На праках рукописи

ЯКУПОВ РУСТЕМ РАУФОВИЧ

ИММУНИТЕТ, ЕСТЕСТВЕННЫЙ МИКРОБИОЦЕНОЗ, БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ МЯСА И ИХ КОРРЕКЦИЯ У ТЕЛЯТ ОТ РИД-ПОЛОЖИТЕЛЬНЫХ КОРОВ-МАТЕРЕЙ

16.00.03 — ветеринарная микробиология, вирусология, эпизоотология, микология с микотоксикологией и иммунология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре паразитологии, микробиологии и вирусологии ФГОУ ВПО «Башкирский государственный аграрный университет»

Научный руководитель:

доктор биологических наук, профессор

Маннапова Рамзия Тимергалеевна

Официальные оппоненты:

доктор биологических наук, профессор

Андреева Альфия Васильевна

доктор биологических наук, профессор Имельбаева Эльвира Аркамовна

Ведущая организация: ГУ «Башкирская научно-производственная

ветеринарная лаборатория»

Защита состоится «30» ноября 2006 года в 14⁰⁰ часов на заседании диссертационного совета Д 220.003.03 при ФГОУ ВПО «Башкирский государственный аграрный университет» (450001, г. Уфа, ул. 50 лет Октября, 34, ауд. 341/2).

С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО «Башкирский государственный аграрный университет»

Автореферат разослан «30» октября 2006 г.

Ученый секретарь диссертационного совета, доктор сельскохозяйственных наук, профессор

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Лейкоз — заболевания опухолевой природы, характеризующиеся разрастанием клеток кроветворной ткани и нарушением их созревания. Среди них особое место занимает лейкоз крупного рогатого скота.

Несмотря на то, что имеется достаточное количество работ, посвященных исследованию лейкоза, они в основном касаются вопросов эпизоотологии, этиологии, патогенетических механизмов заболевания, изучения культуральных, биологических, антигенных и инфекционных свойств вируса (А.З. Махмуд, В.А. Крикун, 1984; Т.И. Лахт, Э.М. Нымм, 1982; В.М. Лемеш, 1990, 1996; Н.С. Мандыгра, 1996; Р.С. Москалик, 1996; Ю.Т. Симоварт, 1991; Г.А. Симонян, 1998; Ю.П. Смирнов, 1989, 1996; А.Д. Татарчук с соавт., 1996; Ф.Ф. Хисамутдинов, 1996, 1997; Р.Ф. Галеев, 1992 1999, 2003).

Работы многих авторов посвящены изучению биологических процессов, развивающихся в организме зараженного ВЛКРС. Однако в литературе отсутствуют данные о влиянии иммунодефицитного состояния больных вирусом коров на развитие иммунного статуса, колонизационной резистентности кишечника, биохимические показатели и на качество мяса телят, полученных от этих животных.

В этой связи **целью** нашей работы явилось — изучить динамику становления и развития иммунного ответа, естественного микробиоценоза кишечника и определить биохимические показатели мяса телят, полученных от $PUД^-$ и $PUД^+$ иммунодефицитных коров-матерей.

В задачи исследований входило:

- 1. Провести сравнительное изучение динамики развития показателей иммунного статуса телят от РИД⁺ и РИД⁺ иммунодефицитных коров-матерей с учетом:
 - -динамики изменения гематологических показателей;
 - -динамики изменения показателей естественной резистентности;
 - -динамики изменения показателей Т- и В-систем иммунитета;
 - -динамики изменения сывороточных иммуноглобулинов классов G, M, E;
- -динамики изменения циркулирующих иммунных комплексов в сыворотке крови.
- 2. Определить динамику развития цитологиических реакций в миелограмме телят от РИД $^-$ и РИД $^+$ иммунодефицитных коров-матерей и разработать методы их коррекции.
- 3. Установить динамику развития и становления естественного микробиоценоза кишечника телят от РИД $^-$ и РИД $^+$ иммунодефицитных коров-матерей и определить возможности их коррекции прополисом и пробиотиком Лактобифид.
- 4. Изучить биохимические показатели мяса телят от РИД⁺ и РИД⁺ иммунодефицитных коров-матерей и разработать эффективные методы повышения их качества.

Научная новизна исследований заключается в следующем:

Впервые изучены динамика развития и становления состояния гематологических показателей, естественной резистентности, показателей Т- и В- систем иммунитета, секреторных иммуноглобулинов классов G, М и Е, циркулирующих иммунных комплексов, цитологической картины миелограммы, микро-

биоценоза кишечника, биохимических показателей мяса телят от $PИД^-$ и $PИД^+$ иммунодефицитных коров –матерей.

Научно обоснованы критерии развития в организме телят от РИД $^-$ иммунодефицитных (РИД $^-$ ИД) и РИД $^+$ иммунодефицитных, больных лейкозом (РИД $^+$ ИД) коров- матерей состояния вторичных иммунодефицитов, дисбактериозов и негативных проявлений их на биохимических показателях мяса.

Для профилактики иммунодефицитов и дисбактериозов у телят РИД $^-$ и РИД $^+$ ИД коров-матерей, улучшения биохимических показателей мяса, полученного от них, научно обоснован и предложен курс проведения экологической профилактической терапии с применением биологически активного продукта пчеловодства прополиса и пробиотика Лактобифид.

Теоретическая и практическая значимость работы. На основании полученных результатов исследований иммунного статуса, естественного микробиоценоза кишечника, биохимических показателей, с учетом влияния на организм прополиса и пробиотикотерапии, обобщены биологические закономерности улучшения качества мяса телят от РИД⁺ РИД⁺ ИД коров- матерей.

Основные положения диссертации, выносимые на защиту:

- 1.В организме телят от РИД ИД и, особенно, от РИД ИД коров-матерей развиваются глубокие вторичные иммунодефициты и дисбактериозы.
- 2. Становление, развитие и возможности коррекции прополисом и пробиотиком Лактобифид показателей естественной резистентности, Т- и В-систем иммунитета, иммуноглобулинов классов G, М и Е, циркулирующих иммунных комплексов, цитологических реакций в миелограмме у телят от РИД ИД и РИД ИД коров- матерей.
- 3.Восстановление биохимических показателей качества мяса телят от РИД ИД и РИД ИД коров-матерей.
- 4.Оценка естественного микробиоценоза кишечника и пути его коррекции у телят от РИД ПД и РИД ИД коров-матерей.

