На правах рукодиси

Хасая Радмир Рюрикович

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ПРЯМОГО ЛАЗЕРНОГО МИКРО- И НАНОСТРУКТУРИРОВАНИЯ РЕЛЬЕФА ПОВЕРХНОСТИ ТВЕРДЫХ ТЕЛ

Специальность 01.04.01 – Приборы и методы экспериментальной физики

Автореферат

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте электрофизики и электроэнергетики Российской академии наук

Научный руководитель: доктор технических наук, член-корреспондент РАН

Ямщиков Владимир Александрович

Официальные оппоненты: Поволоцкий Алексей Валерьевич, доктор физико-

математических наук, Санкт-Петербургский государственный университет, доцент кафедры лазерной химии и лазерного материаловедения

Дунаевский Михаил Сергеевич, кандидат физикоматематических наук, Физико-технический институт им. А.Ф. Иоффе Российской академии наук, старший научный сотрудник лаборатории оптики

поверхности

Ведущая организация: Федеральное Государственное Бюджетное Учреждение Науки Институт Проблем Машиноведения Российской Академии Наук (ИПМаш РАН)

Защита состоится "22" ноября 2019 г. в 15:00 часов на заседании диссертационного совета Д002.034.01 на базе Института аналитического приборостроения РАН (ИАП РАН) по адресу 198095, Санкт-Петербург, ул. Ивана Черных, д.31-33, лит. А.

С диссертацией можно ознакомиться в научно-технической библиотеке ИАП РАН по тому же адресу и на сайтах <u>www.iairas.ru</u> и <u>www.iai.rssi.ru</u>. Отзывы на диссертацию и автореферат направлять по адресу 190103, Санкт-Петербург, Рижский пр., д.26, а/я 207.

Автореферат разослан	44	"	2019 г
1 1 1 1			

Ученый секретарь диссертационного совета

доктор физико-математических наук

А.Л. Буляница

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Субмикро- и наноструктуры в твёрдых телах в последние годы привлекают всё большее внимание как важный объект исследования, имеющий широкие различных областях перспективы применения В науки техники. И Наноструктурирование поверхности приводит к улучшению электрических, тепловых, электронно-эмиссионных и излучательных свойств материалов, повышению биосовместимости с живыми тканями имплантантов и протезов, также находит применение в селективном нанокатализе, микроэлектронике и записи информации со сверхвысокой плотностью, в нанофотонике для разработки светоизлучающих устройств и спектроскопии. Поэтому представляет интерес поиск и развитие эффективных методов создания одно-, двух-, и трехмерных структур с характерными размерами менее 1 мкм на поверхности и в объеме таких материалов, как металлы и их сплавы, керамики, алмазные пленки, кварц, полимеры, биоматериалы и полупроводники.

Современное состояние исследований в этой области требует, накопления практического опыта по изучению механизмов и процессов формирования наноструктур, которые могут быть различны в зависимости от конкретных условий, применяемых в технологическом процессе. Актуальность представленной работы во многом определяется необходимостью разработки и создания установки для проведения экспериментальных исследований по получению нано-, субмикро- и микроструктур при облучении поверхности материалов лазерными импульсами высокой интенсивности с различными длинами волн.

В данной работе для создания поверхностных микро- и нанорельфов предлагается использовать лишь один лазерный пучок без каких-либо масок и без вспомогательной иглы атомно-силового микроскопа, т.е. так называемое «прямое» лазерное наноструктурирование. Такой метод модификации поверхности представляется существенно более простым и гибким, поскольку позволяет

достичь высокой локальности воздействия, соответствующей размерам отдельного лазерного пятна, а с другой стороны, при применении сканирования пучка по поверхности с высокой частотой повторения импульсов излучения открывает возможность наноструктурировать достаточно большие протяженные площади поверхности в пределах границ произвольных очертаний. Данный метод не требует применение специальной вакуумной камеры и принятия повышенных мер безопасности по радиационной защите персонала.

Для практических применений целесообразно использовать наносекундные лазерные источники, как более дешевые, простые и надежные в эксплуатации, имеющие более высокие выходную энергию и стабильность импульсов излучения, по сравнению с пико- и фемтосекундными лазерами, применявшимися ранее. Таким образом, создание экспериментальной установки на основе импульснопериодических лазеров, генерирующих наносекундное излучение с разными длинами волн, которая предназначена для реализации и исследования метода прямого лазерного наноструктурирования, позволяющего достаточно надежно и эффективно получать микро и наноструктуры на поверхности твёрдых тел является актуальной задачей.

Объект и предмет исследований

Объектом исследовании является метод прямого лазерного микро- и наноструктурирования поверхности твердых материалов с интенсивным локальным воздействием, с соответствующим размером сфокусированного лазерного пятна и шагу его сканирования по поверхности.

Предметом исследования является экспериментальная установка, позволяющая облучать синхронизированными импульсами от разных лазеров, от ВУФ до видимого диапазона излучения, с регулируемой задержкой между импульсами при неподвижном пятне и сканировании луча по поверхности, для реализации выше приведенного метода.

Цель работы

Основной целью настоящей диссертационной работы является создание экспериментальной установки для реализации метода прямого лазерного микро-,

субмикро- и наноструктурирования поверхности твердых материалов, исследование влияния параметров облучения наносекундными лазерными импульсами на их размеры и форму, при неподвижном пятне и сканировании луча по поверхности и возможности облучения синхронизированными импульсами от разных лазеров с регулируемой задержкой между импульсами, а также исследование с помощью атомно-силовой микроскопии характерных особенностей и условий возникновения микро- и нанорельефов на поверхности твердых тел.

