ЩЕДРОВ Иван Николаевич

Препарат «Фосбек» в эксперименте и клинике при диарейном синдроме цыплят - бройлеров

Специальность: 16.00.04.- ветеринарная фармакология с токсикологией

Автореферат

диссертации на соискание ученой степени кандидата ветеринарных наук.

Работа выполнена во Всероссийском научно-исследовательском ветеринарном институте патологии, фармакологии и терапии и в Воронежском государственном аграрном университете имени К.Д. Глинки.

Научный руководитель: доктор ветеринарных наук, профессор **Аргунов Муаед Нурдинович**

Официальные оппоненты: доктор ветеринарных наук, профессор

Шабунин Сергей Викторович кандидат ветеринарных наук, Фролов Анатолий Иванович

Ведущая организация: Московская академия ветеринарной медицины и биотехнологии им. К.И. Скрябина.

Защита состоится « 7 » Сиреме 2005 года в 4 часов на заседании диссертационного совета Д. 006.004.01 при Всероссийском научно-исследовательском ветеринарном институте патологии, фармакологии и терапии (394087, г. Воронеж, ул. Ломоносова, 114-6).

С диссертацией можно ознакомиться в библиотеке института.

Авторефератразослан «4 » марга 2005г.

Ученый секретарь диссертационного совета кандидат биологических наук

Ермакова Т.И.

1. ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

1.1. Актуальность темы

Животные, как и любой живой организм, для существования, самовоспроизводства и реализации продуктивных качеств потребляют через пищеварительный тракт разнообразные корма, воду и, в том числе, низкого качества.

Как и любая система, интенсивно работающая, а в особенности желудочно-кишечный тракт наиболее уязвим и подвержен воздействию неблагоприятных факторов, возникновению заболеваний, в том числе с диарейным синдромом, как у животных, так и у птиц.

Важную роль в возникновении указанной патологии играет безопасность и безвредность среды обитания животных, контаминация экосистемы села токсинами, нарушение эволюционно сложившегося равновесия между организмом и окружающей средой (Аргунов М.Н. 1999, 2000; Шахов А.Г., Бузлама В.С., 2003).

При возникновении желудочно-кишечных болезней в начале отсутствует патогенная микрофлора, и патогенез протекает без осложнений, затем при развитии диареи, происходят значительные сдвиги в сторону количественного увеличения микробов сахаропротеолитической флоры и резкого уменьшения микробов молочнокислой группы (Шишков В.П., Шитый А.Г., 1996).

Тяжелые формы желудочно-кишечных заболеваний с диарейным синдромом сопровождаются развитием токсико-септического состояния, в проявлении клинических симптомов которого ведущую роль играет система простогландинов и их метаболитов (Абидов М.Т., Караулов А.В., 2002).

Желудочно-кишечные заболевания, особенно в первые дни жизни, носят в хозяйствах массовый характер с 80-100% охватом поголовья, летальность достигает 40-75% (Карпуть И.М., 1984; Сулейманов СМ., 1998; Кузнецов Н.И.. 1998; Середа СВ., 2004), в том числе и у птиц (Щедров И.Н., 2003).

Экономический ущерб возникает за счет гибели, отставании в росте и потере продуктивности переболевших животных, лечебно-профилактических мероприятий, ослабления резистентности и повышения восприимчивости к другим болезням (Шабунин СВ., 1998; Рецкий М.И., 2003).

Для лечения массовых желудочно-кишечных заболеваний применяются антибиотики, сульфаниламиды и препараты нитрофуранового ряда. Арсенал этих препаратов не всегда эффективен, поскольку штаммы микроорганизмов, вызывающих энзоотию, разнообразны и подвержены качественному и количественному изменению. Противомикробные препараты неэффективны в тех случаях, когда желудочно-кишечные заболевания вызваны токсинами, попавшими в полость желудочно-кишечного тракта с молозивом или другими кормами и водой. Кроме того, использование таких лекарственных средств антимикробного действия имеет ряд

негативных последствий: загрязняют получаемую продукцию и окружающую среду остаточными количествами, снижают качество продукции (Антипов В.А., 2000).

Выше изложенные обстоятельства ведут к необходимости разработки и внедрению в практику животноводства фармакологических средств, обладающих комплексным действием, высокой эффективностью и, самое главное, безопасных для здоровья животных, человека и окружающей среды.

В этом плане, перспективным может быть препарат фосбек, соответствующий всем этим требованиям, что явилось причиной более детального и глубокого его изучения с целью использования в ветеринарной практике.

Диссертационная работа выполнена в рамках плана НИР ВНИ-ВИПФиТ, по заданию 0.4 «Разработать общую теорию патологии животных и на ее основе создать экологически чистую систему их ветеринарной защиты» РАСХН в 1996-2004гг. №№ час. рег. 01.7.90001255; 01.9.90001257 и кафедры фармакологии, токсикологии и паразитологии ФВМ Воронежского ГАУ им К. Д. Глинки.

1.2. Цель и задачи исследования

Основная цель - разработка и фармако-токсикологическая оценка препарата фосбек в эксперименте и клинике при диарейном синдроме птиц.

Для этого были решены следующие задачи:

- а) разработана технология получения препарата;
- б) изучены физико-химические свойства препарата:
- в) дана фармако-токсикологическая характеристика и оценка экологической безопасности:
- г) изучена эффективность фосбека при желудочно-кишечных заболеваниях цыплят-бройлеров с диарейным синдромом в том числе и в сочетании с антимикробным средством.

1.3. Научная новизна

Впервые разработан отечественный экологически безопасный препарат на основе использования дешевого, доступного природного сырья, а также отходов химической и мясоперерабатывающей промышленности. Определена оптимальная технология получения препарата, изучены его физико-химические и фармако-токсикологические свойства. Разработаны показания к применению и оптимальная доза, изучена эффективность фосбека при желудочно-кишечных болезнях цыплят-бройлеров, в том числе и в сочетании с антимикробными средствами. Получен патент на изобретение № 2237481. Приоритет от 13 сентября 2002 г.

1.4. Практическая значимость

Отечественный препарат фосбек рекомендуется для лечения желудочно-кишечных заболеваний цыплят-бройлеров с диарейным синдромом. Фосбек используется в системе ЗАО «Золотой петушок Инвест». Материалы диссертации используются в учебном процессе для студентов факультета ветеринарной медицины Воронежского ГАУ им К.Д. Глинки.

