему при R = OMe и прочих равных условиях хелатных изомеров для молекул $R_2P(O)ZCH_2SiMe_{3-n}Hal_n$ заметпо меньше, чем при $R = NMe_2$, Me (рис.10). Судя по зависимости $\varepsilon(n_0)$ от природы Z (4) можно было ожидать, что число координированных форм b фосфиноксидов $R_2P(O)CH_2CH_2SiMe_{3-n}Hal_n$ с относительно сильным взаимодействием SiO ($1.9A < d_{SiO} < 2.4 Å$) будет не меньше, чем у амидофосфатов $R_2P(O)NMeCH_2SiMe_{3-n}Hal_n$. На самом деле это не так (рис. 10).

Ориентируясь только на орбитальные характеристики є(σ*_{SiHal}) фрагмента SiMe_{3-n}Hal_n при разном n (см. (5)), нельзя предвидеть, что условия для формирования прочных контактов О—Si в молекулах $R_2P(O)ZCH_2SiMe_2Cl$ менее благоприятны, чем в $R_2P(O)ZCH_2SiF_3$. Тем не менее, в первом случае хелатных структур вообще не обнаружено (рис.10). Это можно объяснить зависимостью (6) величины NBO заряда на атоме кремпия, q_{Si} (практически нечувствительной к природе R и Z) в группировке SiMe_{3-n}Hal_n от числа метильных групп:

 $2.6 (SiF_3) > 2.4 (SiMeF_2) > 2.2 (SiMe_2F) > 1.9 (SiMe_2Cl)$ (6)

Согласно (6) атом кремния в окружении трёх фторов, по сравнению с иным окружением Si, имеет, при прочих равных условиях, преимущество (рис. 10) как партнёр по взаимодействию с фосфорильным кислородом (зарядово-контролируемая координация).

Более высокая акцепторпая способность связи SiCl относительно SiF (см. (5)) проявляется в заметном различии величин d_{SiO} в закрытых формах **b** хлор- и фторпроизводных $R_2P(O)ZCH_2SiMe_{3-n}Hal_n$ при одинаковом числе Me групп в окружении Si. Например, в (NMe₂)₂P(O)NMeCH₂SiMe₂F $d_{SiO} = 2.733$ Å, а в (NMe₂)₂P(O)NMeCH₂SiMe₂Cl $d_{SiO} = 2.544$ Å (B3LYP).

В соединениях $R_2P(O)NMeCH_2SiMe_{3-n}Hal_n$ (62-69 и 72-75) замещение Me y атома азота на более донорные SiR₃, *t*-Bu... эффективно понижает значимость n_0,σ^*_{PN} сопряжения и, тем самым, способствует усилению координационного потенциала PO диады. Например, если молекула (Me₂N)₂P(O)NMeCH₂SiMe₂Cl (69b) имеет псевдохелатное строение (рис. 10), то (Me₂N)₂P(O)N*t*-BuCH₂SiMe₂Cl (77b) – хелатное.*

В качестве меры прочности дативного контакта О—Si в хелатных структурах можно использовать не только расстояние SiO, но и другие его характеристики, в том числе: NBO энергию взаимодействия n_0 и σ^*_{SiHal} орбиталей (E(2)) и энергию SiO

^{*} Напомним, что индуктивная константа метильной группы равна нулю, а трет-бутильной – -0.28

связывания (E_{sio}), оцениваемую в AIM по (2). Важно, что названные характеристики О \rightarrow Si координации изменяются согласованно: уменьшение d_{sio} сопровождается возрастанием значений E(2) и E_{sio} (рис. 12).

