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СПИСОК СОКРАЩЕНИЙ 

ГАФД – глицеральдегид-3-фосфатдегидрогеназа 

ДЛС – динамическое лазерное светорассеяние 

ДНК – дезоксирибонуклеиновая кислота 

ДС – декстрансульфат натрия 

ДСК – дифференциальная сканирующая калориметрия 

ИТК – изотермическая титрационная калориметрия 

КД – спектроскопия кругового дихроизма 

ПолиЦ – полицитидилат калия 

ПСС – поли(стиролсульфонат) натрия 

ПФ – полифосфат натрия 

ПЭВП – бромид поли-N-этил-4-винилпиридиний  

РНК – рибонуклеиновая кислота 

CML – карбоксиметиллизин 

CMF – (карбоксиметил)фенилаланин 

pTyr – фосфорилированный тирозин 

sTyr – сульфатированный тирозин 

SuccK – сукциниллизин 

 

ВВЕДЕНИЕ 

1. Актуальность проблемы и степень разработанности темы 

Электростатические взаимодействия играют важную роль во многих 

биологических процессах, поскольку они контролируют специфичность 

взаимодействия белков с другими заряженными полимерами. В частности, 

белки содержат заряженные аминокислоты, а именно остатки аспартата, 

глутамата, лизина, аргинина и гистидина. В результате поверхность белка имеет 

отрицательно и положительно заряженные участки, которые важны для 

взаимодействия белка с другими макромолекулами (Lehninger et al., 2005). 

Частным случаев белков с высокой плотностью заряда являются внутренне 

неупорядоченные белки, повышенное содержание заряженных аминокислот в 

которых дестабилизирует структуру подобных молекул и проводит к 

отсутствию компактной глобулы. Электростатические взаимодействия 

особенно важны для этого класса белков (Yang et al., 2020). 
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К заряженным полимерам можно отнести нуклеиновые кислоты, 

обладающие высокой плотностью отрицательного заряда, который необходим 

для образования белок-ДНК и белок-РНК комплексов (Peng and Alexov, 2017). 

Кроме того, к природным полимерам можно отнести сульфатированные 

полисахариды, в частности природный антикоагулянт гепарин и полисахариды, 

образующую клеточную стенку водорослей. Биологические системы также 

содержат множество фосфат-содержащих полимеров, от молекул, таких как 

АТФ и инозитолтрифосфат, до различных линейных полифосфатов, которые 

синтезируются в прокариотах и эукариотах, участвуют в энергетическом 

обмене (Jiménez et al., 2017). 

Природные и синтетические гомополимеры и простые сополимеры 

применяются в биоинженерии, биотехнологии и фармакологии для очистки 

белков, иммобилизации ферментов и направленной доставки лекарственных 

препаратов (Achazi et al., 2021; Xu et al., 2011). Их использование также является 

перспективным подходом для подавления агрегации белков. Серии 

экспериментов показали влияние различных характеристик полиэлектролитов 

и белков, а также условий среды на образование комплексов белок-

полиэлектролит (Cooper et al., 2006; Sedlák et al., 2009; Semenyuk et al., 2013; 

Shalova et al., 2007; Stogov et al., 2010; Xu et al., 2012).  

Значительное изменение локального заряда на поверхности белка может 

приводить к изменению пространственной структуры и функции белка. С этой 

точки зрения, посттрансляционные модификации, такие как фосфорилирование 

(Azevedo et al., 2015), сульфатирование (Moore, 2003), гликирование (Sadowska-

Bartosz and Bartosz, 2016) и прочие модификации представляют особый интерес 

для биоинженерии, поскольку они могут изменять белок-белковые 

взаимодействия. Кроме того, нарушения в регуляции пост-трансляционных 

модификаций может стать причиной развития многих заболеваний, включая 

диабет, онкологические и нейродегенеративные заболевания. 
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2. Цели и задачи 

Целью данной работы является исследование взаимодействия белков с 

заряженными полимерами (полиэлектролитами, РНК, внутренне 

неупорядоченными белками) и влияния белковых посттрансляционных 

модификаций, ассоциированных с изменением локального заряда на 

поверхности белка, на это взаимодействие. 

Для достижения этой цели были поставлены следующие задачи: 

1. Исследование влияния поликатионов и полианионов на агрегацию белков 

(лизоцим, ГАФД, α-лактальбумин) при рН ниже и выше изоэлектрической 

точки белка 

2. Сравнение взаимодействия полиэлектролитов разной степени 

полимеризации с модельным белком лизоцимом методом симуляций 

молекулярной динамики  

3. Сравнение связывания нативного и гликированного β-казеина с 

различными полиэлектролитами при температуре 10°C и 25°C 

4. Изучение влияния разных вариантов гликирования ГАФД на ее 

взаимодействие с α-синуклеином и РНК методом симуляций молекулярной 

динамики 

5. Сравнение связывания различных производных гирудина с тромбином 

методами молекулярного моделирования с последующей экспериментальной 

проверкой антитромботической активности модифицированных форм in vitro. 