Постановка задач

Провести оценку возможности реализации метода прямого лазерного наноструктурирования поверхности твердых тел с использованием импульсно-периодических лазеров с наносекундными импульсами излучения.

На основе рассмотренного метода прямого лазерного наноструктурирования создать экспериментальную установку, которая наиболее полно удовлетворяет требованиям реализации этого метода.

Исследовать возможность увеличения длительности импульсов лазерного излучения с целью улучшения оптических характеристик эксимерных лазеров и определения параметров установки. Исследовать влияние напряжения накачки, состава и давления газовых смесей в разрядном промежутке на выходную энергию и длительность лазерного излучения.

Экспериментально исследовать возможность получения микро-, субмикро- и наноструктур на поверхности таких материалов как германий, никель, силицид платины, нитрид кремния, нержавеющая сталь и титан путем облучения одним пучком наносекундных лазеров на длинах волн 193 нм, 355 нм, 510 нм и 578 нм с числом импульсов облучения от 10 до 1000 импульсов и изменении плотности энергии лазерного пучка от 1 Дж/см² до 10 Дж/см².

С использованием методов атомно-силовой микроскопии в зоне облучения поверхности данных материалов провести анализ облученных поверхностей, выявить наиболее характерные формы и особенности условий формирования полученных структур.

Методы исследований

Теоретическая оценка возможности прямого лазерного наноструктурирования проводилась для процессов массопереноса, способных приводить к изменению поверхностного рельефа в отсутствие плавления материала, выполнена на основе представлений о развитии лазерно-индуцированной неустойчивости рельефа поверхности.

В экспериментах по облучению поверхности образцов использовался метод прямого лазерного наноструктурирования, для реализации которого были выбраны эффективные лазерные источники такие как эксимерный ArF-лазер (193 нм), твердотельный Nd:YAG-лазер (355 нм), лазер на парах меди (510 нм, 578 нм), оптические элементы на основе флюорита кальция.

В исследованиях по увеличению длительности импульса лазерного излучения использовался метод синхронной регистрации осциллограмм импульсов разрядного напряжения и излучения. В ходе экспериментов измерялась энергия выходного оптического излучения, с помощью измерителя энергии NOVA II, одновременно регистрировались импульсы напряжения генератора накачки на разрядном промежутке высоковольтным щупом Tektronix P6015A и импульсы лазерной генерации коаксиальным фотоэлементом ФЭК29 КПУ, сигналы от которых поступали в осциллограф LeCroy WaweSurfer 432.

Исследование поверхностей твердых тел облученных наносекундным лазерным производилось излучением cиспользованием оптического профилометра NewView 7300 и атомно-силовых микроскопов Alpha 300 и Р47. 3D 2D Результаты были представлены изображений, виде а так же трехмерных проекции.

Научная новизна

Научная новизна данной диссертационной работы обусловлена тем, что автором впервые создана экспериментальная установка для реализации метода прямого лазерного наноструктурирования поверхности твердых тел с возможностью воздействовать двумя импульсами от разных лазеров с регулируемой задержкой межу импульсами излучения, облучать неподвижным или сканирующим пучком импульсно-периодических ArF- лазера и лазера на парах

меди, с полностью твердотельными высоковольтными генераторами накачки на основе IGBT транзисторов, а также Nd:YAG- лазером с длинной волны излучения 355 нм, воздействие которого ранее было мало изучено.

Впервые был предложен, реализован и исследован метод увеличения длительности импульсов излучения электроразрядного эксимерного лазера с накачкой активной среды в режиме периодически затухающего напряжения на разрядном промежутке.

Экспериментально продемонстрирована возможность формирования субмикро- и наноструктур различной формы на поверхности твердых тел, в частности впервые обнаружены наноструктуры в виде гексагональных ячеек на германии и эллиптических нанократеров на нержавеющей стали.

Практическая значимость

Созданная автором экспериментальная установка может применяться для облучения практически всех видов материалов одним пучком наносекундных лазеров на длинах волн 193 нм, 355 нм, 510 нм и 578 нм в широком диапазоне изменения числа импульсов и плотности энергии лазерного пучка. Имеется возможность сканирования пучка по заданному контуру и площади облучаемой поверхности в пределах установленных границ.

Обработанная методом прямого лазерного наноструктурирования поверхность проявляет уникальные свойства, например, позволяет увеличить адгезионные свойства поверхности и повысить прочность сварного шва на разрыв до 30% и относительное удлинение шва в 2 раза при диффузионной сварке, сгладить шероховатость поверхности в два раза для уменьшения трения частей В подвижных машиностроении. энергетике применение структурированных каталитических мембран из диоксида циркония в топливных элементах приводит к увеличению их проводимости ионов кислорода на 18%.

Предложенный и исследованный в диссертации метод увеличения длительности излучения позволяет снизить пиковую интенсивность и улучшить качество оптического пучка эксимерных лазеров.

Основными преимуществами предложенной установки являются:

использование недорогих, надежных и простых в использовании наносекундных лазеров, стабильность и управляемость характеристик лазерных источников, возможность обработки образцов как в воздухе, так и в газовых смесях. Применение специальной системы управления лазерами позволяет проводить облучение синхронными импульсами на двух длинах волн как при неподвижном пучке, так и при его сканировании по поверхности.