Апробация работы. Материалы диссертации доложены на ежегодных конференциях ФГОУ ВПО «Башкирский государственный аграрный университет» (2001- 2006г.г.); Международной научно- практической конференции «Современные проблемы иммуногенеза, теории и практики борьбы с паразитарными болезнями сельскохозяйственных животных» (Москва-Уфа,2004); Международной научно-практической конференции «Региональные экологические проблемы современности» (Уфа,2006), на расширенном заседании кафедры паразитологии, микробиологии и вирусологии (протокол №10 от 20 июня 2006).

Публикация результатов исследований. Основные положения диссертационной работы опубликованы в 7 научных статьях.

Объем и структура работы. Диссертация изложена на 140 страницах компьютерного текста и состоит из введения, обзора литературы, материала и методов исследований, результатов собственных исследований, обсуждения, выводов и практических предложений. Работа иллюстрирована 20 таблицами и 18 рисунками в виде графиков. Библиографический список включает 169 работ, в том числе 52 иностранных авторов.

2.0 СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

2.1 Материалы и методы исследований

Работа выполнялась с 2001 года в условиях лаборатории иммунологии и микробиологии и учебно-опытного хозяйства Башкирского государственного аграрного университета.

В производственных опытах было использовано 75 голов телят месячного возраста, которые были разделены на 5 групп по 15 голов в каждой. Животные 1 группы были получены от контрольных – здоровых РИД коров-матерей; 2 группы – от РИД иммунодефицитных коров матерей (РИД ИД); 3 группы – от РИД иммунодефицитных коров-матерей (РИД ИД); 4 группы – от РИД ИД, подвергнутые иммуностимуляции прополисом и пробиотикотерапии Лактобифидом; 5 группы – от РИД Коров-матерей, также подвергнутые иммуностимуляции прополисом и пробиотикотерапии Лактобифидом.

Лактобифид телятам задавали по 5 доз, один раз в день, в течение 5 дней, с водой. Препарат представляет собой порошок белого цвета с содержанием 10 доз в 1 г.

Прополисное молочко выпаивали в дозе 20 мл, 1 раз в день с водой, в течение 14 дней. Курс прополисо-пробиотико терапии повторяли ежемесячно.

До начала опытов, а затем через 30, 60, 120, 180, 250 дней от начала опытов проводили взятие крови для иммунологических и фекалий для микробиологических исследований. Материал для биохимического анализа мяса проводили во время сдачи скота на Уфимский мясокомбинат. Взвешивание телят проводили после рождения, затем в 30, 180 и 250 дневном возрасте.

Гематологические исследования проводили общепринятыми методами.

Бактерицидную активность сыворотки крови определяли по Емельяненко (1980), лизоцимную – по Дорофейчуку (1983).

Определение Т- и В-лимфоцитов проводили в реакции спонтанного розеткообразования, субпопуляции Т-лимфоцитов в реакции розеткообразования с теофиллином. Сывороточные иммуноглобулины определяли методом радиальной иммунодиффузии с использованием моноспецифичных антисывороток моноклональных антител. Циркулирующие иммунные комплексы (ЦИК) определяли посредством преципитации их полиэтиленгликолем-6000 с последующим измерением оптической плотности исследуемых образцов на спектрофотометре Spekol-II при 450 нм. Результаты выражали в условных единицах оптической плотности.

Выделение бифидобактерий проводили на среде Блаурокка, лактобацилл — на среде Мозера-Рогоза-Шарпа (МРС). Выявление клостридий проводили на МППБ Китта-Тароцци и глюкозо-кровяном агаре Цейслера. Стафилококки выделяли на солевом кровяном агаре с 8-10 % натрия хлорида и 5 % дефибринированной крови.

Микрогрибы из родов Candida, Aspergillus и Penicillium определяли на средах Сабуро и Чапека.

Исследование биохимических показателей мяса проводили общепринятыми классическими методами.

Полученные цифровые материалы обрабатывали методами вариационной статистики с использованием программ Statistica v. 5.5 для Windows по Стьюденту (Г.Ф. Лакин, 1980).

2.2 Результаты собственных исследований

2.2.1 Динамика изменения гематологических показателей телят, полученных от РИД и РИД иммунодефицитных коров-матерей

Уровень лейкоцитов в крови телят 1 контрольной группы за период опытов не имел существенных колебаний и изменялся в пределах от 7,46 до 8,26 тыс/ мкл.

Фоновое значение данного показателя в крови животных от РИД $^-$ ИД коров-матерей было повышено в 1,61- 1,63 раза (на 4,93- 5,13 тыс/мкл), от РИД $^+$ коров- матерей – в 2,03- 2,15 раза (на 8,33- 9,33 тыс/мкл).

В процессе опыта лейкоцитоз в крови телят от РИД $^+$ коров-матерей прогрессировал по срокам исследований. К 30 дню опыта содержание лейкоцитов в крови коров 3 группы увеличилось, по сравнению с фоновым и контрольным уровнем, в 1,04 и 2,3 раза (на 0,8 и 9,74 тыс/мкл), к 60 дню в 1,81- 3,74 раза (на 13,3 и 21,76 тыс/мкл), к 120 дню в 1,93 и 3,83 раза (на 15,3 и 23,44 тыс/мкл), к 180 дню в 2,12 и 4,26 раза (на 18,4 и 29,64 тыс/мкл), к 250 дню в 1,98 и 4,31 раза (на 16,1 и 24,96 тыс/мкл).

Содержание лейкоцитов в крови телят от РИД Коров- матерей (2 группа) в процессе жизни незначительно понижалось, но по сравнению с первоначальным уровнем, во все сроки, было выше, чем у животных 1 контрольной группы: к 30, 60, 120, 180 и 250 дням, соответственно, в 1,72, в 1,56, в 1,3, в 1,22 и 1,27 раза (на 5,44, на 4,46, на 2,54, на 1,84 и 2,06 тыс/мкл).

Прополисо- и пробиотикотерапия способствовали снижению активности лейкоцитов у телят от РИД ИД коров-матерей (4 группа). К 180 и 250 дням опыта явление лейкоцитоза полностью исчезло и показатели уровня лейкоцитов соответствовали физиологическим нормам.