Наличие в закрытых формах b относительно прочного контакта OSi ($d_{SiO} < 2.4$ Å) не гарантирует им значительной, более чем на 3* ккал/моль, энергетической предпочтительности над альтернативными открытыми a. Действительно, из 17 найденных хелатных структур, только для девяти 50b, 54b, 62b, 63b, 66b, 67b и 76b-78b ΔE_k (ΔG_k) > 3 ккал/моль. Почему в их числе семь

E(2) и E_{SiO}) связи O→Si в рассматриваемых (см. рис. 10 и S ККаШМОЛЬ. Почему в их числе семь подпись к нему) хелатах. R₂P(O)NR[′]- и нет ни одного с R₂P(O)S- и R₂P(O)CH₂-? Ответить на поставленный вопрос можно используя (1), которое, применительно к (O-Si)-хелатам, имеет следующий вид: $\Delta E_{\rm x} \approx -E_{SiO} + E_{\rm Hanp}$ (7), где $E_{SiO} -$ энергия связи O→Si, а $E_{\rm Hanp} -$ энергия напряжения их гетероциклов. Так как E_{SiO} и $E_{\rm Hanp}$ входят в выражение для $\Delta E_{\rm x}$ (7) с разпыми знаками (стабилизирующий вклад E_{SiO} и дестабилизирующий $E_{\rm Hanp}$, то становится возможным образование слабых ВКК и при значительных по величине E_{SiO} , но сопоставимых с $E_{\rm Hanp}$.

Ориентируясь на AIM значения $\sum_{i} |\langle \alpha_{b}^{i} - \alpha_{e}^{i} \rangle|$, можно получить качественные представления о зависимости величины $E_{\text{напр}}$ хелатов (см. рис. 10) от природы их фрагмента OPZCSi. При варьировании Z, независимо от R, окружения Si и используемых методов оптимизации геометрии, $E_{\text{напр}}$ циклов OPZCSi уменьшается в следующей последовательности [$\sum_{i} |\langle \alpha_{b}^{i} - \alpha_{e}^{i} \rangle|$ для (NMe₂)₂P(O)ZCH₂SiF₃]:

$$E_{\text{samp}}(\overrightarrow{\text{OPCCSi}}) > E_{\text{samp}}(\overrightarrow{\text{OPOCSi}}) > E_{\text{ump}}(\overrightarrow{\text{OPNCSi}}) \approx E_{\text{samp}}(\overrightarrow{\text{OPSCSi}}) \quad (8)$$

$$[107.6^{\circ}] > [87.7^{\circ}] > [73.4^{\circ}] \approx [72.0^{\circ}]$$

Прочностные характеристики дативного контакта OSi (dsio, E(2), Esio...) в координированных структурах R₂P(O)ZCH₂SiMe_nHal_{3-n} определяются не только интенсивностью орбитально-зарядово контролируемой координации О--Si, но и величиной циклического напряжения - Енапр. Последний фактор противодействует сближению О нуклеофильного и Si электрофильного центров. Его деструктивная роль, судя по (8), более значима при образовании гетероцикла OPCCSi, чем любого другого. Поэтому, при высоких донорных свойствах фосфорильного кислорода группировки $R_2P(O)C$ (см. (4)) число хелатных форм (рис. 10) для R2P(O)CH2CH2SiMe3.,Hal, 32Metho Mehbine, чем таковых для R2P(O)NMeCH2SiMe3.,Hal,

Факторы, благоприятствующие (интенсивность дативного взаимодействия О-Si) и не благоприятствующие (напряжение гетероцикла OPZCSi) исключительному существованию молекул 50-102 в хелатной форме, оптимальным

При ∆Е_k = 3 ккал/моль содержание милорной формы в равновесной, а ↔ b, смеси не превышает одного процента.

образом, в соответствии с (4), (7) и (8), сочетаются в Si-содержащих амидах фосфорных кислот $R_2P(O)NR'CH_2SiMe_{3,n}Hal$.