3. Объект и предмет исследования 

Объектом исследования были белки, полиэлектролиты и их молекулярные 

модели: лизоцим, α-лактальбумин, ГАФД, β-казеин, гликированные формы 

ГАФД и β-казеина, α-синуклеин, производные гирудина, полиэлектролиты. 

Предметом исследования было взаимодействие белков с различными 

полиэлектролитами; влияние заряда белка и свойств полиэлектролита (заряд, 
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степень полимеризации и гидрофобность) на это взаимодействие; влияние 

гликирования на взаимодействие β-казеина с полиэлектролитами и ГАФД с 

РНК и α-синуклеином; аффинность к тромбину и степень ингибирования 

свертывания крови различных производных гирудина. 

4. Научная новизна 

Впервые была продемонстрирована универсальность подхода 

использования полиэлектролитов для подавления агрегации различных белков. 

В частности, было показано, что агрегация может быть подавлена одинаково 

заряженным полиэлектролитом. Взаимодействие белков с полиэлектролитами 

было впервые изучено при помощи полноатомного молекулярного 

моделирования, благодаря чему была предложена модель взаимодействия, 

объясняющая экспериментальные данные. 

Впервые было изучено влияние гликирования на структуру β-казеина и его 

взаимодействие с природными и синтетическими полиэлектролитами. Показан 

различный характер влияния гликирования ГАФД на взаимодействие с 

полианионами РНК и α-синуклеином. Впервые было продемонстрировано, что 

фосфорилирование гирудина повышает его аффинность к тромбину и 

увеличивает антитромботическую активность. 

5. Теоретическая и практическая значимость 

Полученные результаты углубляют теоретические представления о 

взаимодействии белков с полиэлектролитами и могут быть использованы для 

выбора полиэлектролитов в качестве инструмента для подавления агрегации 

белков. Данные о гликировании β-казеина и его взаимодействия с 

полиэлектролитами полезны для химии молочных продуктов, в частности для 

использования полимеров при стабилизации белков молока и предотвращении 

их агрегации. Результаты влияния гликирования на взаимодействие ГАФД и α-

синуклеина актуальны для выяснения молекулярного механизма взаимосвязи 

между развитием нейродегенеративных заболеваний и сахарного диабета. 

Данные об аффинности к тромбину и антитромботической активности 
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производных гирудина могут быть использованы при разработке новых 

антикоагуляционных препаратов для снижения рисков побочных эффектов. 

6. Методология исследования 

В исследовании были использованы биохимические и физико-химические 

методы, а также методы вычислительной биологии и биоинформатики. Все 

использованные методики отвечают общепринятым мировым стандартам. 

Результаты экспериментов воспроизводимы и были выполнены с надлежащими 

контролями. 

7. Положения, выносимые на защиту 

1. Использование полиэлектролитов является универсальным методом 

подавления агрегации белков, при этом шапероноподобная активность 

полиэлектролита возрастает с увеличением одноименного заряда на 

поверхности белка и длины цепи полиэлектролита. 

2. Отрицательно заряженный β-казеин активно взаимодействует с 

поликатионом и относительно гидрофобным сульфатированным полианионом 

поли(стиролсульфонат), в то время как взаимодействие с более гидрофильными 

сульфатированными, полифосфатными и поликарбоксилатными полианионами 

гораздо менее выражено.  

3. Гликирование ГАФД затрудняет ее взаимодействие с полианионами α-

синуклеином и РНК, хотя механизм влияния гликирования на взаимодействие 

ГАФД с α-синуклеином и РНК был различным. 

4. Фосфорилирование десульфо-гирудина улучшает его связывание с 

тромбином и антитромботическую активность по сравнению с природным 

сульфатированием. 

8. Степень достоверности данных 

Обзор литературы подготовлен с использованием актуальных публикаций 

и соответствует теме диссертации. Данные были получены с использованием 
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современных методов биохимии и вычислительной биологии и 

биоинформатики. Статистическая обработка данных проводилась с 

использованием программного обеспечения Origin8 и RStudio. Результаты 

исследования были представлены на российских и международных 

конференциях и опубликованы в международных научных журналах. 

9. Публикации по теме диссертации 

По материалам диссертации опубликовано 4 статьи в международных 

рецензируемых научных журналах, индексируемых в Scopus и Web of Science. 