Уровень лейкоцитов в крови телят от РИД⁺ коров-матерей (5 группа), подвергнутых прополисо- и пробиотикотерапии, увеличился по сравнению с показателем фона: к 30 дню в 1,06 раза (на 1,2 тыс/мкл), к 60 дню в 1,49 раза (на 8,6 тыс/мкл), к 120 дню в 1,11 раза (на 2,0 тыс/мкл), к 180 дню в 1,58 раза (на 10,2 тыс/мкл), к 250 дню в 1,29 раза (на 5,2 тыс/мкл),но во все сроки был ниже, чем у животных без иммунопробиотической терапии.

Так, к 60 дню опыта содержание лейкоцитов в крови животных описываемой группы было ниже, чем у телят 3 группы в 1,14 раза (на 3,7 тыс/мкл), к 120 дню в 1.63 раза (на 12,3 тыс/мкл), к 180 дню в 1,26 раза (на 7,2 тыс/мкл), к 250 дню в 1,43 раза (на 9,9 тыс/мкл).

Данные по исследованию динамики изменения содержания в крови телят от РИД ИД и РИД ИД коров-матерей эозинофилов приведены в таблице 1.

Таблица 1 Динамика содержания эозинофилов в крови телят, полученных от $PИД^-$ и $PИД^+$ иммунодефицитных коров-матерей (в %, M±m, Cv %, P)

Опытные группы	Статистический		Сроки исследования,						
и использованные		в днях от начала опыта							
препараты	показатель	Фон	30	60	120	180	250		
1	M	6,9	7,0	6,8	7,4	7,6	7,3		
Контроль —	±m	0,08	0,12	0,09	0,16	0,11	0,11		
здоровые	Cv, %	2,84	4,20	3,24	5,30	3,54	3,69		
2	M	7,6	7,9	8,2	7,9	8,3	8,2		
РИД иммунодефи-	±m	0,10	0,15	0,08	0,13	0,16	0,20		
цитные коровы	Cv, %	3,22	4,65	2,39	4,03	4,72	5,97		
(РИД ИД)	Ρ.	**	**	***		*	**		
3	M	9,5	10,1	10,8	12,6	14,9	12,4		
РИД ⁺ иммунодефи-	±m	0,09	0,14	0,19	0,14	0,18	0,15		
цитные коровы	Cv, %	2,32	3,39	4,31	2,72	2,96	2,96		
(РИД+ ИД)	P	***	***	***	***	***	***		
Δ	M	7,4	7,2	7,0	7,2	6,9	7,3		
, , , , , , , , , , , , , , , , , , ,	±m	0,11	0,10	0,13	0,17	0,21	0,16		
РИД-ИД + прополис	Cv, %	3,64	3,40	4,55	5,78	7,45	5,37		
+ пробиотик	P	*				*			
5	<u> </u>		10,3	10,0	9,0	10,2	10,8		
РИД+ ИД + прополис			0,18	0,13	0,17	0,16	0,17		
+ пробиотик	Cv, %	3,25	4,28	3,18	4,63	3,84	3,85		
	P	***	***	***	**	***	***		

Примечание: здесь и далее в таблицах * - Р≥0,95, ** - Р≥0,99, *** - Р≥0,999

В крови телят 2-5 групп к началу исследований регистрировалась некоторая нейтрофилия со стороны палочкоядерных клеток нейтрофильного ряда. Их уровень в крови телят от РИД ИД коров- матерей был увеличен до 1,89-1,99%, от РИД ИД коров- матерей- до 2,22-2,24%. Палочкоядерные нейтрофилы в крови телят от РИД ИД коров (2 группа) в последующие сроки опыта изменялись в сторону дальнейшего увеличения их содержания.

Проведение курса прополисо-пробиотикотерапии с телятами от РИД ИД коров-матерей (4 группа) способствовало последовательному восстановлению уровня палочкоядерных нейтрофилов в крови к 60 дню исследований.

Содержание палочкоядерных нейтрофилов в крови телят от РИД+ ИД коров-матерей, не подвергнутых прополисо- и пробиотикотерапии (3 группа), имело тенденцию к дальнейшему повышению. Их уровень увеличился по сравнению с фоновым и контрольным значением к 30 дню опыта в 1,03 и 1,31 раза (на0,08 и 0,56%), к 60 дню в 1,11 и 1,39 раза (на 0,25 и 0,7%), к 120 дню в 1,28 и 1,59 раза (на 0,63 и 1,07%), к 180 дню в 1,54 и 1,9 раза (на 1,22 и 1,64%), к 250 дню в 1,86 и 2,41 раза (на 1.94 и 2,45%).

Уровень палочкоядерных нейтрофилов в крови телят 5 группы после проведенной иммуностимуляции прополисом на фоне пробиотикотерапии несколько

понизился. Однако они превышали, во все сроки опыта, показатели телят всех остальных групп и со 180 дня исследований вновь имели тенденцию к увеличению в содержании.

В конце опыта содержание палочкоядерных нейтрофилов в крови животных опытных групп превышало контрольную цифру по 2 группе в 1,46 раза (на 0.81%), по 3 группе в 2,41 раза (на 2,45%), по 4 группе соответствовало контрольному значению, по 5 группе превышало контроль в 1,27 раза (на 0,47%).

Данные, полученные при исследовании динамики изменения содержания в крови телят сегментоядерных нейтрофилов представлены на рисунке 1.

Рисунок 1 Динамика изменения содержания сегментоядерных нейтрофилов в крови телят, полученных от РИД[—] и РИД⁺ иммунодефицитных коров-матерей

2.2.2 Естественная резистентность телят, полученных от РИД⁻ и РИД⁺ иммунодефицитных коров-матерей

Показатель лизоцимной активности сыворотки крови животных 1 контрольной группы за период опытов колебался на уровне от 21,6 до 23,4%.

Данный показатель в сыворотке крови телят 2- 5 опытных групп, к началу исследований (фон) был понижен, по сравнению с контрольным значением. Его уровень у телят от РИД $^-$ ИД коров-матерей 2 и 4 групп был ниже контрольных цифр в 1,26-1,39 раза (на 4,7-6,3%), от РИД $^+$ коров-матерей 3 и 5 групп в 1,71-1,74 раза (на 9,3-9,5%).