Реализация результатов работы

Результаты настоящей диссертационной работы были использованы при разработке научно-методического материала к курсу лекций «Введение в теоретические основы наноструктурирования поверхности материалов» для студентов старших курсов и аспирантов, а также «Лабораторная практическая работа по прямому лазерному наноструктурированию поверхности материалов». Данные материалы были включены в учебные программы высшего профессионального образования и НОЦ в рамках выполнения ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы, ГК № 02.740.11.0411

Результаты диссертационной работы и созданная экспериментальная установка для получения микро-, субмикро- и наноструктур при облучении поверхности твердых тел наносекундными лазерными импульсами использованы в ФГБУН Российской академии наук: Институте электрофизики и электроэнергетики РАН, Институте общей физики им. А.М. Прохорова РАН, ОАО «Российские космические системы», Институт сильноточной электроники СО РАН, АО «Ордена Ленина Научно исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля».

Достоверность и обоснованность научных положений обеспечивается большим объемом накопленных экспериментальных данных, стабильностью параметров И воспроизводимостью результатов измерений. Bce экспериментальные получены данные c использованием современных измерительных средств. Опубликованный материал достаточно полно отражает содержание диссертации.

Защищаемые положения:

- Новый метод увеличения длительности импульсов излучения эксимерных лазеров, основанный на накачке активной среды в режиме периодически затухающего напряжения на разрядном промежутке с изменяемым числом полупериодов. Экспериментальные зависимости энергии и длительности лазерного излучения электроразрядного KrF-лазера с максимальной выходной энергией до 30 мДж от параметров напряжения накачки, состава и давления газовых смесей в разрядном промежутке показали возможность увеличения длительности лазерных импульсов с 15 нс до 45 нс не приводя к потерям выходной энергии лазера более чем на 10%.
- Созданная экспериментальная установка на основе ArF-лазера, лазера на парах меди с полностью твердотельными высоковольтными генераторами накачки, а Nd:YAGлазера облучать также позволяет одним или несколькими синхронизированными пучками последовательно импульсов излучения длительностью от 5 до 20 нс с плотностью энергии до 10 Дж/см² в вакуумном ультрафиолетовом, ультрафиолетовом и видимом диапазонах спектра и обладает возможностью в широких пределах регулировать частоту следования импульсов, время задержки между импульсами как в неподвижном пятне, так и при его сканировании по поверхности.
- При многократном облучении наносекундными импульсами ArF-лазера с длиной волны 193 нм поверхности германия, никеля, силицида платины, нитрида кремния, нержавеющей стали и титана методом прямого лазерного наноструктурирования наблюдается изменение формы, увеличение амплитуды и характерного периода образующихся структур рельефа от края к центру пятна по мере возрастании лазерной интенсивности.
- Обнаруженные с использованием методов атомно-силовой микроскопии в зоне облучения поверхности твердых тел наносекундными лазерными импульсами с длинами волн 193 нм, 355 нм, 510 нм и 578 нм микро- и субмикронные структуры имеют волнообразную и выпуклую форму, а также форму периодических структур с периодом порядка одного микрона и наноструктур пирамидальной формы, а

также впервые обнаружены наноструктуры - в виде гексагональных ячеек на германии и в виде эллиптических нанократеров на нержавеющей стали.

Вклад автора

Все основные результаты диссертационной работы получены лично автором или при его непосредственном участии.

Личное участие заключается в обосновании возможности использования наносекундных лазеров при реализации метода прямого лазерного наноструктурирования поверхности твердых материалов.

Автор принимал непосредственное участие в разработке конструкции и создании уникальной экспериментальной установки, лично проводил эксперименты по получению и исследованию субмикро и наноструктур на поверхности твердых тел путем многократного облучения одним лазерным пучком при неподвижном пятне облучения и сканировании пучка по поверхнсти. Также им реализован новый метод увеличения длительности импульсов излучения лазеров и возможность синхронизированного облучения от нескольких лазеров.

Автор принимал непосредственное участие в постановке конкретных задач исследований в обработке, научном анализе и интерпретации полученных экспериментальных данных.

Апробация работы и научные публикации

По теме диссертационной работы автором опубликовано 14 научных работ, из которых 5 в рецензируемых журналах, из списка ВАК.

Основные результаты диссертации докладывались и обсуждались на научных семинарах ИЭЭ РАН, , АО «НИКИЭТ» им. Н.А. Доллежаля и ОАО "ОРКК"-"НИИ КП", а также на следующих международных конференциях: X International Conference Laser & Laser Information Technologies – ILLA<L 2009, Smolyan, Bulgaria, 2009; 29th International Congress on App. of Lasers and Electrooptics, Anaheim, USA, 2010; 8th International Conference on Nanosciences & Nanotechnologies - NN11, Thessaloniki, Greece, 2011; 3rd International workshop on laser-matter interaction – WLMI 2012, Porquerolles, France, 2012; 14th Sino-Russian symposium on Advanced Materials and Technology, 2017, Sanya, China.