10.  Апробация работы 

Результаты работы были представлены на международных конференциях: 

XXXIV зимняя школа молодых ученых "Перспективные направления физико-

химической биологии и биотехнологии", 2022, Москва, Россия; VII 

Молодёжная школа-конференция по молекулярной и клеточной биологии 

Института цитологии РАН, Санкт-Петербург, Россия; VI Съезд биохимиков 

России и IX Российский симпозиум "Белки и пептиды", 2019, Дагомыс, Россия; 

The 2nd Russia-Japan Joint Forum for Education and Research, 2018, Москва, 

Россия; XXIV Международная научная конференция студентов, аспирантов и 

молодых ученых «Ломоносов-2017», Москва, Россия; International Conference 

"Biocatalysis-2017: Fundamentals and Applications", Московская обл., Истра, 

Россия; V Съезд физиологов СНГ, V Съезд Биохимиков России, 2016, Сочи, 

Россия; XXIII Международная научная конференция студентов, аспирантов и 

молодых ученых «Ломоносов-2016», Москва, Россия; XXVIII зимняя школа 

молодых ученых "Перспективные направления физико-химической биологии и 

биотехнологии", 2016, Москва, Россия; XXII Международная научная 

конференция студентов, аспирантов и молодых ученых «Ломоносов-2015», 

Москва, Россия. 

11. Личный вклад автора 

Основные результаты работы были получены самим соискателем. Личный 

вклад автора заключается в анализе данных литературы, планировании и 
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проведении экспериментов, в обработке и анализе полученных данных, 

подготовке публикаций. Эксперименты по спектроскопии кругового дихроизма 

были проведены при участии А.М. Арутюняна; эксперименты по 

седиментационному анализу были проведены при участии П.В. Калмыкова и 

Н.Н. Магретовой; эксперименты по изотермической титрационной 

калориметрии были выполнены при участии В.Н. Орлова и В.Н. Мичуриной, 

эксперименты по динамическому лазерному светорассеянию по измерению 

размера и дзета-потенциала комплексов лизоцима с полиэлектролитами были 

выполнены Д.Б. Евстафьевой; эксперименты по поверхностному плазмонному 

резонансу были выполнены Д.В. Поздышевым и К.В. Бариновой. 

12.  Объем и структура диссертации 

Диссертационная работа состоит из оглавления, списка сокращений, 

введения, обзора литературы, материалов и методов, полученных результатов 

и их обсуждения, заключения, основных результатов и выводов, 

благодарностей и списка цитируемой литературы. Работа изложена на 187 

страницах, иллюстрирована 46 рисунками и 6 таблицами. Список цитируемой 

литературы включает 271 источник. 

 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 

1. Экспериментальная часть 

В работе были использованы следующие белки: глицеральдегид-3-

фосфатдегидрогеназа (ГАФД), лизоцим, α-лактальбумин, β-казеин, С-концевые 

(остатки 55-65) пептиды гирудина и его производные. Структурные формулы 

исследуемых полиэлектролитов приведены на Рис. 1.  
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Рисунок 1. Химические формулы используемых полиэлектролитов 

 

Влияние полиэлектролитов на тепловую агрегацию ГАФД оценивали 

путем измерения оптической плотности раствора на спектрофотометре Aminco 

DW2000, лизоцима и α-лактальбумина по размеру частиц в растворе методом 

динамического лазерного светорассеяния (ДЛС) с использованием прибора 

ZetaSizer NanoZS (Malvern Instruments). Гликирование β-казеина 

осуществляли метилглиоксалем, конечные продукты гликирования 

детектировали методом флуоресцентной спектроскопии (спектрофлуориметр 

FluoroMax-3 (Horiba Jobin Yvon). Размер комплексов β-казеина с 

полиэлектролитами был определен методами ДЛС и аналитического 

ультрацентрифугирования, используя центрифугу модели Beckman E. Прямое 

взаимодействие полиэлектролитов с β-казеином исследовали при помощи 

изотермической титрационной калоримерии (ИТК) с использованием 

калориметра VP-ITC (Microcal, США). Изучение влияния гликирования и 

взаимодействия с полиэлектролитами на структуру β-казеина проводили с 

помощью измерения спектров кругового дихроизма (КД) в дальнем 

ультрафиолете на приборе Jobin Yvon CD Mark 6 и собственной флуоресценции 

β-казеина на спектрофлуориметре FluoroMax-3. Частичный протеолиз β-

казеина в присутствии ПСС осуществляли пепсином в соотношении 
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фермент/субстрат 1:1000, полученные гидролизаты анализировали с помощью 

SDS-электрофореза в полиакриламидном геле. Антитромботическую 

активность С-концевых аналогов гирудина оценивали по времени 

свертывания плазмы крови человека при добавлении тромбина.  