Лизоцимная активность сыворотки крови телят 2 группы в процессе опыта имела тенденцию к дальнейшему понижению. На 30 день исследований описываемый показатель уступал фоновому и контрольному уровням в 1,13 и 1,53 раза (на 1,9 и 7,5%), на 60 день в 1,26 и 1,84 раза (на 3,4 и 10,6%), на 120 день в 1,48 и 2,11 раза (на 5,2 и 12,0%), на 180 день в 1,56 и 2,29 раза (на 5,7 и 13,2%), на 250 день в 1,72-2,47 раза (на 6,7 и 13,7%).

Прополисо- и пробиотикотерапия способствовали активизации лизоцима в сыворотке крови телят от РИД ИД коров-матерей (4 группа). Здесь описываемый показатель увеличивался по срокам опыта, превышая фоновый уровень на 30 день исследований в 1,11 раза (на 2,0%), на 60 день в 1,22 раза (на 4,0%), на 120 день в 1,16 раза (на 2,9), на 180 день в 1,22 раза (на 4,0%), на 250 день в 1,13 раза (на 2,4%).

Значительное понижение лизоцимной активности сыворотки крови регистрировалось у телят от РИД+ИД коров-матерей 3 группы. Активность лизоцима

сыворотки крови телят этой группы уступала фоновому и контрольному уровням на 30 день опыта в 1,12 и 1,89 раза (на 1,4 и 10,2%), на 60 день в 1,28 и 2,32 раза (на 2,8 и 13,2%), на 120 день в 2,09 и 2,71 раза (на 4,4 и 14,4%), на 180 день в 2,09 и 3,83 раза (на 6,7 и 17,3%), на 250 день в 2,61 и 4,69 раза (на 7,9 и 18,1%).

Прополисо- и пробиотикотерапия также способствовала повышению лизоцимной активности сыворотки крови телят от РИД+ИД коров-матерей (5 группа). Данный показатель повысился, по сравнению с фоновым уровнем, к 60, 120, 180 и 250 дням исследований, соответственно в 1,1, в 1,23, в 1,13 раза (на 1,3, на 3,1, на 1,8 %). Однако к 250 дню вновь регистрировалось уменьшение его значения, по сравнению с фоновым уровнем. При этом показатель лизоцимной активности сыворотки крови телят 5 группы, во все сроки опыта, был ниже контрольных цифр.

К концу опыта лизоцимная активность сыворотки крови животных опытных групп была ниже показателя телят контрольной группы: по 2 группе в 2,47 раза (на 13,7%), по 3 группе в 4,69 раза (на 18,1%), по 4 группе в 1,15 раза (на 3,0%), по 5 группе в 1,88 раза (на 10,8%).

Данные по изучению динамики изменения показателя бактерицидной активности сыворотки крови телят представлены в таблице 2.

Таблица 2 Динамика изменения бактерицидной активности сыворотки крови телят, полученных от РИД⁻ и РИД+ иммунодефицитных коров-матерей (в %, М±m, Cv %, P)

Опытные группы и использованные	Статистический	Сроки исследования, в днях от начала опыта						
препараты	показатель	Фон	30	60	120	180	250	
1	M	43,7	44,6	46,9	49,4	47,4	46,5	
Контроль —	±m	0,97	1,18	1,09	1,27	1,21	1,18	
здоровые	Cv, %	5,44	6,48	5,69	6,30	6,25	6,21	
2	M	30,7	30,0	28,4	26,3	24,3	22,6	
РИД- иммунодефи-	±m	0,69	0,73	0,65	0,87	0,51	0,34	
цитные коровы	Cv, %	5,50	5,96	5,61	8,10	5,14	3,68	
(РИД-ИД)	Р	***	***	***	***	***	***	
3	M	19,5	17,6	16,1	14,3	12,0	10,2	
РИД+ иммунодефи-	±m	0,13	0,23	0,18	0,20	0,19	0,16	
цитные коровы	Cv, %	1,63	3,20	2,74	3,43	3,88	3,84	
(РИД+ИД)	P	***	***	***	***	***	***	
Δ	M	30,4	34,7	37,8	39,6	38,2	37,5	
D1117-1117	±m	0,41	0,36	0,43	0,35	0,48	0,40	
РИД-ИД + прополис	Cv, %	3,30	2,54	2,79	2,16	3,08	2,61	
+ пробиотик	Р	***	***	***	***	***	***	
5	M	18,9	19,4	21,6	24,1	23,6	21,0	
РИД ⁺ ИД + прополис + пробиотик	±m	0,15	0,17	0,21	0,19	0,22	0,20	
	Cv, %	1,94	2,15	2,38	1,93	2,28	2,33	
	Р	***	***	***	***	***	***	

2.2.3 Состояние Т- и В-систем иммунитета телят, полученных от РИД⁺ иммунодефицитных коров-матерей

Т-Е-РОК-лимфоциты в крови телят 1 контрольной группы за период исследований колебались на уровне от 41,6 до 44,5%. Содержание Т-клеток в крови телят от РИД $^-$ ИД и РИД $^+$ ИД коров-матерей к началу опытов было понижено. Их значение в крови телят 2 и 4 групп от РИД $^-$ ИД коров было ниже, чем в контроле в 1,53-1,54 раза (на 14,5-14,7%), а в крови телят 3 и 5 групп от РИД $^+$ ИД коров – в 1,88-1,92 раза (на 19,5-20%).

Уровень Т-Е-РОК-лимфоцитов в крови животных 2 группы по ходу опытов постепенно понижался и уступал фоновому и контрольному значениям на 30 день опыта в 1,07 и 1,69 раза (на 1,9 и 17,4%), на 60 день- в 1,16 и 1,93 раза (на 3,8 и 21,5%), на 120 день в 1,31 и 2,14 раза (на 6,5 и 23,4%), на 180 день в 1,35 и 2,23 раза (на 7,0 и 24,6%), на 250 день в 1,44 и 2,37 раза(на 8,3 и 25,6%).