1.5. Апробация материалов

Результаты исследований по теме диссертации доложены на: ежегодных отчетных ученых советах Всероссийского научно-исследовательского ветеринарного института патологии, фармакологии и терапии и факультета ветеринарной медицины Воронежского ГАУ им. К.Д. Глинки 1999-2004 годов; международной научно-практической конференции «Новые энтерсорбенты и фармакологически активные вещества и их применение в ветеринарии и животноводстве», Троицк 2002г.; первой региональной конференции практикующих ветеринарных врачей "Болезни мелких домашних животных". Воронеж, 2003г.; научной и учебно-методической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов Воронежского ГАУ им. К.Д. Глинки, Воронеж, 2004г.

1.6. Публикация

По теме диссертации опубликованы 7 научных статей.

1.7. Объем и структура диссертации

Диссертация изложена на 110 страницах машинописного текста и состоит из введения, обзора литературы, материалов и методов исследований, заключения, выводов, практических предложений и списка литературы, включающего 115 отечественных и 53 зарубежных источников, содержит 24 таблицы и 1 рисунок.

1.8. Основные положения, выносимые на защиту

Оптимальная технология производства препарата.

Характеристика физико-химических и фармакотоксикологических свойств препарата.

Лечебная эффективность препарата фосбек при желудочнокишечных заболеваниях с диарейным синдромом цыплят-бройлеров и в сочетании с антимикробными средствами.

2. Материалы и методы исследования

Для решения поставленных задач организованы и выполнены семь научно-лабораторных экспериментов и научно-практических опытов на лабораторных и сельскохозяйственных животных.

В лабораторных экспериментах и научно-производственных опытах использованы беспородные белые мыши и белые крысы, морские

свинки породы «Альбинос», кролики породы «Белый великан», цыплятабройлеры.

Схема и краткая характеристика опытов, количество экспериментов, их характеристика, объем исследований приведены в таблицах 1 и 2.

Таблица 1

	Краткая характеристика о	пытов
№	Место проведения и основные задачи опыта	Вид и количество животных, гол.
1	Мясокомбинат ЗАО «Золотой петушок Инвест». Получение кутикулы.	Цыплята- бройлеры 12300
2	ВНИВИ патологии, фармакологии и терапии, Воронежская ГТА. Изучение состава и физико-химических свойств препарата.	
3	ВНИВИ патологии, фармакологии и тера- пии, Воронежская ГТА. Определение проте- олитической и микробной активности.	
4	Виварий ВНИВИПФиТ. Токсико- метрическая оценка и определение класса токсичности.	Белые мыши 80, белые крысы 80
5	Виварий ВНИВИПФиТ. Изучение кожнорезорбтивных и аллергенных свойств	Белые крысы 20 кролики, морские свинки 18
6	Виварий ВНИВИПФиТ. Изучение эмбриотоксического и тератогенного действия.	Белые крысы 60
7	Виварий ВНИВИПФиТ. Изучение кумулятивных свойств и отдаленных последствий.	Белые крысы 80
8	ВНИВИ патологии, фармакологии и терапии. Оценка экологической безопасности.	
9	Птицефабрики ЗАО «Золотой-Петушок Инвест». Изучение эффективности	Цыплята- бройлеры 25000
10	ГНЦ прикладной микробиологии, ООО «Диавак», Липецкая областная ветеринарная лаборатория.	Бактерии

Куриные и утиные пепсины получали методом ионнообменной хроматографии на ДЭАЭ (диэтиламминоэтилцеллюлозе).

Бактериологические исследования

Протеолитическую активность определяли по, ГОСТ 20264.2-88.

Изучение антимикробной активности порошка кутикулы и готового препарата проводили в соответствии с ГОСТ 2511-82. Метод бактериального анализа.

Токсикологическую характеристику фосбека изучали согласно "Методическим рекомендациям по токсико-экологической оценке лекарственных средств, применяемых в ветеринарии" (Аргунов М.Н. с соавт., 1998).

Таблица 2

Краткая характеристика исследований

Краткая характеристика исследовании							
Исследуемые показатели	Объект исследо- ваний	Количество иссле- дований					
Ферменты и аминокислоты	Кутикула	420					
Взвешивание	Животные	320					
Антимикробная активность	Полевые штам- мы	5					
Патолого-анатомическое вскрытие	Животные, туши	680					
Эритроциты	Кровь	120					
Лейкоциты	Кровь	120					
Гемоглобин	Кровь	120					
Гематокрит	Кровь	120					
Глюкоза	Кровь	120					
Общий белок	Кровь	120					
Фракции белка	Кровь	120					
Общие липиды	Кровь	120					
Мочевина	Кровь	120					
ЩФ	Кровь	120					
AcAT	Кровь	120					
АлАЛ	Кровь	120					
Бактерии	Ораны, ткани, вода, смывы	168					

Гематологические исследования включали: определение количества эритроцитов и лейкоцитов путем подсчета в счетной камере (И.А. Грибанова, 1979); определение количества гемоглобина колориметрически гемоглобинцианидным методом; расчет цветного показателя (Й. Тодоров, 1966); определение гематокритной величины с помощью микро-

центрифуги. Общий белок в сыворотке крови рефрактометрическим методом (Ю.Б. Филипович и др., 1975); общие липиды сыворотки крови - с сульфофосфованилиновым реактивом; мочевину в сыворотке крови - спектрофотометрическим методом с диацетилмонооксимом; неорганический фосфор - определяли с ванадат-молибденовым реактивом (В.В. Меньшиков, 1987).

Активность щелочной фосфатазы сыворотки крови определяли спектрофотометрическим методом по гидродизу В-глицерофосфата (метод Бодански); витамин Дз - по щелочной фосфатазе; активность аспартатаминотрансферазы и аланинаминотрансферазы крови спектрофотометрически динитрофенилгидразиновым методом (В.Г. Колб, В.С. Камышников, 1986); Escherichia coli - по методическому указанию по бакдиагностике на колибактериоз, М., 2000 г.; Salmonella - лабораторная диагностика сальмонеллеза человека, обнаружения в кормах, продуктах питания, и объектов внешней среды.- М., 1990 г. Определение биохимических свойств проводили c использованием биохимических тестов (ЭНТЕРОтест 24, СТАФИтест 16, СТРЕПТОтест 16) «LACHEMA» (Чехия).

Оценку экологической безопасности использования фосбека проводили согласно методическим рекомендациям по токсико-экологическому аудированию объектов животноводства (Аргунов М.Н., 1999).