Объем и структура работы

Диссертация состоит из введения, четырех глав, заключения и списка литературы. Диссертация содержит 177 страниц машинописного текста, 6 таблиц, 94 рисунка по тексту и список литературы, который состоит из 213 источников отечественных и зарубежных авторов.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность представленной работы, произведена постановка исследуемых задач, дана оценка новизны, практической значимости и оригинальности методов и подходов к решению поставленных задач. Сформулированы цель и защищаемые положения диссертационной работы, описаны основные методы экспериментального исследования. Кратко изложено содержание диссертационной работы по главам.

Первая глава диссертации посвящена обзору литературы существующих методов и установок для получения субмикро- и наноструктур на поверхности твердых тел, а также исследованиям параметров этих структур.

Проведенный анализ литературы показал, что наиболее перспективным с точки зрения простоты осуществления является метод прямого лазерного наноструктурирования. Термин «прямое» означает здесь, наноструктурирование рельефа поверхности происходит наиболее просто – без использования каких-либо масок, одним лазерным лучом, а не двумя, сведенными для создания на поверхности или в объеме интерференционной картины, а также без использования в дополнение к лазерному лучу иглы атомно-силового микроскопа, как это было в ряде первых работ по наноструктурированию. Большинство работ по прямому лазерному наноструктурированию выполнено ранее с применением пико- и фемтосекундных лазеров. Однако для целесообразно практического применения рассмотреть возможность использования более доступных и простых в эксплуатации лазерных источников, каковыми являются наносекундные лазеры.

В конце первой главы сформулированы задачи исследования.

Вторая глава диссертационной работы посвящена теоретической оценке возможности реализации метода прямого лазерного наноструктурирования и созданию экспериментальной установки.

В данной работе на основе анализа процессов массопереноса, способных приводить к изменению поверхностного рельефа и представлений о развитии лазерно-индуцированной неустойчивости рельефа поверхности обоснована перспективность выбранного метода прямого лазерного наноструктурирования, с возможностью применения наносекундных источников излучения с длинами волн $\lambda = 193$ нм (эксимерный ArF-лазер имеет самое коротковолновое излучение для атмосферном воздухе и поглощается большинством использования при материалов); $\lambda = 355$ нм (твердотельный Nd:YAG-лазер, его применение для получения структур мало изучено); $\lambda = 510$ нм, 578 нм (лазер на парах меди, имеет высокое качество пучка и частоту следования импульсов до 15 кГц). При этом ArFлазер на парах меди питаются от полностью твердотельных лазер и высоковольтных генераторов накачки на основе IGBT транзисторов. В главе приведены все технические характеристики наносекундных источников излучения.

Для создания экспериментальной установки были разработаны блок схема и принципиальная схемы установки. Использование трех лазеров, генерирующих наносекундные импульсы с длиной волны от видимого до вакуумного ультрафиолетового диапазона излучений, позволяет создавать субмикро- и наноструктуры на самых различных материалах. Форма и размеры получающихся субмикро- и наноструктур зависят в том числе и от числа импульсов, энергии, длины волны излучения, частоты следования лазерных импульсов. Оптическая схема установки показана на рисунке 1. Излучение от выбранного лазера при помощи системы из дихроичных зеркал направляется в формирующую оптическую систему, состоящую из конденсора, диафрагмы и проекционных объективов. Система создает в плоскости обрабатываемой поверхности пятно определенных Облучаемый образец закрепляется размеров. на трехкоординатном моторизованном предметном столике. Для контроля энергии лазерного импульса используется измеритель энергии с пироэлектрическим датчиком. Управление

лазерами и ретранслятором осуществляется при помощи персонального компьютера.

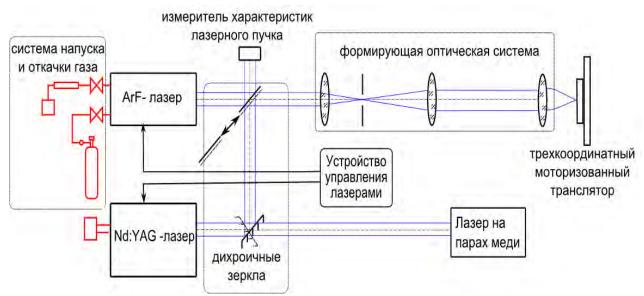


Рисунок 1 — Оптическая схема лазерной установки для субмикро- и наноструктурирования при атмосферном воздухе.

Другим важным аспектом лазерного структурирования поверхности твердых тел является изучение процессов формирования микро-, субмикро и наноструктур при облучении синхронизированными импульсами наносекундной длительности различной длинны волны с определенной задержкой между ними. Данная область недостаточно изучена и потому представляет интерес обеспечить возможность воздействия двумя лазерными импульсами с разной длиной волны излучения. Последние исследования в синхронном облучении с ультракороткими (фемтосекундными) импульсами, показали, что последовательность импульсов с короткой и длинной волной играют большую роль в характере и морфологии образующихся структур на поверхности. Притом время задержки между импульсами тоже играет большую роль.

В связи с этим было предложено реализовать на данной экспериментальной установке возможность проведения работ по облучению поверхности задержанными относительно друг друга наносекундными импульсами лазерного излучения с различными длинами волн. На рисунке 2 представлены типичные осциллограммы сдвоенного синхронизированного облучения излучением ArF- и Nd: YAG лазеров при задержке между импульсами в 300 нс.