Максимальное уменеьшение числа Т-клеток отмечалось в крови телят 3 группы. Здесь описываемый показатель понизился, по сравнению и первоначальным и контрольным уровнем, к 30 дню исследований: в 1,09 и 2,1 раза (на 2,0 и 22,3%), к 60 дню в 1,2 и 2,42 раза (на 3,7 и 26,2%), к 120 дню в 1,35 и 2,68 раза (на 5,8 и 27,5%), к 180 дню в 1,5 и 3,02 раза (на 7,4 и 29,8%), к 250 дню в 1,76 и 3,53 раза (на 9 6 и 31,7%).

В крови телят 4 группы отмечалось умеренное повышение содержания Т-Е-РОК-лимфоцитов. Они превысили фоновое значение к 30 дню опыта в 1,06 раза (на 1,8%), к 60 дню в 1,13 раза (на 3,6%), к 120 дню в 1,23 раза (на 6,5%), к 180 дню в 1,23 раза (на 6,3%), к 250 дню в 4,63 раза (на 5,8%). Однако показатели содержания Т-Е-РОК-лимфоцитов в крови телят описываемой группы, во все сроки опыта, уступали данным животных контрольной группы: к 30 дню опыта в 1,46 раза (на 13,5%), к 60 дню в 1,45 раза (на 13,9%), к 120 дню в 1,3 раза (на 10,2%), к 180 дню в 1,33 раза (на 11,1%), к 250 дню в 1,34 раза (на 11,3%).

Содержание Т-Е-РОК-лимфоцитов в крови телят 5 группы также имело тенденцию к повышению по срокам опыта, но этот процесс был слабо выраженным. Здесь уровень Т- клеток увеличился, по сравнению с контрольной цифрой, к 30 дню исследований в 1,1 раза (на 2,2%), к 60 дню в 1,14 раза (на 3,2%), к 120 дню в 1,23 раза (на 5,1%), к 180 дню в 1,11 раза (на 2,4%), к 250 дню в 1,05 раза (на 1,1%). При этом показатели уровня Т-клеток в крови телят 5 группы были значительно ниже их значений в контроле. Они уступали им на 30 день опыта в 1,78 раза (на 18,6%), на 60 день в 1,79 раза (на 19,8%), на 120 день в 1,64 раза (на 17,1%), на 180 день в 1,85 раза (на 20,5%), на 250 день в 1,94 раза (на 21,5%).

К концу опыта содержание Т-Е-РОК-лимфоцитов в крови телят опытных групп было ниже, чем в контроле по 2 группе в 2,37 раза (на 25,6%), по 3 группе в 3,53 раза (на 31,7%), по 4 группе в 1,34 раза (на 11 3%), по 5 группе в 1,94 раза (на 21,5%).

Данные по исследованию динамики изменения содержания в крови телят Т-хелперов и Т-супрессоров представлены на рисунке 2 (A, Б).

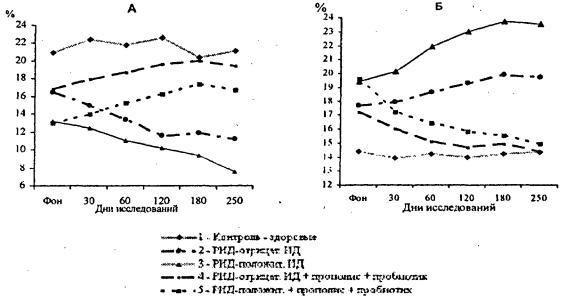


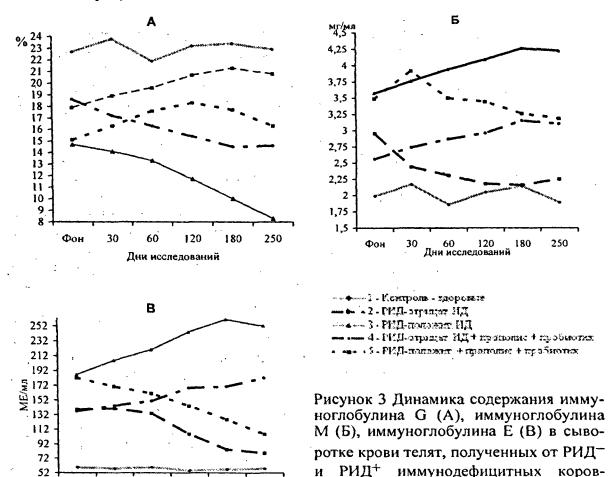
Рисунок 2 Динамика Т-хелперов (A) и Т-супрессоров (Б) в крови телят, полученных от РИД⁺ и РИД⁺ иммунодефицитных коров-матерей

Уровень В-ЕАС-лимфоцитов в крови телят 1 контрольной группы за период опытов колебался в пределах от 16,3 до 18,3%, повышаясь до 120 дня опыта в возрастном аспекте.

Фоновый показатель содержания B-EAC-лимфоцитов в крови животных опытных групп был понижен у телят 2 и 4 групп (от РИД⁻ ИД коров-матерей) до 13,7-14,1%, у телят 3 и 5 групп (от РИД⁺ ИД коров матерей) до 12,6-12,8%.

В процессе опытов в крови животных не подвергнутых прополисо- и пробиотикотерапии наблюдалось дальнейшее понижение уровня В-клеток. Их значение в крови телят 2 группы уменьшилось к 30 дню исследований, по сравнению с фоновым и контрольным показателями, в 1,07 и 1,25 раза (на 0,7 и 3,4%), к 60 дню в 1,11 и 1,39 раза (на 1,5 и 5,0%), к 120 дню в 1,01 и 1,31 раза (на 0,2 и 4,4%), к 180 и 250 дням — соответствовало фоновому уровню, но было ниже контрольных цифр в 1,26 раза (на 3,7 и 3,8%).

Уровень В-ЕАС-лимфоцитов в крови животных 4 группы (также от РИДТИД коров-матерей, но подвергнутых иммуностимуляции прополисом и пробиотикотерапии) увеличился по ходу исследований, по сравнению с фоновым показателем, к 30, 60, 120, 180 и 250 дням соответственно в 1,03, в 1,16, в 1,18, в 1,16, в 1,17 раза (на 0,5, на 2,2, на 2,6, на 2,3, на 2,4%).