Полученный цифровой материал приведен в соответствие с "Международной системой физических величин" (ГОСТ 8471-81). Использованы методы математической статистики, принятые в биологии и медицине (Г.Ф. Лакин, 1973; Е.В. Гульбер, 1978) и пакет прикладных программ Microsoft Excel 97 и Statgraphics для РС.

3. Результаты исследования

3.1. Технология производства

Препарат фосбек представляет собой композиционное средство. В его состав входят в оптимальных соотношениях масс %: бентонит - 40, фосфогипс - 35 и кутикула 25.

Бентонит - природный силикат алюминия (ТУ 5717-001-0049108-99), обогащен солями щелочных и щелочноземельных металлов, содержит в своем составе более 40 различных элементов, жизненно-важных для животных: кремний, натрий, калий, кальций, магний, фосфор, железо, марганец, медь, цинк, кобальт, йод и др.

Фосфогипс - CaSO₄-2H₂O (ТУ 6-207-71) содержит в своем составе дегидрат сульфата кальция (CaSO₄-2H₂O (не менее 92%), кремнефториды щелочных металлов (Na, K)₂SiF₆, фторид кальция CaF₂, фосфаты железа и алюминия PO_4 -2H₂O и $AIPO_4$ -2H₂O, фторапатиты $Ca(PO_4)_3$ -F, нефелин (Na, K) $AISiO_4$ -nSiO₃, силикаты Fe и A1.

Кутикула - слизистая оболочка куриного железистого желудка, высушенная при ${\rm t}^\circ$ 18-22° до 8% массовой доли влаги. Кутикулу получали

от птиц сразу после убоя и после хранения в замороженном виде.

Все три компонента смешивали до получения однородной массы.

Высокоочищенные препараты куриного и утиного пепсинов получали методом ионообменной хромотографией на ДЭАЭ (диэтиламминоэтилцеллюлозе). Препараты ферментов разделяются на две белковопептидные фракции. Первая из них не обладает ферментативной активностью и представляет собой смесь баластных белков и пептидов, вторая является собственно пепсином. Для определения степени однородности полученной фракции куриного пепсина ее подвергали дальнейшей очистки методом изоэлектрофокусировки.

В препарате содержится три вида пепсина: А, Д и С. Молекулярный вес первых двух - 42000, последнего - 385000. Пепсин А и Д содержат соответственно 21 и 22 аминокислотных остатков, в то время как пепсин С только 6. Протеолитическая активность препарата по гидролизу гемоглобина при pH=2,0 составляет 150 (относительная активность %).

При нейтральном значении pH и низкой температуре препарат стабилен в течение 12 месяцев.

3.2 Изучение антимикробной активности

В результате проведения исследований данным методом оказалось, что чистый порошок кутикулы давал рост микрофлоры, а готовый препарат в разведениях в различных разведениях (1:10, 1:50 и 1:100) роста микрофлоры не давал.

В результате хранения препаратов в течение двенадцати месяцев, в обычных условиях, бакобсемененность чистого порошка кутикулы составляла 18 клеток микроорганизма в 1 г порошка (общее содержание), что соответствует норме, а бакобсемененность готового преперата составляла 0 клеток микроорганизма в 1 г порошка (общее содержание), что также соответствует норме.

Результаты данных исследований указывают на то, что фосбек обладает бактерицидным свойством.

3.3. Экспериментальная фармако-токсикология препарата фосбек

3.3.1. Острая токсичность и определение класса токсичности

Наряду с высокой эффективностью, неотъемлемым требованием для новых лекарственных средств, препаратов и кормовых добавок является их безвредность для животных и человека. В связи с этим изучены токсикологические свойств и дана оценка экологической безопасности фосбека. Исследования выполнены в соответствии с требованиями ВОЗ, Минздрава, Ветеринарно-фармакологического совета департамента ветеринарии РФ.

В сериях лабораторных исследований, химическими методами

определяли содержание остаточных количеств ядовитых веществ в препарате. В результате проведенных исследований, содержание фтора, мышьяка, свинца, ртути и кадмия в фосбеке не превышало ПДК.

Токсикометрическую оценку фосбека проводили в остром опыте на белых мышах и белых крысах. В опыт были взяты 40 белых мышей массой тела 18-25 г и 40 белых крыс массой тела 150-200 г, которых формировали в группы по принципу парных аналогов. За животными вели наблюдение, учитывали клинические симптомы интоксикации. В течение 14 дней после затравки проводили учет количества павших и выживших животных. Препарат фосбек вводили грызунам внутрижелудочно в виде водной взвеси в различных дозировках, с интервалом между дозами 1000 мг/кг массы тела начиная с 1000 мг/кг. Данным способом были введены дозы от 1000 до 8000 мг/кг.

Сразу после введения препарата, независимо от дозы, у всех подопытных грызунов наблюдали легкое угнетение, заторможенность в движениях, взъерошенность шерстного покрова, цианоз слизистых оболочек. Эти признаки очевидно являлись реакцией организма на введение и уже через 30-50 минут после затравки нами не регистрировались.

В течение 14 дней наблюдения гибели грызунов зарегистрировано не было. Исходя из результатов данного опыта, согласно общепринятой классификации химических веществ (Медведь Л.И., 1964) фосбек является малотоксичным и относится к 4 классу токсичности.

3.3.2. Кожно-резорбтивные и аллергенные свойства препарата

Кожно-резорбтивное действие фосбека изучали на белых крысах методом погружения хвоста. 10 голов фиксировали в специальном станке так, чтобы хвосты животных были помещены на 2/3 длины пробирки с 50% водной взвесью препарата. В дальнейшем жидкость в пробирках периодически взбалтывали. Для контроля были взяты 3 белые крысы, которых также фиксировали, а хвосты погружали в пробирки с водой.

Учет реакции проводили через 4 часа после погружения хвоста по наличию реакции кожного покрова, степени выраженности интоксикации, количеству смертельных исходов. В данном случае, у опытных белых крыс не было изменений кожи хвоста, каких либо признаков интоксикации и случаев гибели. Исходя из этого, можно сделать вывод, что исследуемый препарат - фосбек не обладает кожно-резорбтивным действием.

Раздражающее действие фосбека на слизистые оболочки изучали на морских свинках методом конъюнктивальных проб. С этой целью двум животным в конъюнктивальный мешок левого глаза закапывали пипеткой по 2 капли 10% водного раствора фосбека. Для контроля в правый глаз этим же животным вносили по одной капле воды.