2. Молекулярное моделирование взаимодействий 

Симуляции и анализ молекулярной динамики были сделаны с 

использованием пакета программ GROMACS. Протонирование и визуализация 

структур белков при различных значениях pH осуществлялось с помощью веб-

сервера PDB2PQR и APBS. Симуляции молекулярной динамики 

взаимодействия лизоцима с полиэлектролитами были сделаны с 

использованием силового поля GROMOS 54a7. Каждая система моделирования 

состояла из одной молекулы лизоцима и нескольких молекул ПЭВП, 

неорганического полифосфата (ПФ) или ПСС. В зависимости от длины 

полиэлектролита было добавлено разное количество молекул для достижения 

одинакового общего количества мономеров в системе. Молекулы 

полиэлектролитов были параметризованы с помощью инструментов RED III и 

Firefly QC. Каждая система моделировалась трижды с разными случайными 

начальными положениями цепей в ячейке в течение 50 нс. 

Симуляции молекулярной динамики взаимодействия между ГАФД и 

α-синуклеином или РНК проводили с использованием силового поля 

AMBER99-parmbsc0. Было выполнено три набора симуляций как для α-

синуклеина, так и для РНК: с нативной ГАФД и двумя формами гликированной 

ГАФД: гликированная по бороздке ГАФД и равномерно гликированная ГАФД. 

Гликированные структуры белка ГАФД были получены путем замены остатков 

на N-ε-карбоксиметиллизины (CML, Рис. 2А). Молекула CML была 

параметризована с помощью инструментов RED III и Firefly QC. В каждом 

случае провели по 10 независимых симуляций по 200 нс с разными случайно-

выбранными исходными позициями α-синуклеина или РНК. 
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Симуляции направленной молекулярной динамики комплекса 

тромбин-гирудин проводились с различными производными гирудина. 

Химические структуры использованных нестандартных аминокислот 

представлены на Рис. 2Б. Было протестировано два силовых поля GROMOS-

54A8 с надстройкой Vienna-PTM и Charmm 36М с дополнительной 

параметризацией с использованием онлайн-сервиса CGenFF. Расчет свободной 

энергии Гиббса (ΔG) взаимодействия тромбина с производными гирудина 

проводился методом зонтичной выборки (umbrella sampling) и методом анализа 

взвешенных гистограмм. Стандартная ошибка была оценена с использованием 

метода бутстрепа. 

 

Рисунок 2. Структуры нестандартных аминокислот ГАФД (А) и гирудина (Б) 

 

 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

1. Взаимодействие белков с полиэлектролитами 

Некоторые полиэлектролиты, взаимодействуя с белками, проявляют 

шапероноподобную активность и могут быть использованы для подавления 

агрегации белков. Для проверки гипотезы об универсальности метода 

подавления агрегации с использованием полиэлектролитов, были 

использованы три модельных белка с различной изоэлектрической точкой (pI): 

глицеральдегид-3-фосфатдегидрогеназа (ГАФД, pI 8,5), лизоцим (pI 9,3) и α-

лактальбумин (pI 4,9). Эксперименты проводили при различных значениях рН, 

как выше, так и ниже изоэлектрической точки белков. Таким образом, 

поверхностный заряд белков варьировался, и, следовательно, изменялось и 
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взаимодействие белков с полиэлектролитами. В качестве полиэлектролитов мы 

использовали полианион ДС, а также поликатион ПЭВП. 

Добавление ПЭВП к лизоциму (pI 9,3) позволило подавить тепловую 

агрегацию белка при всех выбранных значениях рН, причем подавление 

агрегации поликатионом было наиболее эффективным при рН 7,5, когда и 

лизоцим (pI = 9,3), и поликатион заряжены положительно и, следовательно, 

электростатическое связывание белок-поликатион наименее эффективно. 

 

 

Рисунок 3. Гидродинамический диаметр частиц лизоцима с ПЭВП. Размер 

частиц лизоцима измеряли до (нижняя кривая) и после (остальные кривые) 

тепловой агрегации при рН 7,5 (А), рН 9,0 (Б) и рН 11,0 (B). 

 

Далее мы исследовали тепловую агрегацию другого белка ГАФД (pI = 

8,5) в присутствии полиэлектролитов, измеряя увеличение оптической 

плотности раствора в процессе агрегации. При всех выбранных значениях pH, 

агрегация ГАФД была полностью подавлена при добавлении полианиона ДС, а 

также частично подавлена при добавлении поликатиона ПЭВП. Как и в случае 

с лизоцимом, поликатион ПЭВП показал наибольшую эффективность при рН 

6,5 (Рис. 4А), когда и белок, и поликатион заряжены положительно; полианион 

ДС оказался наименее эффективным при рН 6,5 (Рис. 4Б). 
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Рисунок 4. Зависимость уровня относительной тепловой агрегации ГАФД 

от концентрации добавленных полиэлектролитов ПЭВП (А) и ДС (Б) при 

различных значениях рН. 

 

Затем эксперименты по подавлению агрегации были проведены с кислым 

белком α-лактальбумин (pI = 4,9) при рН 6,5, когда белок был заряжен 

отрицательно. Добавление одноименно заряженного полианиона ДС привело к 

снижению уровня агрегации α-лактальбумина. 