Содержание В-ЕАС-лимфоцитов в крови телят 3 группы (от РИД † ИД коров-матерей в процессе опыта интенсивно понижалось и уступало фоновому и контрольному значениям к 30 дню исследований в 1,04 и 1,38 раза (на 0,5 и 4,7%), к 60 дню в 1,11 и 1,55 раза (на 1,3 и 603%), к 120 дню в 1,18 и 1,72 раза (на 2,0 и 7,7%), к 180 дню в 1,35 и 1,92 раза (на 3,3 и 8,6%), к 250 дню в 1,4 и 2,02 раза (3,2 и 9,2%).

Проведение курса прополисо- и пробиотикотерапии с телятами от РИД+ИД коров-матерей (5 группа) вызывало некоторую активизацию предшественников антителообразующих клеток — В-лимфоцитов. Их уровень в крови телят описываемой группы увеличился, по сравнению с фоновым значением, к 30 дню опыта в 1,06 раза (на 0,8%), к 60 дню в 1,07 раз (на 1,0%), к 120 дню в 1,14 раза (на 1,9%), к 180 дню в 1,17 раза (на 2,3%), к 250 дню в 1,1 раза (на 1,4%).

К концу опыта уровень В-ЕАС-лимфоцитов в крови телят 2,3,4 и 5 опытных групп был ниже, чем в контроле, в 1,26 раза (на 3,8%), в 2,02 раза (на 9,2%), в 1,13 раза (на 2,1%), в 1,28 раза (на 4,0%).

2.2.4 Иммуноглобулины в сыворотке крови телят, полученных от РИД⁻ и РИД⁺ иммунодефицитных коров-матерей

Данные по изучению в сыворотке крови телят иммуноглобулинов представлены на рисунках 5, 6 и 7.

матерей

Фон

30

60

Дни исследований

120

180

250 -

2.2.5 Циркулирующие иммунные комплексы в сыворотке крови телят, полученных от РИД⁺ и РИД⁺ иммунодефицитных коров-матерей

Параллельно с повышением уровня иммуноглобулина Е в сыворотке крови телят от РИД-ИД и особенно РИД+ ИД коров-матерей регистрировалось увеличение уровня циркулирующих иммунных комплексов (ЦИК).

Циркулирующие иммунные комплексы в сыворотке крови телят 1 контрольной группы выделялись в процессе опыта в пределах от 25,6 до 27,8 у.е.

Данный показатель в сыворотке крови телят опытных групп был повышен уже к началу наших исследований.

В сыворотке крови телят 2 и 4 групп (от РИД $^-$ ИД коров-матерей) ЦИК к началу опытов составили 36,9- 37,6 у.е., а в сыворотке крови телят 3 и 5 групп (от РИД $^+$ ИД коров-матерей) данный показатель был повышен до 44,9- 45,1 у.е.

Исследование содержания ЦИК в сыворотке крови животных 2 и 3 групп показало дальнейшее их повышение по ходу опытов. В этих группах их значение увеличилось к 30 дню опыта в 1,39 и 1,71 раза (на 10,7 и 19,6 у.е.), к 60 дню в 1,45 и 1,82 раза (на 12,4 и 22,4 у.е.), к 120 дню в 1,57 и 2,01 раза (на 14,6 и 25,9 у.е.), к 180 дню в 1,45 и 1,92 раза (на 12,6 и 25,8 у.е.), к 250 дню в 1,44 и 1,93 раза (на 12,3 и 25,5 у.е.).

Введение в рацион телят прополиса и пробиотика способствовало понижению активности ЦИК в крови животных.

Уровень ЦИК в сыворотке крови телят 4 группы понизился, по сравнению с их фоновым значением, к 30, 60, 120, 180, 250 дням опыта в 1,05 раза (на 1,8 у.е.), в 1,13 раза (на 4,5 у.е.), в 1,2 раза (на 6,2 у.е.), в 1,17 ра за (на 5,5 у.е.), в 1,19 раза (на 6,0 у.е.), однако во все периоды опытов показатели ЦИК в крови телят описываемой группы были выше контрольных цифр. Эта разница с контролем по описываемой группе составила, на эти же сроки исследований, в сторону превышения, в 1,28 раза (на 7,8 у.е.), в 1,2 раза (на 5,4 у.е.), в 1,19 раза (на 5,1 у.е.), в 1,12 раза (на 3,6 у.е.), в 1,12 раза (на 3,5 у.е.).

Содержание ЦИК в сыворотке крови телят 5 группы после проведения курса прополисо- и пробиотикотерапии также изменялось в сторону понижения. Однако этот процесс хотя и имел одинаковую степень выраженности, по сравнению с ее активностью в предыдущей группе, но уровень ЦИК оставался здесь более высоким. К 30 дню опыта содержание ЦИК в сыворотке крови животных 5 группы было выше, чем в контроле, в 1,55 раза (на 15,1 у.е.), к 60 дню в 1,5 раза (на 13,7 у.е.), к 120 дню в 1,45 раза (на11,6 у.е.) к 180 дню в 1,27 раза (на 7,6 у.е.), к 250 дню в 1,34 раза (на 9,4 у.е.).

2.2.6 Изменение цитологической картины миелограммы телят, полученных от РИД⁻ и РИД⁺ иммунодефицитных коров-матерей

Данные по изучению миелограммы телят от РИД-ИД и РИД+ИД коровматерей представлены в таблице 2.

Таблица 2 Динамика миелограммы телят, полученных от РИД $^-$ и РИД $^+$ иммунодефицитных коров-матерей

·	Сроки исследования, в днях от начала опыта								
Клетки /	фон			120			250		
Группы	1	2	3	1	2	3	1	2	3
	К	РИД-	РИД+	К	РИД-	РИД+	К	РИД-	РИД+
Ретикулярные	0,7	0,9	2,4	0,8	1,2	3,2	0,8	1,3	4,4
Миелобласты	0,2	0,4	1,7	0,3	0,6	2,6	0,3	0,5	3,9
Промиелоциты	0,8	1,0	1,5	1,0	1,2	1,9	1,2	1,3	2,8
Нейтрофильные:									
миелоциты	2,0	2,3	3,2	2,1	2,4	4,9	2,0	2,6	6,2
метамиелоциты	3,6	3,8	4,4	3,8	3,9	6,4	3,9	4,2	8,7
палочкоядерные	11,6	11,4	10,6	12,4	11,0	10,3	13,2	11,6	9,9
сегментоядерные	7,4	9,6	11,7	8,7	11,4	14,1	9,0	12,7	15,0
эозинофилы	0,9	1,1	6,7_	1,1	1,3	8,2	1,2	1,5	10,3
Лимфоциты	3,3	4,0	12,4	5,8	7,0	25,1	6,6	7,6	30,2
Моноциты	0	0,6	1,8	1,0	1,3	3,4	1,2	1,4	4,1
Мегакариоциты	0,1	0,2	2,6	0,2	0,3	4,2	0,2	0,3	5,0
Клетки эритроид-									
ного ростка	36,7	35,7	27,0	40,4	33,3	24,1	47,6	30,6	19,5