Через 0,5; 1; 2; 3; 4; 5 и 6 часов после инсталляции препарата учитывали клиническое состояние организма животных, а также кровенаполнение конъюнктивы, наличие лакримации и выделений, состояние рого-

вицы и век, оценивая согласно схеме, приведенной в таблице 3.

 Таблица 3.

 Реакция глаз морских свинок после инсталляции фосбека

Интенсивность реакции	Оценка в баллах	Раздражающий эффект
Нет реакции	0	Отсутствует
Слабая реакция	2	Слабый
Выраженная реакция	4	Умеренный
Лакримация	6	Слабо выраженный
Наличие выделений	8	Выраженный
Отек век	10	Сильно выраженный

В результате клинических исследований состояния организма подопытных морских свинок после инсталляции препарата фосбек не выявили изменений температуры тела, частоты пульса и количества дыхательных движений.

При визуальной оценке состояния конъюнктивы, роговицы и век опытных глаз животных установлено, что препарат фосбек вызывает слабое раздражение конъюнктивы спустя 2 часа после закапывания, которое проходит уже к 3-му часу.

Аллергенные свойства препарата фосбек изучали на белых крысах методом накожных аппликаций и на кроликах методом коньюнктивальных проб.

В опытах на крысах были использованы животные обоего пола массой 200-220 г. Число животных в опытной и контрольной группах было равным и составляло 8 особей.

Животным опытной группы на выстриженные участки кожи боковой поверхности, ближе к середине туловища, наносили водный раствор препарата в разведениях 1:1 по 0,6 мл на площадь 6 см 2 , то есть плотность нанесения препарата составляла 0,1 мл/см 2 . Препарат наносили на протяжении трех недель ежедневно.

Первое тестирование путем нанесения фосбека в дозе, в 5 раз превышающую сенсибилизирующую проводили после 10 аппликаций, затем - через 14 и 20 суток от начала аппликации реакцию кожи учитывали по шкале оценки проб. Животным контрольной группы применяли только разрешающие дозы.

В эксперименте установлено (табл. 4), что 20-ти кратная аппликация препарата не вызывает явлений сенсибилизации.

Таблица 4 Показатели аллергизирующего лействия фосбека

Группа	Срок	Наблюдаемые симптомы				
животных	животных наблюдения		отек кожи	десквамация		
	10 сутки	0/8	0/8	0/8		
Контроль	14 сутки	0/8	0/8	0/8		
	21 сутки	0/8	0/8	0/8		
	10 сутки	0/8	0/8	0/8		
Опыт	14 сутки	0/8	0/8	0/8		
	21 сутки	0/8	0/8	0/8		

3.3.3. Эмбриотоксическое и тератогенное действие.

В опте по изучению эмбриотоксического действия фосбека использовали 40 самок белых беспородных крыс массой тела 210-220 г., которых разделили на две равные группы. Всех самок спаривали с самцами, подсаживая 2-3 самки на 1 самца. Начало беременности устанавливали по наличию сперматозоилов во влагалишном мазке. Далее, на 5-е сутки беременности (период имплантации) половине самок из 1-ой группы вводили внутрижелудочно фосбек в дозе 5 мг/кг массы тела. Оставшимся животным данной группы в таком же объеме вводили воду. 10-ти самкам 2ой группы внутрижелудочно вводили фосбек в дозе 5 мг/кг массы тела на 17-е сутки беременности (период органогенеза). Оставшиеся 10 самок служили контролем и им вводили воду. Таким образом, произошло разделение животных на 4 группы. На 20-е сутки беременности, то есть непосредственно перед родами проводили убой 5 голов животных из каждой группы, при этом учитывали раннюю и позднюю резорбцию плода, общую плодовитость, количество желтых тел беременности, живых и мертвых эмбрионов, проводили обмер и взвешивание плодов. В результате, по вышеперечисленным показателям, у животных всех групп существенных отличий не регистрировали.

Внешним осмотром и вскрытием плодов определяли тератогенные свойства фосбека (Аргунов с соавт., 1999). В результате данных исследований наличия уродств и отклонений от нормального развития у плодов не выявлено.

Оставшихся 20 самок оставляли до наступления естественных родов. За развитием полученного потомства вели наблюдение: проводили взвешивание, замеры длины тела, хвоста, учитывали сроки отлипания ушей, прорезывания глаз, обрастания шерстным покровом, подвижность и активность высасывания молока матери в течение первых дней жизни. В результате, каких либо различий в изучаемых показателях выявлено не было.

3.3.4. Изучение кумулятивных свойств

Кумулятивные свойства фосбека изучали в подостром эксперименте на белых крысах, которым скармливали в течение 45 дней фосбек в дозах: 1-ой группе - 2,5 мг/кг массы тела; 2-ой группе - 5 мг/кг массы тела; 3-ей группе препарат не скармливали и она служила контролем. Все животные содержались на едином рационе.

В течение всего опыта за подопытными животными вели наблюдение, учитывали поедаемость корма, прием воды, состояние слизистых оболочек, волосяного покрова, поведение, взвешивали в начале и в конце эксперимента.

В результате у грызунов не отмечали признаков интоксикации и заболеваний, не зарегистрировали гибели. Применение фосбека в течение 45 дней у опытных животных, способствовало увеличению прироста массы тела на 9,4% в 1-й группе и на 7,3 во 2-й группе по сравнению с контролем.

В конце опыта был проведен убой всех грызунов, анатомическое вскрытие и взвешивание внугренних органов. В результате, достоверных различий по массе тушек и внутренних органов у белых крыс в опытных и контрольной группах не выявлено.

Не установлено также и патологических изменений во внутренних органах при скармливании фосбека в течение 45 дней.

Морфологические показатели крови - количество эритроцитов, лейкоцитов, гемоглобина и гематокрит у животных всех групп существенно не отличались и находились в пределах нормы.

3.3.5. Оценка экологической безопасности использования препарата фосбек.

Оценка экологической безопасности использования фосбека включает следующие этапы:

- 1. Производство. Фосбек производится в соответствии с ТУ и технологическим регламентом. Технологическая линия по производству не имеет отходов.
- 2. Транспортировка и хранение. Фосбек транспортируют транспортом по ГОСТ. Препарат хранят в закрытых сухих помещениях. При хранении, в течение гарантийного срока препарат не теряет активности и не подвергается деградации.
- 3. Применение. Фосбек применяют птице для лечения и профилактики желудочно-кишечных заболеваний.
- 4. Внешняя среда. Не образует стойких соединений, влияющих отрица гельно на окружающую среду.