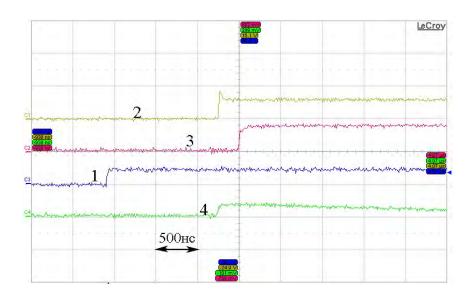


Рисунок 2 — Осциллограмма электрических импульсов синхронизации и импульсов регистрации счетчиком излучения ArF-лазера и Nd:YAG-лазера с задержкой 300 нс. Синхроимпульсы от генератора ArbStudio 1102: 1- на ArF-лазер, 2 - на Nd:YAG-лазер. Импульсы от счетчика импульсов излучения: 3 - излучение Nd:YAG-лазера, 4 - излучение ArF-лазера.

Устройство управления лазерами на основе генератора импульсов ArbStudio 1102 формирует запускающие импульсы в заданной последовательности и задержкой (синхроимпульсы; 1- на ArF-лазер, 2 - на Nd: YAG-лазер), которая может изменяться в широких пределах. Счетчики импульсов на основе фотодиода ФД-24К выдают электрические импульсы напряжем до сотен милливольт в зависимости от энергии импульса излучения лазера и длительностью до 10 мкс. Насыщение фотодиода происходит за время длительности лазерного импульса потому на осциллограмме фиксируется фронт импульса (импульсы излучения; 3 - Nd: YAG-лазер, 4 - ArF-лазер).

Для обработки больших площадей требуется сканирование по поверхности объекта. Это можно осуществлять перемещением образца, так же была разработана

схема установки с микроскопом для одновременного визуального анализа и контроля размера лазерного пятна. На характер образующихся структур и их размеры сильно влияет окружающая газовая среда, поэтому, в установке предусмотрена возможность обработки поверхностей как в воздухе, так и в газовой среде (Cl₂, SF₆, в инертных газах Не, Ar, Ne и т.д.). Для этого используется герметичная камера (на рисунке 1 не показана) с окнами из CaF₂, которые устойчивы к воздействию агрессивных сред. Газосмесительная камера позволяет проводить обработку при давлениях от 50 до 1500 мбар.

На рисунке 3 показана фотография созданной экспериментальной установки по субмикро и нано структурированию.

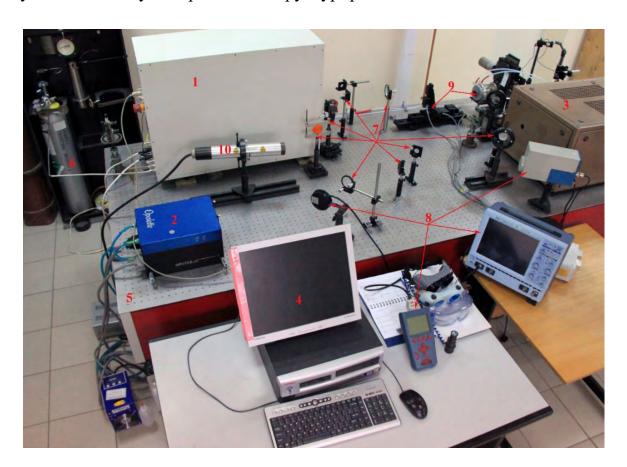


Рисунок 3 — Фотография лазерной установки для микро- и нано- структурирования: 1 — эксимерный лазер CL5000 длина волны излучения 193 нм, 2 — импульсный твердотельный лазер HR2731 длина волны излучения 355 нм и 532 нм, 3 — лазер на парах меди длина волны излучения 510 нм и 578 нм, 4 — персональный компьютер для управления установкой, 5 — оптический стол с пневматической системой вибрационной изоляции, 6 — система напуска и откачки газа, баллон с премиксом аргона и фтора, 7 — формирующая оптическая система и дихроичные зеркала, 8 — комплекс измерения характеристик лазерного излучения, 9 — трехкоординатный моторизованный предметный столик и газосмесительная камера, 10 — гелий-неоновый лазер для юстировки.

В третей главе приведены результаты экспериментальных исследований параметров экспериментальной установки таких как: длительность импульса эксимерного лазера, определение характеристик плотности энергии излучения и скорости сканирования лазерного пучка.

Электроразрядные эксимерные лазеры широко используются ДЛЯ микрообработки Большое материалов. внимание уделяется улучшению характеристик выходного пучка и продлению срока службы оптических элементов лазерной установки, что требует решения ряда проблем. Сравнительно низкая монохроматичность и высокая расходимость оптического пучка эксимерных лазеров обусловлена коротким временем существования инверсной населенности, $\tau \approx 7$ нс. С другой стороны, воздействие мощного УФ и ВУФ излучения оказывает влияние на оптические элементы установки, приводя к их помутнению и выходу из Для решения указанных проблем используется метод увеличения длительности импульса лазерного излучения, который позволяет повышать число проходов излучения ПО резонатору, ЧТО улучшает пространственную когерентность пучка и сужает ширину спектра излучения. Также, в результате увеличения длительности излучения снижается пиковая интенсивность пучка и ослабляется негативное влияние на оптические элементы системы.