2.2.7 Естественный микробиоценоз кишечника и его коррекция у телят, полученных от РИД⁺ и РИД⁺ иммунодефицитных коров-матерей

Содержание бифидобактерий в кишечнике телят 1 контрольной группы за период опытов не имело существенных изменений, лишь незначительно повышаясь в возрастном аспекте, и колебалось в пределах от 9,8 до 10,5 lg KOE/г.

Уровень бифидобактерий в кишечнике телят от РИД ИД (2 и 4 группы) и РИД ИД (3 и 5 группы) коров-матерей к началу опытов было понижено.

Фоновое значение содержания бифидобактерий в кишечнике телят 2 и 4 групп составило 7,2-7,4 lg KOE/г, 3 и 5 групп – 5,3-5,4 lg KOE/г.

Описываемый показатель в кишечнике животных 2 и 3 групп, не подвергнутых лечебным манипуляциям применением прополисо- и пробиотикотерапии, в процессе опыта имел тенденцию лишь к небольшому повышению в возрастном аспекте. Однако его значение во все сроки исследования по обеим группам уступало показателям животных 1 контрольной группы: к 30 дню опыта в 1,2 и 1,71 раза (на 1,9 и 4,1 lg КОЕ/г), к 60 дню в 1,21 и 1,66 раза (на 1,8 и 4,0 lg КОЕ/г), к 120 дню в 1,29 и 1,66 раза (на 2,4 и 4,2 lg КОЕ/г), к 180 дню в 1,45 и 1,59 раза (на 3,2 и 3,8 lg КОЕ/г), к 250 дню в 1,35 и 1,66 раза (на 2,7 и 4,1 lg КОЕ/г).

Проведение с телятами от РИД ИД и РИД ИД коров-матерей (4 и 5 группы) курса прополисо- и пробиотикотерапии способствовало более значительной активизации в кишечнике этих животных нормофлоры. Содержание

бифидобактерий в кишечнике телят 4 и 5 группы повышалось по срокам опыта и превысило фоновое значение по этим группам соответственно к 30 дню в 1,08 и 1,28 раза (на 0,6 и 1,5 lg КОЕ/г), к 60 дню в 1,13 и 1,35 раза (на 1,0 и 1,9 lg КОЕ/г), к 120 дню в 1,2 и 1,47 раза (на 1,5 и 2,5 lg КОЕ/г), к 180 дню в 1,24 и 1,56 раза (на 1,8 и 3,0 lg СОЕ/г), к 250 дню в 1,21 и 1,52 раза (на 1,6 и 2,8 lg КОЕ/г). Но при этом описываемый показатель продолжал уступать контрольным цифрам животных 1 группы по 4 и 5 группам, на эти же сроки исследований, соответственно в 1,22 и 1,44 раза (на 1,8 и 3,0 lg КОЕ/г), в 1,19 и 1,38 раза (на 1,6 и 2,8 lg КОЕ/г), в 1,17 и 1,34 раза (на 1,1 и 2,2 lg КОЕ/г), в 1,1 и 1,22 раза (на 1,0 и 1,7 lg КОЕ/г), в 1,14 и 1,27 раза (на 1,3 и 2,2 lg КОЕ/г),

Подобным образом изменялась в кишечнике динамика лактобацилл.

Данные по исследованию в кишечнике телят динамики содержания лакто-бацилл и стафилококков представлены на рисунках 8 и 9.

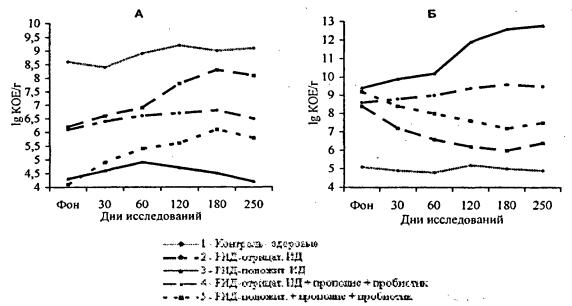


Рисунок 3 Динамика лактобацилл (A) и стафилококков (Б) в кишечнике телят, полученных от РИД⁻ и РИД⁺ иммунодефицитных коров-матерей

Клостридии в кишечнике телят 1 контрольной группы за период опытов колебались в пределах от 3,6 до 4,0 lg KOE/г.

Содержание клостридий в кишечнике животных опытных групп от РИД $^-$ ИД и РИД $^+$ ИД коров-матерей к началу опытов уступало контрольным цифрам телят 1 группы. Их фоновые значения в кишечнике животных 2 и 4 групп (от РИД $^-$ ИД коров-матерей) составили 5,37-5,8 lg КОЕ/г, в кишечнике телят 3 и 5 групп — 6,4- 6,5 lg КОЕ/г.

Уровень клостридий в кишечнике телят 2 и 3 групп, не подвергнутых лечебным манипуляциям прополисом и пробиотиком, в процессе опытов повышался. По 2 группе данный показатель превышал фоновое и контрольное зна-

чение к 30 дню опыта в 1,01 и 1,59 раза (на 0,1 и 2,2 lg КОЕ/г), к 60 дню в 1,06 и 1,55 раза (на 0,4 и 2,2 lg КОЕ/г), к 120 дню в 1,1 и 1,77 раза (на 0,6 и 2,8 lg КОЕ/г), к 180 дню в 1,03 и 1,57 раза (на 0,2 и 2,2 lg КОЕ/г), к 250 дню в 1,15 и 1,81 раза (на 0,9 и 3,0 lg КОЕ/г). Уровень клостридий в кишечнике телят 3 группы превысил фоновый и контрольный показатель к 30 дню исследований в 1,06 и 1,83 раза (на 0,4 и 3,1 lg КОЕ/г), к 60 дню в 1,17 и 7,5 раза (на 1,1 и3,5 lg КОЕ/г), к 120 дню в 1,57 и 2,65 раз (на 3,7 и 6,3 lg КОЕ/г), к 250 дню в 1,76 и 3,05 раза (на 4,9 и 7,6 lg КОЕ/г).