Отнесение закрытых изомеров $R_2P(O)ZCH_2SiMe_{3-n}Hal_n$ b к хелатным или псевдохелатным, основанное на геометрических, электронных характеристиках контакта $O \rightarrow Si$ и величине энергии комплекообразования (ΔE_k) практически не зависит от используемого метода расчёта и размеров базиса. Тем не менее, судя по величинам d_{SiO} и ΔE_k , метод B3LYP, в отличие от B3PW91 и MP2 (результаты которых хорошо согласуются между собой), заметно недооценивает дативное связывание P=O \rightarrow Si.

Есть основания полагать, что найденные на более высоком уровне теории (например, CCSD(T)) значения d_{SiP} и d_{SiO} для рассматриваемых нами силафосфанов XSi(-L-)₃P и [P(O) \rightarrow Si] хелатов, соответственно, будут находиться в интервале d[MP2] < d[CCSD(T)] < d[B3LYP] (Trofimov, 2005г.; Hagemann, 2008г.).

2.2. Влияние растворителя на геометрию и химические сдвиги δ^{29} Si кремнийсодержащих амидов фосфорных кислот R₂P(O)NR[/]CH₂SiMe_{3-p}Hal_n.

Оценка чувствительности циклических форм 50b-103b к эффекту среды проводилась на примере амидов R₂P(O)NR⁷CH₂SiMe_{3-n}Hal_n.

При переходе высокополярных (дипольный момент больше 4D) изолированных молекул **62b-77b** в полярный раствор (учёт только эффекта неспецифической сольватации в РСМ модели) изменение их геометрии в наибольшей степени затронуло структурные параметры координационного узла $OSiC_{4-n}Hal_n$. Различие между газофазными ($d^{r, \Phi}$) и жидкофазными ($d^{*\Phi}$) длинами больпинства связей, не принадлежащих кремниевому полиэдру **62b-77b**, (рис. 13) сравнительно небольшое ($\Delta d^{r, \Phi - * \Phi} = d^{r, \Phi} - d^{* \Phi} < 0.04 Å$). За эти рамки существенно выходят значения $\Delta d_{SiO}^{r, \Phi}$.

Наиболее чувствительными к эффекту среды оказались молекулы 65b, 69b, 71b и 77b, содержащие "мяткий" КУ OSiC₃Cl (рис. 13). В изолированном состоянии они имеют псевдохелатное строение ($d_{sio}^{r.\phi} > 2.4$ Å), в малополярном растворе ($\epsilon = 4.7$) – хелатное ($d_{sio}^{r.\phi} \sim 2.1$ Å), а в высокополярном ($\epsilon = 46.7$) – цвиттер-ионное с инвертированным, судя по знаку Δ_{si} , атомом кремния. По всей видимости (Пестунович, 1998г.), 65b, 69b и71b могут иметь цвиттер-ионное строение не только в высокополярном растворе DMSO, но и в кристаллах. Экспериментальную поддержку сказанному можно увидеть в РСА результатах для структуры 76b (Албанов, 1991).

Только переход относительно прочных ($\Delta E_k > 3$ ккал/моль) в газовой фазе хелатов 61b, 66b, 67b и 77b (за исключением 63b) в полярный раствор ($\varepsilon = 4.7$ и 46.7) сопровождается их дальнейшей стабилизацией.

Значимой линейной связи между величинами $d_{SiO}^{r,\phi}$ и $\Delta d_{SiO}^{r,\phi-**,\phi}$ не обнаружено. Высокой чувствительностью геометрии к среде ($\Delta d_{SiO}^{r,\phi-**,\phi} > 0.1$ Å) характеризуются замкнутые формы амидов $R_2P(O)NR'CH_2SiMe_{3-n}Hal_n$, в которых расстояния SiO находятся в интервале 2.1-2.7 Å. Напротив, хелатам с коротким ($d_{SiO}^{r,\phi} < 2.1$ Å) и псевдохелатам с длинным ($d_{SiO}^{r,\phi-} > 2.7$ Å) контактом SiO присущи относительно небольшие значения $\Delta d_{SiO}^{r,\phi-**,\phi}$ (< 0.1 Å). Характер зависимости величины $\Delta d_{SiO}^{r,\phi-**,\phi}$ от $d_{SiO}^{r,\phi-**,\phi}$, т.е. от окружения фосфорильной группы и типа KY OSiC_{4-n}Hal_n, в циклических формах **b** молекул **50-103** является сложным и трудно

[•] При персходе 62b-77b из г.ф. в ж.ф. изменение валентных углов, не припадлежащих КУ OSiC4-oHalno < 3°.