Оценка экологической безопасности проводится по 4 классам:

1. Высокоопасные-сильнодействующие ядовитые вещества (ЛД $_{50}$ не более 50); во внешней среде очень стойкие (период распада 1-2 года); сверхкумулятивные (коэффициент кумуляции меньше 1); явно канцерогены (возникновение рака у людей, сильные канцерогены в опытах на животных); сильные аллергены (вызывают аллергию у большинства лю-

дей в небольших дозах, встречающиеся в обычной обстановке); явные тератогены (известны уродства у людей, воспроизводимые в опытах на животных); избирательная эмбриотоксичность (в дозах, не токсичных для материнского организма), сильные мутагены (100% мутация в опытах на дрозофилах); вещества чрезвычайной опасности при производстве (ПДК вредных веществ в воздухе рабочей зоны менее 0.1 мг/м³).

- 2. Опасные токсические (ЛД $_{50}$ от 50 до 200); стойкие (с периодом распада во внешней среде 6 месяцев); выраженная кумуляция (коэффициент кумуляции 1 3); канцерогены (канцерогенность в опытах на животных); слабые аллергены (аллергия у отдельных индивидуумов); подозрительные на тератогенность (наличие тератогенности в опытах на животных); эмбриотоксичность умеренная (проявляется наряду с другими токсическими эффектами); средние мутагены (2-5% мутации в опытах на дрозофилах); вещества высокой опасности при производстве (ПДК вредных веществ в воздухе рабочей зоны 0,1-1,0 мг/м 3).
- 3. Малоопасные среднетоксические (ЛД $_{50}$ от 200 до 1000); умеренно стойкие (период распада 1-6 месяцев); слабые канцерогены (канцерогенность у животных до 20%); слабые мутагены (1-2% мутации у дрозофил); слабая кумуляция (коэффициент кумуляции 3-5); умеренно опасные (ПДК вредных веществ в воздухе рабочей зоны 1,1-10 мг/м 3).
- 4. Безопасные малотоксичные (Π_{30} 1000 и более); малостойкие (с периодом распада до 1 месяца); подозрительные на канцерогенность. (на животных дали сомнительные или противоречивые результаты); слабые мутагены (0,5-1,0% мутации у дрозофил); слабо выраженная кумуляция (коэффициент кумуляции более 5).

Согласно полученным результатам токсикологических исследований и классификации фосбек является экологически безопасным.

3.4. Эффективность препарата фосбек для лечения диарейного синдрома цыплят-бройлеров

Научно-производственный опыт был выполнен на птицефабрике «Россия» Грязинского района Липецкой области - одного из хозяйств, ЗАО «Золотой Петушок-Инвест», которое расположено в 22 км от Липецка и в 18 км от Новолипецкого металлургического комбината в экологически неблагоприятной зоне. Хозяйство специализируется на производстве мяса цыплят-бройлеров, которое поставляется на потребительский рынок Росси.

Производственная мощность птицефабрики составляет 1 млн. 100 голов, помещения типовые, содержание напольное.

В соответствии с планом НИР на первом этапе проведено токсико-эколгическое аудирование птицефабрики, которое включало: изучение микроклимата, анализ рациона кормления, химико-токсикологическое исследование воды, кормов, определение биохимического статуса организма птицы: изучение эпизоотической ситуации.

3.4.1 Изучение микроклимата и анализ рациона

Результаты исследования микроклимата указывают на незначительные колебания воздушной среды в зоне обитания животных, которые соответствуют нормативным требованиям по помещениям.

В частности, температура по большинству помещений 31-32 в брудере - 34; влажность 70-74%, содержание углекислого газа 6,5-7%, аммиака 5-7 мг/л, микробная обсемененность помещений соответствует норме со световым коэфициентом 1-20.

Кормление птиц осуществлялось согласно физиологической потребности организма комбикормом марки 300 и 301.

В первые 4-5 дней жизни кормление цыплят осуществлялось нулевым комбикормом, с высоким содержанием обменной энергии (1235-1255 кДж/ЮОг сухого вещества), сырого протеина не менее 18% и клетчатки не более 4%, исключаются минеральные добавки.

3.4.2 Химико-токсикологическое исследование воды, кормов

Для химико-токсикологического анализа были отобраны пробы воды и комбикорма 300 и 301. Результаты исследования представлены в таблице 5.

Таблица 5 Токсикологическая оценка кормов, воды; мг/кг- корма, мг/л - вода (птицефабрика «Россия»)

Наименование пробы	Кадмий	Свинец	Нитраты
Вода	0,00071	0,046	59,2
Норма	0,001	0,5	45
Комбикорм — 300	0,008	0,933	25,9
Комбикорм - 301	0,092	1,021	15,0
Норма	0,3	5,0	300,0

Из таблицы видно, что уровень кадмия и свинца в корме и воде не превышал ПДК, а уровень нитратов в воде скважины № 7 превышал ПДК на 24%.

3.4.3 Определение клинико-биохимического статуса организма ныплят.

Для клинического осмотра был выбран птичник № 13, где одновременно находились 30 тыс. цыплят в возрасте 1-2 дня. При этом обращали внимание на внешний вид, подвижность, на прием воды и корма, на упитанность, состояние оперения, органы чувств, кожу и ее производные, носовые отверстия, нос и живот.

В результате установлено у 3,5-4% поголовья клинические признаки заболевания: общая слабость, сонливость, скучивание, расстройство кишечника, нарушение координации движений, серознофибринозный конъюнктивит, диарея. На вскрытии у вынуждено убитых и павших птиц отмечали цианоз слизистых оболочек, взъерошенность и слипание перьев вокруг анального отверстия, наличие очагов некроза в печени и легких, воспаление желточного мешка, перикардит.

Гематологические исследования поголовья не выявили отклонений от нормативных показателей.

3.4.4 Изучение эпизоотической ситуации.

Для изучения эпизоотической обстановки в государственном научном центре прикладной микробиологии «Диовак» проведены бактериологические, серологические и биохимические исследования из патологического материала цыплят-бройлеров, пробы воды и смывов.

При исследовании из патологического материала выделены: E. Coli и S. Enteridis.

Вирулентность выделенных культур Е. Coli, подтверждена в биопробе на белых мышах. При внутрибрюшинном инфицировании суточными агаровыми культурами, выделенных штаммов эшерихий, в дозе $0.5\,$ см $^3\,$ с концентрацией $5x10^{\,8}\,$ микробных клеток, отмечали гибель подопытных животных.