Обычно увеличение длительности импульса излучения достигается за счет более высоких параметров емкости И индуктивности цепи электроразрядных лазеров. Однако, данный путь влечет ухудшение однородности разряда, которым осуществляется накачка активной среды, что негативно сказывается на выходных характеристиках и ресурсе работы лазера. В настоящей работе исследован новый более простой и эффективный метод увеличения длительности генерации эксимерного лазера, основанный на использовании режима накачки активной среды с периодически затухающим напряжением на разрядном промежутке. Для реализации такого режима необходимо, чтобы Uгенератора U_{as} выходное напряжение превышало напряжение квазистационарного горения разряда более, чем в два раза. Поскольку величина U_{as} зависит от состава и давления газовой смеси, то появляется возможность управлять

числом затухающих полупериодов напряжения за счет изменения U и U_{qs} и, тем самым, варьировать форму и длительность импульсов излучения.

Получены экспериментальные зависимости энергии и длительности лазерного излучения от напряжения накачки, состава и давления газовых смесей в разрядном промежутке. Экспериментальные зависимости T (длительность импульсов) и W (выходная энергия лазера) от U_I при различных значениях p_{Kr} и p_{F2} представлены на рисунке 4.

Показано, что этот метод позволяет достаточно эффективно изменять длительность лазерных импульсов, не приводя к существенным потерям выходной энергии. В рассмотренных условиях накачки KrF-лазера, оптимальной для увеличения длительности излучения оказалась смесь $F_2/Kr/Ne = 40/20/2500$ (кривые 2 и 5), на которой наибольшие значения T и W достигались при максимальном U_1 .

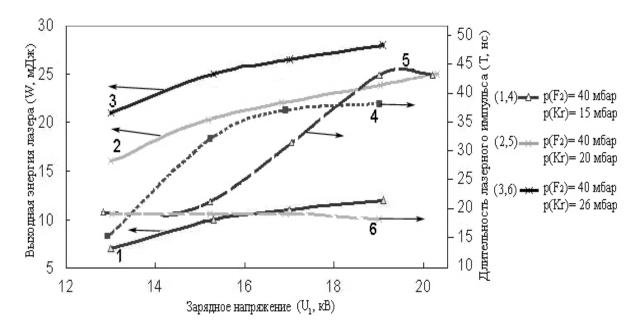


Рисунок 4 — Экспериментальные зависимости длительности лазерных импульсов T и выходной энергии лазера W от зарядного напряжения U_I при разных давлениях p_{Kr} и p_{F2}

Таким образом для KrF лазера с максимальной выходной энергией до 30 мДж получено излучение с T=15 - 45 нс соответственно. Данный метод так же может быть использован для применяемого в установке ArF лазера и позволяет увеличить длительность импульса излучения от 6 до 18 нс.

В четвёртой главе представлены результаты экспериментальных исследований возможности формирования субмикронных и наноструктур с

помощью созданной установки.

Методом прямого лазерного наноструктурирования были получены субмиро- и наноструктуры на поверхности германия, никеля, силицида платины, нитрида кремния, нержавеющей стали и титана. Выбор данных материалов был продиктован их широким применением в науке, технике и промышленности.

Эксперименты по многократному облучению поверхности образцов проводились в соответствии с разработанной методикой.

Исследование и получение характеристик топографии облученной поверхности производилось посредством оптического профилометра NewView 7300 и атомно-силового микроскопа Alpha 300 и P47.

Профилометрия позволяет определить форму микронных поверхностных структур в различных частях пятна облучения: в центре, периферии и краях пятна, где предположительно произошло формирование наноструктур, для последующего изучения их на атомно-силовом микроскопе (АСМ), который имеет разрешение в тысячи раз превосходящее разрешение профилометра. АСМ применяется для измерения топографии поверхности, высоты выступов, критических размеров кратеров и рельефа поверхности с высокой точностью.

На рисунке 5 приведены 3D изображения ACM наиболее характерных структур после многократного облучения поверхности германия одним лазерным пучком в неподвижном пятне: центр, периферия и край пятна соответственно.

На рисунке 5а в центральной области пятна обучения наблюдается волнообразный рельеф поверхности периодом 1,5 мкм и амплитудой до 700 нм. В периферийной низкоинтенсивной области пятна вблизи границы существования расплава (рисунок 5б) обнаружено образование наноструктур в виде гексагональных ячеек, по-видимому, за счет импульсного лазерного оплавления материала при интенсивности вблизи порога плавления. Период ячеек около 300 - 500 нм, высота перегородок между ячейками 20 - 25 нм, толщина перегородок 40 - 60 нм. На рисунке 5в наблюдаются наноструктуры в виде выпуклостей с закругленными вершинами в периферийной низкоинтенсивной области пятна облучения. Их появление может быть обусловлено осаждением и окислением

материала, аблированного из центральной высокоинтенсивной зоны облучения. Период структур около 40 - 120 нм, амплитуда 40 - 70 нм. Исходная необлученная поверхность германия представлена на рисунке 5г, видна шероховатость в виде выпуклостей с характерными размерами вдоль поверхности 40 - 90 нм и высотой около 40 нм, а также шероховатость длинных линейных царапин шириной 40 - 80 нм – следов механической обработки поверхности.