 

Рисунок 5. Размер частиц α-

лактальбумина с ДС до (нижняя 

кривая) и после (остальные кривые) 

тепловой агрегации при рН 6,5. 

 

 

 

На основе полученных результатов была предложена модель 

взаимодействия полиэлектролитов с белками в зависимости от значения pH 

(Рис. 6). Поскольку на поверхности белка одновременно расположены как 
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положительно, так и отрицательно заряженные аминокислоты, полиэлектролит 

связывает белок только частью своей цепи. Остальные мономеры 

полиэлектролита отталкиваются от одноименно заряженных остатков белка, 

образуя петли и хвосты с нескомпенсированным зарядом. Последние образуют 

заряженную оболочку вокруг белка, что, по-видимому, и определяет 

склонность комплекса к агрегации, т. е. более высокий защитный эффект 

полиэлектролита достигается за счет увеличения размеров и числа петель. В 

свою очередь размер и количество петель увеличиваются с уменьшением 

количества потенциальных сайтов связывания, т. е. противоположно 

заряженных участков на поверхности белка. Таким образом, увеличение 

эффективности подавления агрегации полиэлектролитом увеличивается с 

ростом одноименного заряда на белке. Возможность образования этих петель и 

хвостов также была показана с помощью моделирования молекулярной 

динамики лизоцима с поликатионом ПЭВП и двумя полианионами ПСС и ПФ. 

 

 

Рисунок 6. Модель взаимодействия белок-полиэлектролит при различных 

значениях рН.  

 

На модельной системе лизоцима с полианионами ПСС и ПФ с разной 

степенью полимеризации было исследовано влияние степени полимеризации 

полиэлектролита на его взаимодействие с белком. Оба полианиона связывались 

с лизоцимом, образуя комплекс белок-полиэлектролит за счет образования 
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ионных пар и водородных связей. Короткие цепи полианионов связывались с 

белком практически по всей длине молекулы, тогда как более длинные 

полианионы могли связываться только через небольшие фрагменты цепи (Рис. 

7), при этом в случае обоих полианионов количество связанных мономеров 

полиэлектролита практически не зависит от степени его полимеризации. Таким 

образом, оба полианиона, вероятно, занимали все возможные сайты связывания 

из-за избытка полианионов в модельной ячейке. Количество свободных 

мономеров, наоборот, увеличивалось вместе со степенью полимеризации. 

Длинные цепи связывались с белком схожим числом мономеров, но вследствие 

их большей длины большее количество мономеров остается в свободной форме, 

образующих петли и хвосты, отталкивающиеся от поверхности белка. 

 

Рисунок 7. Общий вид комплекса белок-ПСС5 (А) и белок-ПСС45 (Б). (В) 

Количество связанных и свободных мономеров связанных цепей ПФ и ПСС. 
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Поскольку использование полиэлектролитов является эффективным 

методом предотвращения агрегации белков, нас интересовало исследование 

взаимодействия белок-полиэлектролит с точки зрения растворимости таких 

комплексов. Заряд комплекса оказался отрицательным и увеличивался по мере 

увеличения длины цепи полианиона за счет увеличения общего числа 

мономеров полиэлектролита в образующемся комплексе. Результаты, 

полученные с помощью моделирования, подтверждаются измерением размера 

и дзета-потенциала комплексов ПСС разной степени полимеризации с двумя 

разными белками, лизоцимом и ГАФД. 

Таким образом, уменьшение количества противоположно заряженных 

участков на поверхности белка при изменении pH, с которыми может связаться 

полиэлектролит, а также увеличение степени полимеризации полиэлектролита 

приводит к усилению образования петель и хвостов и обеспечивает 

ингибирующий эффект агрегации полиэлектролитом. 

 

2. Взаимодействие внутренне неупорядоченного белка β-казеина с 

полиэлектролитами и влияние гликирования 

Было изучено взаимодействие нативного и гликированного внутренне 

неупорядоченного молочного белка β-казеина (рI = 5,1) с различными 

синтетическими и природными полиэлектролитами, различающихся 

заряженной группой, структурой и гидрофобностью: два сульфатированных 

полимера, гидрофильный гепарин и относительно гидрофобный ПСС, 

поликарбоксилат ПАК и полифосфат полиЦ, а также поликатион ПЭВП. Все 

эксперименты проводили при pH 7,5 при 10°С и 25°С, когда β-казеин находится 

преимущественно в мономерной и мицеллярной форме соответственно из-за 

своей амфифильной структуры. 

Мы измерили размер комплексов нативного и гликированного β-казеина с 

полиэлектролитами с помощью динамического лазерного светорассеяния (Рис. 