Кроме этого проводили определение лекарственной устойчивости бактериальных культур, выделенных из патматериала, которые представлены в таблице 6.

Таблица 6. Лекарственная устойчивость выделенных культур E. Coli, S. Enteridis

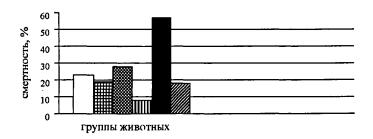
1	1	2		3			
	Сальмонеллы 10 культур		культур	Эшер	ихии 6 кул	ьтур	
доза	+ <u>+</u> -			+	<u>±</u>	-	

	Ампиц	илин (мкі	г деиствую	ощего вещес	тва см	среды)	
0,4	0	0	10	0	0	6	
4,0	0	0	10	0	0	6	
32,0	7	3	10	1	1	4	

Полимиксин (мкг действующего вещества / см³ среды) 10,0 0 0 10 0 0 0 0 30,0 2 1 0 6 0 2 Фуразолидон (мкг действующеговещества см³ среды) 5,0 0 0 10 0 0 0 6 10,0 0 0 10 0 0 6 20,0 0 0 10 0 0 6 Тетрациклин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 Тетрациклин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 7,5 0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 110,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 1 2 3 2 3 2 20,0 0 0 10 0 0 0 6 Гентамицин (мкг действующего вещества / см³ среды) 4,0 5 0 5 2 0 4 10,0 8 2 0 2 0 4 10,0 8 2 0 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 110,0 1 6 3 2 0 4 110,0 1 6 3 2 0 4 125,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1					_Прод	олжение т	аблицы 22.			
10,0	1		2			3				
10,0	Полимиксин (мкг действующего вещества / см 3 среды)									
Solid Органичент Органич	10,0			10			6			
5,0	30,0	2	1	0	6	0	2			
5,0	Фуразолидон (мкг действующеговещества см ³ среды)									
20,0 0 0 10 0 6 Тетрациклин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 7,5 0 0 10 0 0 6 Фурацилин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 Гентамицин (мкг действующего вещества / см³ среды) 4,0 5 0 5 2 0 4 10,0 8 2 0 2 1 3 Стрентомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 <td< td=""><td>5,0</td><td>0</td><td>0</td><td>10</td><td>0</td><td>0</td><td>6</td></td<>	5,0	0	0	10	0	0	6			
Тетрациклин (мкг действующего вещества / см 3 среды) 5,0		0	0	10	0_	0				
5,0 0 0 10 0 6 7,5 0 0 10 0 0 6 Фурацилин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 1 2 3 2 0 6 Гентамицин (мкг действующего вещества / см³ среды) 4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 10,0 8 2 0 2 0 4 10,0 8 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см³ среды) 4,0 0 0 0 6 10,0 7 1 2 2 1 3 Неомицин (мкг действующего вещества / см³ среды)	20,0	0	0	10	0	0	6			
7,5 0 0 10 0 0 6 10,0 0 0 10 0 0 6 Фурацилин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 0 6 10,0 0 0 10 0 0 6 11 2 3 3 20,0 0 0 10 0 0 0 6 Гентамицин (мкг действующего вещества / см³ среды) 4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 10,0 8 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см³ среды) 4,0 0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	Te	грацикли	н (мкг дей	<u>йств</u> ующе	го вещества	/ см ³ сре,	ды)			
Фурацилин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 0 6 10,0 0 0 10 0 0 6 1 2 3 2 3 2 2 3 2 2 3 2 2 0 6 7 6 6 6 7 6 6 7 6 6 7 4 6 9 9 4 6 9 9 4 6 9 9 9 0 1 0 0 0 4 4 6 9 9 0 1 0 0 0 0 0 1 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Фурацилин (мкг действующего вещества / см³ среды) 5,0 0 0 10 0 6 10,0 0 0 10 0 0 6 1 2 3 2 3 2 2 3 2 2 0 6 6 6 6 0 0 0 6 6 6 0 0 0 0 6 6 0 0 0 6 6 0 0 4 6 0 0 4 6 0 0 4 4 0 0 4 4 0 0 4 0 0 4 0 0 0 6 0 0 6 0 0 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	7,5	0	0	10	0_	0	6			
5,0 0 0 10 0 6 10,0 0 0 10 0 0 6 1 2 3 2 3 2 2 0 6 6 Гентамицин (мкт действующего вещества / см 3 среды) среды) 4 6,0 5 0 2 0 4 4 10,0 8 2 0 2 0 4 10,0 8 2 0 2 1 3 2 0 4 10,0 8 2 0 1 3 2 2 1 3 3 2 0 4 4 1 3 2 2 1 3 3 1 1 2 3 1 3 2 2 1 3 3 1 1 1 3 2 0 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1<	10,0	0	0	10	0	0	6			
5,0 0 0 10 0 6 10,0 0 0 10 0 0 6 1 2 3 2 3 2 2 0 6 6 Гентамицин (мкт действующего вещества / см 3 среды) среды) 4 6,0 5 0 2 0 4 4 10,0 8 2 0 2 0 4 10,0 8 2 0 2 1 3 2 0 4 10,0 8 2 0 1 3 2 2 1 3 3 2 0 4 4 1 3 2 2 1 3 3 1 1 2 3 1 3 2 2 1 3 3 1 1 1 3 2 0 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1<	Φ	 урацилин	(мкг дей	ствующег	о вещества	' см ³ сред	ы)			
1 2 3 Тентамицин (мкт действующего вещества / см 3 среды) 4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 10,0 8 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см 3 среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 Евемицин (мкг действующего вещества / см 3 среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см 3 среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	5,0		0	10	0	0				
20,0 0 0 0 6 Гентамицин (мкг действующего вещества / см 3 среды) 4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 10,0 8 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см 3 среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 2 25,0 8 1 1 2 3 1 1 4 2 0 4 4 1 1 3 2 0 4 1 1 1 3 2 0 4 1 1 1 3 2 0 4 1 1 1 3 2 0 4 1 1 1 3 2	10,0	0	0	10	0	0	6			
Гентамицин (мкг действующего вещества / см ³ среды) 4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 10,0 8 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см ³ среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 2 25,0 8 1 1 2 3 1 1 Неомицин (мкг действующего вещества / см ³ среды) 4 2 0 4 4 1 1 4,0 1 5 4 2 0 4 4 2 0 4 10,0 1 6 3 2 0 4 2 0 4 2 0 4 1 1 1 1 3 2 0 4 <td>1</td> <td></td> <td>2</td> <td></td> <td></td> <td>3</td> <td></td>	1		2			3				
4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 Стрептомицин (мкг действующего вещества / см³ среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	20,0	0	0	10	0	0	6			
4,0 5 0 5 2 0 4 6,0 5 5 0 2 0 4 Стрептомицин (мкг действующего вещества / см³ среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	Ге	нтамици	і (мкг дей	ствующе	го вещества	/ см ³ сред	(ы)			
Толов в 2 2 0 2 1 3 Стрептомицин (мкг действующего вещества / см 3 среды) 4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см 3 среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см 3 среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	4,0	5	U	5	2	0	4			
Стрептомицин (мкг действующего вещества / см³ среды) 4,0 0 0 10 0 6 10,0 7 1 2 2 1 3 25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	6,0	5	5	0	2	0	4			
4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	10,0	8	2	0	2	1	3			
4,0 0 0 10 0 0 6 10,0 7 1 2 2 1 3 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	Стр	ептомици	ін (мкг де	йствующ	его вещества	а / см ³ сре	еды)			
25,0 8 1 1 2 3 1 Неомицин (мкг действующего вещества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	4,0	0	0	10	0	0	6			
Неомицин (мкг действующего вешества / см³ среды) 4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	10,0	7	1	2	2	1	3			
4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	25,0	8	1	1	2	3	1			
4,0 1 5 4 2 0 4 10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	H	Геомицин	(мкг дейс	твующего	вещества /	см ³ средн	ы)			
10,0 1 6 3 2 0 4 25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	4,0		· 5		2	0				
25,0 7 3 0 4 1 1 Энрофлоксацин (мкг действующего вещества / см³ среды) 0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1		1	6	3	2	0	4			
0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1		7	3	0	4	1_	11			
0,5 3 1 6 0 0 6 1,0 9 0 1 2 3 1	Энр	офлоксац	ин (мкг де	ействующ	его веществ	a/cm ³ cp	еды)			
· · · · · · · · · · · · · · · · · · ·	0,5	3			0					
		9	0	1	2	3	1			
		9	0	1	2	3	1			