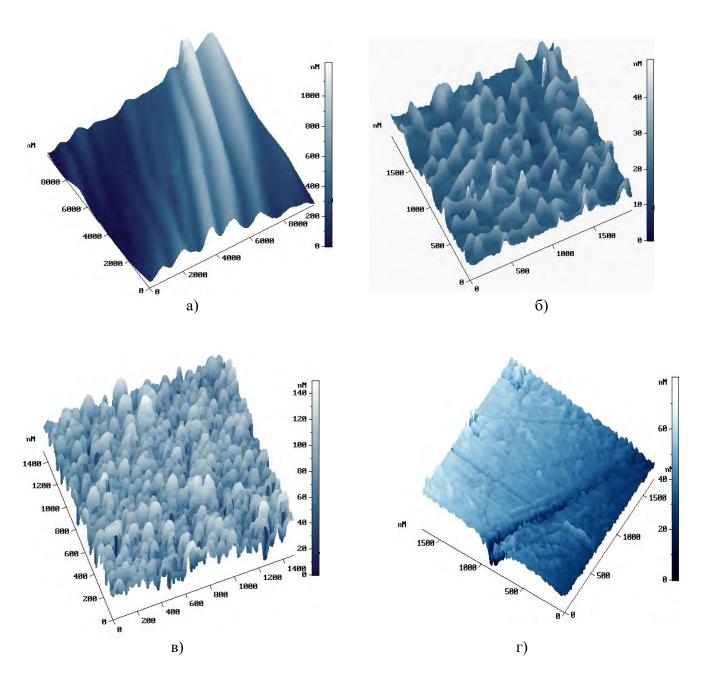


Рисунок 5 – 3D изображения ACM исследования поверхности германия после многократного облучения пучком ArF-лазера (λ = 193 нм. 20 импульсов; 4 Дж/см², частота 2 Гц). а) – центральная часть (расплав), б) – периферия вблизи расплава, в) – периферия вблизи края, г) – исходная необлученная поверхность.

Нержавеющая сталь, как многокомпонентный сплав, демонстрирует интересные особенности в образовании нанорельефов. На рисунке 6а, вблизи границы зоны расплава в периферийной области пятна (где интенсивность близка к порогу плавления), видно наличие другого весьма необычного рельефа - в виде круговых и эллиптических нанократеров с размерами осей $d_1 = 180$ - 270 нм, $d_2 = 375$ нм и высотой брустверов около 60 нм и менее. При этом виден также и мелкомасштабный рельеф, характерный для исходной необлученной поверхности, который для сравнения приведен на рисунке 6б, с характерными размерами вдоль поверхности 45-70 нм и высотой около 50 нм.



Рисунок 6 – 3D изображения ACM исследовании рельефа на поверхности нержавеющей стали: а - ACM изображение в периферийной низкоинтенсивной части пятна облучения ArF-лазером (λ = 193 нм. 20 импульсов; 4 Дж/см², частота 2 Γ ц); б - исходная необлучённая поверхность.

При многократном облучении поверхности указанных материалов одним неподвижным пучком излучения ArF-лазера было экспериментально обнаружено, что по мере увеличения интенсивности излучения в направлении от периферии к центру лазерного пятна происходит увеличение характерного периода образующихся нанорельефов с возрастанием лазерной интенсивности.

В заключении приводятся основные результаты диссертационной работы.

1. Теоретически и экспериментально обоснована эффективность использования наносекундных лазерных источников, генерирующих ВУФ и

- УФ излучения для получения субмикро- и микроструктур с контролируемыми параметрами при облучении поверхности твердых тел. Благодаря сочетанию короткой длины волны излучения, поглощающейся в микрометровом слое и наносекундной длительности импульсов, такие лазеры позволяют оказывать воздействие на приповерхностный слой, в котором создаются высокие температурные градиенты, способствующие образованию новых микро и наноструктур.
- 2. Впервые создана экспериментальная установка, предназначенная для практической реализации и исследования метода прямого лазерного наноструктурирования поверхности твердых материалов. Её отличительной особенностью является возможность облучать одним или несколькими последовательно синхронизированными пучками излучения импульснопериодических ArF-лазера, Nd:YAG-лазера или лазера на парах меди с длительностью импульсов от 5 до 20 нс, частотой следования импульсов до 15 кГц, плотностью энергии до 10 Дж/см², а также возможность регулировать время задержки между импульсами в заданных пределах, благодаря использованию в системах накачки ArF-лазера и лазера на парах меди полностью твердотельных высоковольтных генераторов импульсов на основе IGBT транзисторов.
- 3. Предложен и экспериментально реализован метод увеличения длительности импульсов излучения электроразрядного эксимерного лазера использованием накачки активной среды В режиме периодически затухающего напряжения на разрядном промежутке. Достоинство метода возможность улучшения характеристик лазерного излучения без изменения основных параметров оптического резонатора и электрической системы накачки лазера.
- 4. Экспериментально исследованы зависимости энергии и длительности лазерного излучения электроразрядного KrF-лазера с максимальной выходной энергией до 30 мДж от параметров напряжения накачки, состава и давления газовых смесей в разрядном промежутке и показано, что за счет

- изменения этих параметров указанный выше метод позволяет увеличивать длительность лазерных импульсов с 15 нс до 45 нс не приводя к существенным потерям выходной энергии лазера.
- 5. Экспериментально продемонстрирована возможность прямого наноструктурирования поверхности германия, никеля, силицида платины, нитрида кремния, нержавеющей стали и титана при наносекундном многократном облучении ArF-лазером с длиной волны 193 нм.
- 6. Экспериментально обнаружен эффект увеличения характерного периода, амплитуды и изменения формы образующихся нанорельефов с возрастанием лазерной интенсивности, что открывает возможность управления размерами нанорельефа.
- 7. С использованием методов атомно-силовой микроскопии в зоне облучения поверхности твердых тел наносекундными лазерными импульсами с длинами волн 193 нм, 355 нм, 510 нм обнаружено образование микро- и субмикронных структур волнообразной и выпуклой форм, в том числе периодических структур с периодом порядка одного микрона и наноструктур пирамидальной формы, а также впервые обнаружены наноструктуры в виде гексагональных ячеек на германии и в виде эллиптических нанократеров на нержавеющей стали.