8А,Б). Добавление поликатиона ПЭВП к нативному белку привело к 
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образованию крупных комплексов, которые быстро выпадали в осадок. В 

присутствии полианионов ПАК и полиЦ диаметр частиц в пробе совпадал с 

диаметром свободного β-казеина, что свидетельствует об отсутствии 

взаимодействия. Добавление ПСС и гепарина приводило к образованию 

растворимых комплексов с диаметром, отличным от нативного белка. 

Гидродинамический диаметр гликированного β-казеина превышал 

диаметр нативного белка, что свидетельствует об образовании мицелл или 

олигомеров. Как и в случае с немодифицированным β-казеином, 

взаимодействие с поликатионом ПЭВП приводило к образованию крупных 

агрегатов и выпадению осадка. Добавление каждого из полианионов влияло на 

диаметр частиц в растворе. Добавление ПСС приводило к образованию 

комплексов, близких по размеру к мономеру нативного β-казеина. 

Для более детального анализа размеров комплексов был проведен 

седиментационный анализ нативного и гликированного β-казеина (Рис. 8В-Ж). 

Гликирование привело к уменьшению коэффициента седиментации β-казеина, 

в отличие от увеличения гидродинамического диаметра по данным ДЛС (Рис. 

8А,Б), что указывает на менее плотную структуру частиц гликированного β-

казеина по сравнению с нативным. 

Выраженное изменение коэффициентов седиментации наблюдалось при 

добавлении полианиона ПСС (Рис. 8Д). Результаты седиментационного анализа 

и ДЛС свидетельствуют об образовании относительно компактных комплексов 

в присутствии ПСС, причем особенно выражено это уплотнение для 

гликированного β-казеина. Согласно полученным КД спектрам, вторичная 

структура β-казеина при гликировании и взаимодействии с ПСС не изменилась. 
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Рисунок 8. (A, Б) Кажущийся гидродинамический диаметр и (В-Ж) 

седиментограммы частиц нативного и гликированного β-казеина при 

температуре 10°C и 25°C в присутствии различных полиэлектролитов. 

Черная кривая на графике Е обозначает свободный полиЦ. 

 

Прямое исследование взаимодействия β-казеина с полианионами (ПСС, 

гепарином, полиЦ и ПАК) проводили методом изотермической титрационной 

калориметрии (Рис. 9). Суммируя результаты экспериментов по титрованию, 

можно заключить, что наиболее эффективным было связывание β-казеина с 

ПСС. Гликирование привело к практически полному подавлению 

взаимодействия с полиЦ и частичному с ПАК. 



20 
 

 

Рисунок 9. Данные ИТК для титрования нативного и гликированного β-

казеина растворами полианионов при температуре 10°C и 25°C. 

 

Изменения в структуре белка в результате гликирования и взаимодействия 

с полиэлектролитами исследовали путем измерения собственной 

флуоресценции β-казеина. Гликирование привело к сдвигу длины волны 

максимума флуоресценции вправо, что означает дальнейшее разворачивание 

гликированного β-казеина. Присутствие полианионов на собственную 

флуоресценцию белка не повлияло.  

Так как мы показали, что ПСС наиболее эффективно взаимодействует с β-

казеином, мы также проанализировали его влияние на протеолиз нативного и 

гликированного β-казеина. Электрофореграммы протеолиза нативного и 

гликированного белка не отличаются друг от друга, однако 

комплексообразование с ПСС замедляло протеолиз как в случае нативного, так 

и гликированного β-казеина скорее всего за счет образования стабильных и 

компактных комплексов. 
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Суммируя описанные выше результаты, можно сделать вывод, что β-

казеин эффективно взаимодействует с различными полиэлектролитами. Схема 

взаимодействия представлена на Рисунке 10. Отрицательно заряженный β-

казеин при рН 7,2 эффективно связывает поликатион, образуя крупные 

комплексы, выпадающие в осадок. Взаимодействие β-казеина с полианионами 

более сложное и зависит от гидрофобности полиэлектролита. Взаимодействие 

с относительно гидрофобным сульфатированным полимером ПСС было 

значительно более эффективным, чем взаимодействие с другими полимерами. 

Поскольку связывание другого сульфатированного, но более гидрофильного 

полимера гепарина было наименее выраженным среди всех протестированных 

полианионов, можно заключить, что ключевую роль в связывании ПСС играют 

именно гидрофобные взаимодействия. Анионы полифосфатов, такие как 

полиЦ, и анионы поликарбоксилатов, такие как ПАК, также менее эффективно 

взаимодействовали с β-казеином, чем ПСС. Гликирование вызывало 

уменьшение количества положительно заряженных групп, что ослабило 

связывание как фосфатных, так и карбоксилатных полианионов. Однако даже 

после гликирования β-казеина, по-видимому, происходит связывание со всеми 

протестированными полианионами. Гликирование приводило к образованию 

относительно крупных комплексов в растворе свободного β-казеина, склонных 

к дальнейшему агрегированию при нагревании до 25°С (Рис. 8). Все 

протестированные полианионы подавляли указанную агрегацию 

гликированного β-казеина, за исключением гепарина, который, наоборот, 

вызывал образование еще более крупных комплексов. 
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Рисунок 10. Модель взаимодействия β-казеина с полиэлектролитами. 