прогнозируемым. Haпример, при практически одинаковых ΠO $d_{SiO}^{r.\phi}$ величине R амидах 65b и 73b в первом значение $\Delta d_{SiO}^{r.\phi..x.\phi.} = 0.614 \text{ Å!. a}$ во втором $\Delta d_{SiO} = 0.086$ Å. Можно ли при рассмотрении влияния хлороформа на строение 62b-77b нс учитывать его Н-донор-

Рисунок 13. Рассчитанная геометрия амида 69b в газовой фазе, в нис 02D-770 не малополярном (ε = 4.7) и в высокополярном (ε = 46.7) растворах. учитывать его Н-донорные свойства? Об этом можно судить по качеству линейной взаимосвязи

теоретических (б^{теор}) и экспериментальных (б^{эксп}) значений химических сдвигов ²⁹Si.

Рисунок 14. Взаямосвязь ('идеальная' представлена сплошной линией) вычисленных δ^{теер 29}Si (для закрытых форм b) и опытных б^{жся ²⁹Si значений химических сдвигов в хлороформе для амидов R₂P(O)NR^CCH₂SiMe_{3-n}Hal_w (66b, 68b, 70b-72b, 74b и 77b). δ^{теер 29}Si (**b**) рассчитывались в РСМ модели и для H-комплексов HCCl₅ с фосфорильным кислородом (**E**) (см. рис. 15).} Рассчитанные $\delta^{\text{теор}}$ ²⁹Si^{*} (GIAO B3LYP/6-311++G(2d,p)) в хлороформе (РСМ модель) для закрытых форм b синтезированных амидов R₂P(O)NR⁷CH₂SiMe_{3-n}Hal_n (66, 68, 70-72, 74 и 77) находятся (рис. 14) в неудовлетворительном согласии с опытными величинами $\delta^{\text{эксп}}$ ²⁹Si. На 'идеальной' прямой, выходящей из начала системы координат под углом 45°, находятся всего три точки (66b, 72b, 74b) из семи.

Для принципиального улучшения качества взаимосвязи $\delta^{\text{теор}} 2^9$ Si и $\delta^{\text{эксп}} 2^9$ Si (см. рис. 14) оказалось достаточно вычислить $\delta^{\text{теор}} 2^9$ Si для простых сольватных комплексов 70b, 71b и 77b с HCCl₃, т.е. с явным учётом их взаимодействия посредством фосфорильного

атома кислорода с одной молекулой хлороформа^{**}. На образование средних по прочности ($\Delta E_{\rm H} \sim 5 \div 7$ ккал/мол)^{***} Н-комплексов амидов 70b, 71b и 77b с HCCl₃ указывает геометрический (расстояние О···Н меньше суммы ВДВ радиусов О и Н, 2.7Å) и AIM (наличие ВСР (OH)) критерии (рис. 15).

В межъядерной области Si···O ассоцнатов 70b·HCCl₃, 71b·HCCl₃ и 77b·HCCl₃, BCP (3,-1) сохраняется (рис. 15), т.е. они содержат своеобразную бифуркационную связь Si \leftarrow O \rightarrow H, включающую внутримолекулярную Si \leftarrow O и межмолекулярную O \rightarrow H координационные компоненты. Понятно, что чем прочнее исходно будет контакт Si \leftarrow O (меньше значение d_{SiO}^{r.Ф}) в амидах 66b, 68b, 70b-72b, 74b и 77b, тем слабее будет взаимодействие O \rightarrow H в их комплексах с HCCl₃ (рис. 15). Поэтому и не наблюдается формирование H-связи O···HC в структуре 66b (d_{SiO}^{r.Ф}=2.012 Å)·HCCl₃. В ней взаимодействие O···H (d_{OH}=2.504Å) лучше отнести к Ван-дер-ваальсовому типу.