<u>Основные результаты диссертации опубликованы в следующих</u> работах:

- 1. Вартапетов С.К., Грязнов О.В., Малашин М.В., Мошкунов С.И., Небогаткин С.В., **Хасая Р.Р.,** Хомич В.Ю., Ямщиков В.А. Электроразрядный ВУФ лазер с твердотельным генератором накачки // Квантовая электроника 39, № 8, 2009, С. 714-718
- 2. **Khasaya R. R.,** Malashin M. V., Khomich V. Yu., Yamschikov V. A. Possibility of increasing of the excimer lasers emission time duration // Proceedings of ILLA<L 2009, March 2010 P. 205-216
- 3. Tokarev V.N., Shmakov V.A., Khasaya R.R., Mikolutskiy S.I., Nebogatkin S.V.,

- Khomich V.Yu., Yamshchikov V.A. Suppression of laser plasma melting side walls in laser drilling high aspect ratio microvias // Proceedings of the 29th Intern. Congress on Applications of Lasers and Electrooptics, 2010, Anaheim, USA, P. 966-975
- 4. Tokarev V.N., Shmakov V.A., **Khasaya R.R.**, Mikolutskiy S.I., Nebogatkin S.V., Khomich V.Yu., Yamshchikov V.A. Review of methods of direct laser nanostructuring technological materials // Proceedings of the 29th Intern. Congress on Applications of Lasers and Electrooptics, 2010, Anaheim, USA, P. 1257-1265
- 5. Khasaya R.R., Khomich V.Yu., Mikolutskiy S.I., Moshkunov S.I., Shmakov V.A., Tokarev V.N., Yamshchikov V.A. Direct laser nanostructuring of the material surface by the 193 nm and 248 nm wavelength irradiation // Book of abstracts 7th International Conference on Nanosciences & Nanotechnologies NN10, 2010, Halkidiki, Greece, P. 87
- 6. **Khasaya R.R.**, Khomich V.Yu., Leonov D.I., Shmakov V.A., Tokarev V.N., Yamshchikov V.A. Material Surface Nanostructuring by VUV and UV Nanosecond Laser Irradiation // Book of abstracts 8th International Conference on Nanosciences & Nanotechnologies NN11, 2011, Thessaloniki, Greec, P. 20
- 7. **Khasaya R.R.,** Khomich V.Yu., Mikolutskiy S.I., Nebogatkin S.V., Shmakov V.A., Tokarev V.N. and Yamschikov V.A. Direct laser surface nanostructuring without material melting // Book of abstracts 3rd International workshop on laser-matter interaction WLMI 2012, 2012, Porquerolles, France, P. 61
- 8. Железнов Ю.А., Малинский Т.В., Миколуцкий С.И., **Хасая Р.Р.,** Хомич Ю.В., Ямщиков В.А. Обработка поверхности титана наносекундным лазерным излучением // Письма о материалах. 2014. Т. 4. № 1 (13). С. 45-48.
- 9. Железнов Ю.А., Малинский Т.В., Миколуцкий С.И., **Хасая Р.Р.,** Хомич Ю.В., Ямщиков В.А., Токарев В.Н. Экспериментальная установка для прямого лазерного микро- и наноструктурирования поверхности твердых тел. Успехи прикладной физики. 2014. Т. 2. № 3. С. 311-316.
- 10.Железнов Ю.А., **Хасая Р.Р.,** Хомич Ю.В., Ямщиков В.А. Эффективный метод увеличения длительности импульса излучения электроразрядного KrF

- лазера // Прикладная физика. 2015. № 3. С. 85-88.
- 11. Mikolutskiy S.I., **Khasaya R.R.**, Khomich Yu. V., Yamshchikov V.A., Zheleznov Yu.A. Growth and formation of nanostructures on metal surfaces under the action of nanosecond laser pulses // Book of abstracts 5th European Conference on Crystal Growth ECCG5, 2015, Bologna, Italy. P. 313.
- 12.Ёлкин В.Н., Малинский Т.В., Миколуцкий С.И., **Хасая Р.Р.,** Хомич Ю.В., Ямщиков В.А. Влияние облучения наносекундными лазерными импульсами на структуру поверхности сплавов металлов // Физика и химия обработки материалов. 2016. № 6. С. 5-12
- 13.**R.R. Khasaya,** Yu.V. Khomich, S.I. Mikolutskiy. Infuens of nanosecond laser radiation on the surface structure of metals // Proceedings of the 14th Sino-Russian symposium on Advanced Materials and Technology, 2017, Sanya, China, P. 319-324
- 14.S.I. Mikolutskiy, **R.R. Khasaya**, Yu. V. Khomich, V.A. Yamshchikov. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses.// Journal of Physics: Conference Series. 2018. Vol. 987, p. 012007.