Примечание: + (чувствительные); + (слабочувствительные); - (не чувствительные).

На основании проведенных исследований можно заключить, что основной причиной заболеваний цыплят является бактериальная инфекция.


3.4.5 Лечение диарейного синдрома у цыплят.

Для эксперимента были взяты 6 групп цыплят - бройлеров суточного возраста по 65 голов в каждой, массой тела 39.0 + 1.13, у птиц всех групп были клинические признаки диарейного синдрома, а в 1.2.3 и 5 группах выделены E. Coli, S. Enteridis.

Лечение цыплят проводили по следующей схеме:

- 1 группа энрофлоксацин 10% раствор в дозе 5 мг/кг массы тела (50 мл 10% раствора на 100 л воды);
- 2 группа энрофлоксацин в дозе 3,0 мг/кг массы тела + фосбек 0.2 г/кг массы тела;
 - 3 группа фосбек, 0,5 г/кг массы тела;
 - *4 группа фосбек, 0,5 г/кг массы тела;
 - 5 и *6 группы контрольные.
 - * группы птиц где не выделены бактерии E. Coli, S. Enteridis.

Препарат энрофлоксацин давали с водой, фосбек с кормом ежедневно, при этом учитывали поедаемость корма, прием воды, проводили клинический осмотр, учет павших птиц, взвешивание в конце опыта (к 10 дневному возрасту). Общий процент смертности в сравнительном аспекте по группам представлен на рисунке № 1.

- □ группа птиц получавшая энрофлоксацин
- ш группа птиц, получавшая энрофлоксацин и фосбек
- В группа птиц, получавшая фосбек
- 🛮 группа птиц без бактериальной инфекции, получавшая фосбек
- контрольная группа птиц
- 🗷 контрольная группа птиц без бактериальной инфекции

Рис.1. Лечебная эффективность препаратов

Из приведенных, на рисунке 1 данных, очевидно, что в 1-ой группе цыплят, где применяли препарат энрофлоксацин смертность составляет 23%, во 2-ой группе, где применяли препарат энрофлоксацин и фосбек этот показатель равен 19%, в 3-ей группе, где применялся только препарат фосбек смертность составила 28%, у птиц 4-ой группы (без бактериальной инфекции) под влиянием препарата фосбек смертность снизилась до 8%, в контрольных группах, при осложнении бакинфекцией (5 группа) смертность достигает 57%, тогда как в 6-й группе (без бактериальной инфекции) смертность составляет 18%.

По полученным результатам можно сделать вывод, что при осложнении диарейного синдрома бактериальной инфекцией Е. Coli, S. Епteridis, наиболее эффективно сочетание препаратов энрофлоксацин и фосбек, а без бактериальной инфекции использование одного препарата фосбек.

Кроме этого, необходимо подчеркнуть, что при осложнении диарейного синдрома патогенной микрофлорой смертность птицы увеличивается с 18% до 57% в контрольной группе.

Курс лечения у птиц 1-ой группы продолжался 5 дней, во 2-ой группе 3,5 дня, в 4-ой группе 3 дня.

Результаты взвешивания цыплят на 10 день представлены в таблице 7.

Из таблицы 7 видно, что во всех опытных группах прирост массы цыплят выше, чем у контрольных, но максимальный наблюдается у птиц, которым применяли один препарат фосбек (без осложнений инфекции) и которым применяли энрофлоксацин и фосбек (осложненная).

Таблица 7 Динамика прироста массы тела цыплят

	Macca	тела, г	Прирост массы тела, г		
Группы	В начале опыта	В конце	Среде- суточный	Валовый	
1.энрофлоксацин	39,0±1,13	245±3,5	20,6	206±8,5	
2.энрофлоксацин+ фосбек	39,0±1,13	248±5,1	20,9	209±10,2	
3. фосбек	39,0±1,13	244±2,4	20,3	205±6,7	
4.*фосбек	39,0±1,13	250±3,3	21,1	211±3,9	
5.контрольная	39,0±1,13	243±1,2	20,4	204±4,1	
6.*контрольная	39,0±1,13	245±6,3	20,6	206±7,7	

Примечание: * группы без бактериального осложнения

3.4.6 Профилактика диарейного синдрома у цыплят.