Розовый цвет обозначает положительно заряженную часть, синий цвет – 

отрицательно заряженную часть, серый цвет – гидрофобную часть. 

 

3. Взаимодействие ГАФД с РНК и α-синуклеином и влияние 

гликирования 

Методом симуляций молекулярной динамики было изучено влияние 

гликирования на взаимодействие ГАФД с двумя анионными 

биомакромолекулами, α-синуклеином и РНК. Симуляции были проведены с 

двумя разными формами гликированной ГАФД, полученные путем замены 

остатков лизина на отрицательно заряженный N-ε-карбоксиметиллизин (CML). 

В первом случае модифицировались все остатки лизина в обеих бороздках 

(всего 24 остатка, по 12 в каждой бороздке). Во втором случае модификации 

были равномерно распределены по поверхности ГАФД, всего было 

гликировано 40 остатков лизина.  

Согласно результатам молекулярного моделирования, гликирование 

подавляет связывание α-синуклеина с ГАФД (Рис. 11). Стабильное 

взаимодействие между нативной ГАФД и α-синуклеином наблюдалось во всех 
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симуляциях. В результате гликирования, α-синуклеин связывался с ГАФД лишь 

в 3 и 5 из 10 симуляций в случае гликированной по бороздкам и равномерно 

гликированной формы ГАФД соответственно. Вывод о том, что гликирование 

ослабляет взаимодействие, подтверждается расчетом количества связей между 

различными формами ГАФД и α-синуклеином. 

 

 

Рисунок 11. Результаты молекулярного моделирования связывания α-

синуклеина с каждой из форм ГАФД. 

 

Гликирование изменило потенциальный сайт связывания α-синуклеина на 

поверхности белка ГАФД. Предсказанный сайт связывания нативной формы 

ГАФД обогащен положительно заряженными остатками в бороздке (Рис. 11, 

Рис. 12А), которые взаимодействуют с отрицательно заряженным C-концевым 

участком α-синуклеина. В результате гликирования преимущественно 

образовывались солевые мостики между отрицательно заряженными остатками 

ГАФД, включая CML, и положительно заряженными аминокислотами на N-

конце α-синуклеина (Рис. 12Б, В). Гликирование остатков, расположенных в 

положительно заряженной бороздке, было более критичным для связывания, в 
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то время как более интенсивное равномерное гликирование оказывало 

несколько меньшее влияние на взаимодействие. 

 

 

Рисунок 12. Процентное соотношение связывания каждого 

аминокислотного остатка различных структур ГАФД с α-синуклеином. Серым 

цветом показаны незаряженные аминокислоты, отрицательные и 

положительные остатки выделены красным и синим цветом соответственно. 

Остатки CML, показаны малиновым цветом. 

 

Стабильное взаимодействие между нативной формой ГАФД и РНК 

наблюдалось во всех 10 независимых симуляциях. Почти во всех симуляциях с 

нативной формой ГАФД РНК связывалась с положительно заряженной 

бороздкой ГАФД (что и α-синуклеин) и только в одном случае РНК связывалась 

с другим положительно заряженным участком на поверхности субъединицы 

(Рис. 13, слева).  
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Как и в случае взаимодействия ГАФД с α-синуклеином, гликирование 

подавляет взаимодействие ГАФД с молекулой РНК. Действительно, 

взаимодействие наблюдалось лишь в 5 из 10 симуляций для гликированной по 

бороздкам формы ГАФД, причем молекулы РНК связывались в том же месте 

на поверхности субъединицы, что и в одной из симуляций с нативной формой 

ГАФД (Рис. 13). Этот сайт можно рассматривать в качестве альтернативного 

сайта связывания нуклеиновых кислот (Рис. 13, в центре), который стал 

первичным в случае гликирования бороздок. Ни в одной из симуляций для 

равномерно гликированной формы ГАФД не наблюдалось стабильное 

взаимодействие ГАФД-РНК. Значительное подавление взаимодействия между 

ГАФД и РНК после гликирования ГАФД подтверждается подсчетом 

количества различных типов контактов между молекулами. 

 

 

Рисунок 13. Результаты молекулярного моделирования связывания РНК с 

каждой из форм ГАФД. 