^{*} $\delta^{\text{теор 29}}$ Si = $\sigma^{\text{теор 29}}$ Si(TMS) - σ^{29} Si(соединения); $\sigma^{\text{теор 29}}$ Si(TMS) = 327.4.

^{••} Строение первой сольватной оболочки для 70b, 71b и 77b является, несомненно, более сложным.

 $[\]overset{\bullet\bullet\bullet}{\Delta E_{H}} = E^{\text{KOMULT}} - (E^{\text{RAMULD}} + E^{\text{HCCI3}})$

E_{Si0} = 10.80 (18.01), ккал/моль E_{OH} = 5.66, ккал/моль 77b·HCCl₃

E_{sio} = 4.47 (6.88), ккал/моль E_{oh} = 6.59, ккал/моль **71b**·HCCl₃

Рисунок 15. Рассчиталная (B3LYP/6-31G(d)) геометрия и молекулярные графы Н-комплексов амидов 71b и 77b с молекулой хлороформа. В круглых скобках представлены значения d_{SiO}^{1,4} и E_{SiO} для изолированного состояния 71b и 77b. Заштрикованными квадратиками обозначены связевые критические точки ВСР (3, -1), пустыми кружочками – кольцевые критические точки ВСР (3, +1). Значения E_{SiO} и E_{OH} оценивались по формуле (3).

в раствор хлороформа в модели неспецифической сольватации (РСМ) сопровождается возрастанием экранирования ²⁹Si.

Для установления гипервалентности Si в органических произволных и оценки его относительной прочности обнаруженных дополнительных связей используют знак и величину координационного сдвига. Δδ²⁹Si (по определению $\Delta \delta^{29} Si = \delta^{29} Si$ (изучаемого соединения) – δ^{29} Si (модельного соединения Si^{IV})). При этом молчаливо подразумевается наличие взаимосвязи линейной между устойчивостью ВКК, т.е. ΔE_k и прочностными характеристиками содержащегося в них ДА контакта с одной стороны, и $\Delta \delta^{29}$ Si с другой. Применительно к ВКК теоретическая поддержка этому предположению в литературе отсутствует.

Степень пентакоординации атома кремния (а значит и положение его сигнала ²⁹Si относительно свойственного соединениям Si^V или Si^{IV}) в системах 70b·HCCl₃, 71b-HCCl₃ 77b-HCCla И зависит от конкуренции силильной группы и хлороформа за 'обладание' фосфорильным кислородом. Наличие межмолекулярной составляющей O→H R триале Si ← O → H. присушей 70b HCCl₃, 71b-HCCla И 77b·HCCl₁ приводит к ослаблению их лативного Si←O. контакта относительно такового в 70b, 71b и 77b Поэтому Steop 29Si комплексов находится в более слабом поле πο ²⁹Si 8^{теор} сравнению с свободных молекул. Напро-

тив, переход 70b, 71b и 77b

Рисунок 16. Зависимость координационных сдвигов $\Delta \delta^{\text{теор}}$ ²⁹Si изолированных закрытых форм b амидов $R_2P(O)$ NMeCH₂SiMe_{3-n}Hal_n (62-69 и 72-75) от межъядерного расстояния SiO (d_{SiO}). Величины $\Delta \delta^{\text{теор}}$ ²⁹Si рассчитывались относительно соответствующих некоординированных изомеров 62а-69а и 72а-75а; $\Delta \delta^{\text{теор}}$ ²⁹Si = δ^{b} ²⁹Si.