Для изучения профилактической эффективности препарата фосбек были сформированы две группы цыплят - бройлеров по 65 голов суточного возраста, у которых отсутствовали клинические признаки диарейного синдрома. Одной группе птиц скармливали препарат фосбек в дозе 0,3 г/кг массы тела ежедневно в течение 5-ти дней, вторая группа цыплят была контрольная и им препарат не применяли. В течение 10 дней за птицей вели наблюдение, учитывали появление признаков диарейного синдрома, падеж, динамику прироста массы тела. Результаты приведены в таблипе 8.

Таблица 8. Профилактическая эффективность препарата фосбек

	Кол-во	во Заболело				
Группы	голов	На 2-е сутки	На 5-е сутки	На 10-е сутки	Пало	
Опытная	65	3	2	1	1	
Контроль- ная	65	5	12	29	19	

Из таблицы видно, что препарат обладает профилактической эффективностью диарейного синдрома цыплят на 98 %, в то время как в контрольной группе переболело 29 и пало 19 голов.

4. Выволы

- 4.1. Фосбек является новым отечественным препаратом, основными источниками сырья для которого являются отходы птицеперерабатывающей и химической промышленности, запасы которой составляют сотни тысяч тонн и ежегодно пополняются, загрязняя экосистему. Для производства препарата не требуются сложные технологические линии, дорогостоящее оборудование и приборы.
- 4.2. Фосбек в своем составе содержит в оптимальных соотношениях, адсорбент, источники макро- и микроэлементов (кальций, фосфор, сера, кремний, азот, марганец, железо, цинк, натрий, калий и др., пепсин A, D, S) и биологически активное вещество.
- 4.3. Препарат фосбек является малотоксичным, относится к четвертому классу токсичности, не обладает раздражающими, кожнорезорбтивными, аллергическими, эмбриотоксическими, тератогенными свойствами, не обладает отдаленными последствиями и является экологически безопасным.
- 4.4. Механизм действия препарата заключается в том, что в желудке постепенно освобождается активная часть (ферменты) составляющего, которая способствует нормальному функционированию желудочно-кишечного тракта, адсорбенты поглощают различные токсины, условнопатогенную микрофлору, тем самым препятствуя адгезивной, инвазивной и токсигенной функциям бактерий.
- 4.5. Лечебная эффективность препарата фосбек при диарейном синдроме цыплят-бройлеров без бактериальной контаминации, в первые дни жизни, составляет 92%.

При инфицировании Е. Coli и S. Enteridis наиболее эффективно использование фосбека в сочетании с антимикробным препаратом - энрофлоксацин.

- 4.6. Эффективность профилактики диарейного синдрома у цыплят-бройлеров до 10-дневного возраста, препаратом фосбек составляет 98%.
- 4.7. Фармакологическая стабильность препарата фосбек сохраняется в течение 12 месяцев с момента изготовления при условии хранения от -4° С д $_{\odot}$ + 23° С.

5. Практические предложения

- 5.1. Препарат фосбек рекомендуется для лечения диарейного синдрома у цыплят-бройлеров в дозе 0,5 г/кг массы тела ежедневно в течение 5-ти дней, а при осложнении бактериальной инфекцией Е. Coli и S. Enteridis в сочетании с препаратом энрофлоксацин.
- 5.2. Для профилактики диарейного синдрома цыплят рекомендуется скармливать фосбек в дозе $0,3\,$ г/кг массы тела в течение 5-ти дней, начиная ${\bf c}$ суточного возраста.
- 5.3. Полученные результаты исследования рекомендуется использовать при обучении студентов ветеринарного, биологического и технологического профиля. Они могут быть полезны для различных НИУ, и производителей лекарственных средств ветеринарного назначения.

Список опубликованных работ по теме диссертации:

- 1) Жуков И.В. Анализ эпизоотической ситуации по болезням животных и птиц в 2000-2001 году в Липецкой области / В.И. Жуков, М.Н. Аргунов, И.Н. Щедров // Межвузовские учебные записки. Региональные экологические проблемы и непрерывное образование. Выпуск 2.- Липецк, 2001.-С. 34-36.
- 2) Жуков И.В. Эпизоотическая ситуация по болезням птиц, меры борьбы и профилактики / В.И. Жуков, С.А. Холев, И.Н. Щедров // Межвузовские учебные записки. Региональные экологические проблемы и непрерывное образование. Выпуск 2.- Липецк, 2001.- С. 11-13.
- 3) Жуков И.В. Анализ эпизоотической ситуации по болезням животных и птиц в 2000-2001г. в Липецкой области / И.В. Жуков, М.Н. Аргунов, И.Н. Щедров // Межвузовские учебные записки. Научнометодическая проблемы преподавания специальных дисциплин в направлении профессионального обучения. Выпуск 5. Липецк, 2001.- С. 42-43.
- 4) Холев С.А. Эпизоотическая ситуация по болезням птиц, меры борьбы и профилактики / С.А. Холев, В.И. Жуков, И.Н. Щедров // Межвузовские учебные записки. Региональные экологические проблемы и непрерывное образование. Выпуск 5.- Липецк, 2001.- С.57-58.
- 5) Аргунов М.Н. Влияние аномальных количеств кадмия на кинетику эссенциальных металлов и активность ферментов цикла трикарбоновых кислот / М.Н. Аргунов, В.И. Дедяев, И.В. Жуков, И.Н. Щедров, // Материалы международной научно-производственной конференции «Новые энтеросорбенты и фармакологически активные вещества и их применение в ветеринарии и животноводстве.» Троицк, 2002.- С. 9-10.
- 6) Жуков И.В. Тяжелые металлы и их роль в загрязнении объектов животноводства / В.И. Жуков, И.Н. Щедров, В.И. Дедяев, В.В. Василенко // Материалы международной научно-производственной конференции «Актуальные проблемы болезней молодняка в современных условиях.» Воронеж, 2002. С. 111-113.
- 7) Аргунов М.Н. Средство для профилактики желудочнокишечных заболеваний сельскохозяйственных животных и птицы / М.Н. Аргунов, И.В. Жуков, И.Н. Щедров, В.И. Дедяев, Е.М. Симонова, С.Д. Бердникова, С.В. Середа // Патент на изобретение - 2004г.

ЩЕДРОВ Иван Николаевич

Препарат «Фосбек» в эксперименте и клинике при диарейном синдроме цыплят - бройлеров

Специальность: 16.00.04.- ветеринарная фармакология с токсикологией

Автореферат

диссертации на соискание ученой степени кандидата ветеринарных наук.

Воронеж 2005

Тип. ВГАУ, зак. 1298-2005 г., 1,0 п.л., т. 100 экз.