 

Результаты моделирования молекулярной динамики подтверждаются 

полученными данными поверхностного плазмонного резонанса, согласно 

которым даже относительно низкий уровень гликирования ГАФД приводит к 

снижению эффективности связывания с α-синуклеином и РНК. 
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4. Влияние посттрансляционных модификаций на связывание 

гирудин-тромбин 

Электростатические взаимодействия между тромбином и 

сульфатированным С-концом гирудина играют важную роль в образовании 

комплекса тромбин-гирудин. В клинической практике используется 

десульфатированный рекомбинантный аналог гирудина с более низкой 

эффективностью ингибирования. Мы предложили несколько модификаций 

гирудина, которые имитируют сульфатирование остатка Tyr63: фосфотирозин 

с зарядом -1 и -2, (карбоксиметил)фенилаланин (CMF) и глутамат; и 

модификации других остатков для неспецифического увеличения 

отрицательного заряда гирудина: Gln65Glu и замена всех остатков лизина на 

остатки сукциниллизина (SuccK). 

Для оценки свободной энергии связывания производных гирудина с 

тромбином были проведены симуляции направленной молекулярной динамики 

с последующим использованием метода зонтичной выборки (Рис. 14). 

Свободные энергии связывания для десульфо-гирудина и сульфо-гирудина 

соответствует значениям из литературы (Myles et al., 2001; Stone et al., 1989). 

Мутация Tyr63Glu не оказывает заметного влияния на свободную энергию 

связывания гирудина, мутация Tyr63CMF дестабилизирует взаимодействие с 

тромбином по сравнению с десульфо-гирудином. Три производных гирудина, 

фосфо-гирудин (-1), Gln65Glu гирудин и K327,36,47SuccK3 гирудин, 

связываются прочнее десульфо-гирудина с преимуществом в энергии 

связывания ΔΔG от -9,6 до -10,6 кДж/моль. Самое сильное взаимодействие с 

тромбином наблюдалось для фосфо-гирудина (-2) с предсказанной разницей в 

энергии ΔΔG -51,7 кДж/моль по сравнению с десульфо-гирудином. 
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Рисунок 14. (A) Визуализация последовательной диссоциации сульфо-

гирудина от молекулы тромбина в результате симуляций направленной 

молекулярной динамики и (Б) потенциал средней силы и предсказанные 

свободные энергии связывания. 

 

Для проверки антитромботической активности были проведены 

эксперименты по ингибированию тромбин-опосредованного свертывания 

плазмы крови человека при добавлении различных производных гирудина. При 

экспериментальной проверке были использованы аналоги С-концевого 

фрагмента (остатки 55-65) молекулы гирудина. В присутствии всех 

протестированных аналогов гирудина 55-65 время до сворачивания плазмы 

крови (тромбиновое время) увеличивалось, за исключением аналога гирудина 

Tyr63CMF 55-65. Фосфо-гирудин 55-65 обладает наибольшей 

антитромботической активностью. 
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Рисунок 15. Тромбиновое время в зависимости от концентрации С-

концевых производных гирудина (остатки 55-65). 

Таким образом, согласно расчетам свободной энергии связывания и 

измерением антитромботической активности фосфорилированный гирудин 

является наиболее перспективным производным гирудина в качестве 

ингибитора тромбина для медицинского применения. 

ВЫВОДЫ 

 

1. Снижение уровня агрегации лизоцима и α-лактальбумина наблюдалось 

при добавлении одноименно заряженного полиэлектролита, тогда как 

агрегацию ГАФД удалось подавить как поликатионом, так и полианионом. 

2. Согласно предложенной модели, эффективность полиэлектролита 

подавлять агрегацию возрастает с увеличением одноименного заряда на 

поверхности белка и длины цепи полиэлектролита, за счет образования 

длинных хвостов и петель с нескомпенсированным зарядом и увеличения 

заряда комплексов. 

3. Отрицательно заряженный β-казеин эффективно взаимодействует с 

поликатионом, образуя агрегированные комплексы, и относительно 

гидрофобным сульфатированным полианионом поли(стиролсульфонат). 

Взаимодействие с более гидрофильными полианионами, в том числе с 

гидрофильным сульфатированным гепарином, а также полифосфатными и 

поликарбоксилатными полианионами, было гораздо менее выражено. 
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4. Гликирование снижает эффективность взаимодействия β-казеина с 

другими полианионами, особенно с модельной нуклеиновой кислотой 

полицитидилатом калия. 

5. Гликирование ГАФД затрудняет ее взаимодействие с α-синуклеином, при 

этом ключевую роль играет гликирование остатков, расположенных в 

положительно заряженной бороздке ГАФД, тогда как эффект более 

интенсивного равномерного гликирования менее выражен. 

6. Гликирование ГАФД по положительно заряженной бороздке частично 

подавляет ее взаимодействие с РНК, тогда как при интенсивном равномерном 

гликировании РНК не взаимодействует с ГАФД совсем. 

7. Фосфорилирование десульфо-гирудина улучшает его связывание с 

тромбином и антитромботическую активность по сравнению с природным 

сульфатированием. 
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