В этой связи мы нашли зависимость (в газовой фазе) рассчитанных координационных сдвигов $\Delta \delta^{\text{теор 29}}$ Si силилметилированных амидов 62b-69b и72b-75b от энергий их образования (ΔE_k) и межъядерного расстояния SiO (d_{SiO}). Качество (R = 0.794) линейной корреляции $\Delta \delta^{29}$ Si= $\int (\Delta E_k)$ для ВКК 62b-69b, 72b-75b, как и недавно полученной для межмолекулярных комплексов силанов с аминами (R = 0.625,

Schoeller, 2000), является очень низким. Более надёжной оказалась взаимосвязь между координационным сдвигом и длиной дативного контакта $O \rightarrow Si$ (рис. 16). Поэтому использование на практике величины $\Delta\delta^{29}Si$ для оценки относительной прочности ДА связи в сопоставляемых ВКК получило определённую теоретическую поддержку.

2.3. В какой хелатной форме, Р=О→Si или C=O→Si, существует N-[(хлордиметилсилил)метил]-N-бензоиламид диизопропилфосфорной кислоты?

Химический сдвиг кремния (δ^{29} Si = -16.6 м.д., CDCl₃) в недавно синтезированном N-[(хлордиметилсилил)метил]-N-бензоиламиде диизопронилфосфорной кислоты 104 смещен в сильное поле относительно такового в модельном силане ClCH₂SiMe₂Cl (δ^{29} Si = 23.6 м.д.). Это свидетельствует, что в 104 атом кремния пентакоординирован. Однако ЯМР данные не позволяют однозначно идентифицировать, с какой группой, карбонильной или фосфорильной, координирует

атом кремния. Нами методом B3LYP/6-31G(d) было изучено строение молекулы 105 в растворс хлороформа (PCM), которая является структурным аналогом 104.

На поверхности потенциальной энергии 105 обнаружены три минимума, отвечающие двум замкнутым структурам 105b, 105b' и открытой 105а. Первые две имеют заметное энергетическое преимущество (> 3 ккал/моль) над нехелатной формой 105а, в которой атом Si тетракоординирован. Геометрия кремневого полиэдра в 105b и 105b' близка к ТБП, степень пентакоординации Si высока ($\eta_e = 93$ %), а d_{SiO} = 2.254 и 2.146 Å, соответственно. Рассчитанные (GIAO B3LYP/6-311++G(2d,p)) химические сдвиги $\delta^{\text{теор}}$ ²⁹Si для 105b (-15.7 м.д.) и 105b' (-19.7 м.д.) близки по величине и неплохо согласуются с $\delta^{\text{эксп}}$ ²⁹Si, найденной для соединения 104.

Судя по значениям ΔE и ΔG (стандартные условия), энергетическая предпочтительность хелата 105b' над 105b ($\Delta E(\Delta G) = E(G)^{105b'} - E(G)^{105b} = -5.4$ (-5.9), ккал/моль) является значительной. Поэтому молекула 105, а значит и 104, существуют исключительно в форме изомера с дативной связью C=O→Si.

Согласно результатам NBO анализа (HF/6-31G(d)) взаимодействие НЭП атома азота с л разрыхляющей орбиталью связи С=О в нехелатной форме 105а (E(2) ~ 70 ккал/моль) более, чем на 40 ккал/моль превышает ее взаимодействие с разрыхляющими орбиталями РО₃ фрагмента. Это предопределяет (см. раздел 2.1) более сильные донорные свойства карбонильного кислорода по сравнению с фосфорильным и, тем самым, обеспечивает эпергетическую предпочтительность 105b' над 105b.

Путём замещения в 105 метоксигрупп у атома P на диметиламиногруппы, ацетильной на более σ -акцепторную трифторацетильную и фрагмента SiMe₂Cl на SiF₃ можно прийти к молекуле (NMe₂)₂P(O)NC(O)CF3CH2SiF₃, 106, которая, в отличие от 105, находится ($\Delta E = E^{106b'} - E^{106b} = 5.2$ ккал/моль, B3LYP/6-31G(d)) исключительно в форме P=O- \rightarrow Si хелата.

3. Методическая часть

Расчёты проводились с привлечением программных комплексов Gaussian 98, Gaussian 03 и PC GAMESS. Для AIM анализа электропного распределения ρ(r) привлекались программы MORPHY 1.0 и AIMPAC. Функции электронной локализации (ELF) Бекке и Эджекомбе были рассчитаны с использованием программного пакета ТорМоd и визуализированы с помощью программы gOpenMol.

выводы

- Каркасные силафосфаны XSi(-L-)₃P (X = Me, F; L = YCH₂Z; YC₆H₄; C₆H₄Z; C₁₀H₆; YCH₂CH₂Z; YC₆H₄Z; Y, Z = O, NH, CH₂, S) могут существовать в эндо форме, допускающей P→Si связывание, и экзо, его исключающей. Относительная устойчивость этих изомеров зависит от свойств окружения мостиковых атомов Si и P, размеров и природы боковых ценочек L.
- 2. Только 3 структуры (X = Ме или F, L = SC₆H₄, и X = F, L = C₁₀H₆,) с 1,5 мостиковыми атомами Si и P из 49 рассмотренных молекул XSi(~L-)₃P находятся исключительно в эндо форме. Причина неудачных попыток синтеза потенциально гипервалентных соединений XSi(OCH₂CH₂)₃P силатрановых аналогов заключается в высокой напряженности трёх пятичленных гетероциклов SiOCCP эндо изомера и, тем самым, его термодинамической нестабильности по отношению к альтернативному без аттрактивного взаимодействия SiP.
- 3. При переходе от XSi(−L−)₃P с 1,5 к XSi(−L−)₃P с 1,6 мостиковыми атомами Si и P число стабильных эндо изомеров возрастает до 16. В их число входит и FSi(NHC₆H₄NH)₃P, примечательный рекордно короткой длиной дативной связи P→Si (2.3 Å). Конфигурация связей его пентакоординированного атома кремния отвечает практически идеальной тригональной бипирамиде.
- Природа связи PSi (AIM и ELF анализ) в стабильных эндо формах XSi(-L-)₃P зависит от окружения атомов кремния, фосфора, размеров боковых цепочек L и изменяется от ионной до ковалентной.
- Силафосфан FSi(C₈H₃N)₃Р обладает высоким сродством к F[−] (-101.4 ккал/моль). Образующийся гипервалентный анион [FSi(C₈H₅N)₃PF][−] стабилизирован 4с-бе связью [F-Si-P-F][−], содержащей неизвестный ранее ковалентный контакт Si^V-P^V.
- 6. Силилметилированные производные фосфорных кислот R₂P(O)ZCH₂SiMe₃.nHaln могут существовать в некоординированной (открытой) а и P(O)→Si координированной (закрытой) b формах. Относительная устойчивость изомеров b определяется не только интенсивностью орбитально-зарядово контролируемой координации O→Si (стабилизирующий фактор), но и величиной напряжения, E_{напр}, гетероцикла OPZCSi (дестабилизирующий фактор). Вследствие этого только 9 молекул из 53 рассмотренных существуют исключительно в хелатной форме. Оптимальным образом стабилизирующие и дестабилизирующие факторы сочетаются в Si-содержащих амидах фосфорных кислот R₂P(O)NR'CH₂SiMe₃.nHaln. По данным AIM и ELF анализа, относительно сильные контакты SiO (1.9 Å < d_{SiO} < 2.4 Å) в координированных формах b содержат ковалентный вклад, а слабые (d_{SiO} > 2.4 Å) не содержат.
- 7. Наиболее чувствительными к эффекту полярности растворителя оказались координированные формы силилметилированных производных фосфорных кислот R₂P(O)ZCH₂SiMe_{3-n}Hal_n с 'мягким' координационным узлом OSiC₃Cl. В изолированном состоянии они имеют псевдохелатное строение (d_{SiO}^{r,ф.} > 2.4 Å), в

малополярном растворе ($\epsilon = 4.7$) – хелатное ($d_{si0}^{r.\phi} \sim 2.1$ Å), а в высокополярном ($\epsilon = 46.7$) – цвиттер-ионное. Реалистичное описание строения комплексов с сильным ($d_{si0}^{r.\phi} < 2.1$ Å) или слабым ($d_{si0}^{r.\phi} > 2.7$ Å) дативным взаимодействием О-Si в среде хлороформа возможно в неспецифической модели сольватации. В остальных случаях (2.1Å $< d_{si0}^{r.\phi} < 2.7$ Å), как следует из взаимосвязи рассчитанных и экспериментальных значений химических сдвигов ²⁹Si амидов R₂P(O)NR'CH₂SiMe_{3-n}Hal_n в CHCl₃, необходим явный учёт взаимодействия молекул с хлороформом.

- 8. На примере молскул R₂P(O)NMeCH₂SiMe_{3-n}Hal_n установлена тенденция к симбатному изменению энергии образования (ΔE_k) их хелатных форм, длины дативного контакта (d_{SiO}) и координационного химического сдвига ($\Delta \delta^{29}Si$). Линейная корреляция величин ΔE_k и $\Delta \delta^{29}Si$ является существенно более грубой (R = 0.794), чем $\Delta \delta^{29}Si$ и d_{SiO} (R = 0.959). Использование на практике величины $\Delta \delta^{29}Si$ для оценки относительной прочности дативной связи в сопоставляемых ВКК получило теоретическую поддержку.
- 9. Экспериментально полученный N-[(хлордиметилсилил)метил]-N-бензоиламид диизопропилфосфорной кислоты существует в форме C=O→Si изомера. Энергетическая предпочтительность C=O→Si координационного взаимодействия над P=O→Si, по данным NBO анализа, обеспечивается в этой молекуле более сильными донорными свойствами карбонильного кислорода по сравнению с фосфорильным.

Основные научные результаты диссертационной работы изложены в следующих публикациях:

- Лазарева Н. Ф., Доронина Е. П., Белоголова Е. Ф., Шаинян Б. А., Сидоркин В. Ф. Синтез и строение кремнийсодержащих N-метил и N-бензоиламидов диизопропилфосфорной кислоты // ЖОХ. – 2007. – Т. 77, вып. 7. – С. 1094-1102.
- Sidorkin V. F., Doronina E. P. Cage silaphosphanes with a P→Si dative bond // Organometallics. - 2009. - Vol. 28, No. 18. - P. 5305-5315.
- 3. Доронина Е. П., Сидоркин В. Ф. Молекулярный дизайн каркасных структур с 1-5 связыванием мостиковых атомов Si и P // Тез. докл. 5-я Всероссийская конференция «Молекулярное моделирование». Москва. 2007. С. 56.
- Doronina E. P., Sidorkin V. F. Cage silaphosphanes with P→Si dative bond // Abstr. The 15th International Symposium on Organosilicon Chemistry. -Korea, Jeju. - 2008. -P. 129.
- Doronina E. P., Lazareva N. F., Belogolova E. F., Sidorkin V. F. Silicon-containing amides of phosphoric acids stabilized by P=O→Si dative bond // Abstr. The 15th International Symposium on Organosilicon Chemistry. -Korea, Jeju. - 2008. - P. 129.

Подписано в печать21.10.09. Формат 210х147 1/16. Бумага писчая белая. Печать RIZO. Усл. печ.л.1.6. Отпечатано в типографии ИП Овсяпников А.А. Тираж 100 экз. Заказ № 73