Проведение курса терапии с применением прополиса и пробиотика параллельно с активизацией нормофлоры (бифидобактерий и лактобацилл) способствовало затормаживанию размножения в кишечнике условно патогенных микроорганизмов: стафилококков и клостридий.

Уровень клостридий в кишечнике телят 4 и 5 групп понизился по сравнению фоновым показателем к 30 дню опыта в 1,14 и 1,1 раза (на 0,7 и 0,6 lg КОЕ/г), к 60 дню в 1,21 и 1,25 раза(на 1,0 и 1,3 lg КОЕ/г), к 120 дню в 1,42 и 1,2 раза (на 1,7 и 1,1 lg КОЕ/г), к 180 дню в 1,54 и 1,16 раза (на 2,0 и 0,9 lg КОЕ/г), к 250 дню в 1,46 и 1,22 раза (на 1,8 и 1,2 lg КОЕ/г). При этом содержание клостридий в кишечнике телят 4 группы к 120 дню опыта соответствовало физиологическим нормам, а в кишечнике животных 5 группы продолжало превышать контрольный показатель соответственно к 30 дню в 1,59 раза (на 2,2 lg КОЕ/г), к 60 дню в 1,3 раза (на 1,2 lg КОЕ/г), к 120 дню в 1,5 раза (на 1,8 lg КОЕ/г), к 180 дню в 1,43 раза (на 1,6 lg КОЕ/г).

2.2.8 Среднесуточные приросты живой массы, сохранность поголовья и бнохимические показатели качества мяса телят, полученных от РИД[—] и РИД⁺ иммунодефицитных коров-матерей

Среднесуточный прирост живой массы телят 1 контрольной группы за период исследований составил 682,0 г, при сохранности 93,3%.

У телят 2 группы среднесуточный прирост живой массы за период опытов был равен 564,8 г, 3группы 532,0 г, при сохранности поголовья животных 73,3 и 60,0% соответственно.

Прополисо- и пробиотикотерапия спообствовали повышению среднесуточного прироста живой массы телят 4 и 5 групп, по сравнению с показателями животных 2 и 3 групп: в 1,13 и 1,07 раза (на 77,6 и 37,6 г). Однако, описываемые показатели телят 4 и 5 групп не достигали контрольного уровня, уступая ему в 1,06 и 1,19 раза (на 39,6 и 112,4 г). Сохранность телят составила по 1 группе 93,3%, по 2 группе 73,3%, по 3 группе 60,0%, по 4 группе 86,6% и по 5 группе 73,3%.

Биохимические показатели мяса телят, полученных от РИД-ИД и РИД+ИД коров- матерей представлены в таблице 3.

Таблица 3 Биохимические показатели качества мяса телят, полученных от $PИД^-$ и $PИД^+$ иммунодефицитных коров-матерей (M±m, Cv %, P)

Биохимические	Статистический	Группы (n=6)				
показатели	показатель	. 1	2	3	4	5
1 2		3	4	5	6	7
,	M	24,1	20,4	18,3	22,2	20,3
Сухое вещество	±m	0,46	0,24	0,33	0,30	0,27
(B %)	Cv, %	4,67	2,88	4,42	3,31	3,26
	P		水谷水	***	棒	容容容
	M	70,4	77,4	85,2	72,6	76,3
Аминоаммиачный	±m	0,58	0,49	0,61	0,59	0,63
азот (ААА, в %)	Cv, %	2,02	1,55	1,75	1,99	2,02
	P		***	***	*	***
	M	3,6	2,6	2,1	3,3	3,1
M((n. 0/)	±m	0,07	0,04	0,08	0,08	0,10
Жир (в %)	Cv, %	4,76	3,77	9,33	5,94	7,90
	Р		***	***	*	**
	M	19,6	14,6	12,4	17,1	15,2
Белок (в %)	± m .	0,19	0,25	0,16	0,12	0,24
Denok (R 20)	Cv, %	2,37	4,19	3,16	1,72	3,87
	Р		***	***	***	***
	M	2,19	3,23	4,16	2,89	3,11
ЛЖК (мг)	±m	0,04	0,11	0,09	0,05	0,12
JIMK (MI)	Cv, %	4,47	8,34	5,30	4,24	9,45
	P		***	***	***	***
	· M	70,9	75,6	78,4	72,7	74,1
Влага (в %)	±m	0,56	0,54	0,68	0,70	0,49
	Cv, %	1,93	1,75	2,12	2,36	1,62
	Р		. **	***		**
Зола (в %)	М	1,21	0,72	0,69	0,97	0,83
	±m	0,03	0,01	0,02	0,01	0,01
	Cv, %	6,07	3,40	7,10	2,52	2,95
	Р		***	***	***	***

выводы

1. В организме телят, полученных от РИД[—] и РИД⁺ иммунодефицитных коров-матерей развиваются вторичные иммунодефициты, характеризующиеся: -нарушениями гематологических показателей (анемией, эозинофилией, нейтрофилией, лейкоцитозом);

-понижением факторов естественной резистентности (лизоцимной активности сыворотки крови в 2,47 и 4,69 раза (на 13,7 и 18,1%), бактерицидной в 2,05 и 4,55 раза (на 23,9 и 36,3%);

-уменьшением содержания Т-Е-РОК-лимфоцитов в крови в 2,37 и 3,53 раза (на 25,6 и 31,7%), Т-хелперов в 1,88 и 2,77 раза (на 9,9 и 13,5%), В-ЕАС-лимфоцитов в 1,26 и 2,02 раза (на 3,8 и 9,2%);

-усилением реакции Т-супрессоров в крови в 1,37 и 1,64 раза (на 5,4 и 9,2%);

-затормаживанием продукции сывороточного IgG в 1,56 и 2,75 раза (на 8,3 и 14,6%), активизацией IgM в 1,64 и 2,23 раза (на 1,21 и 2,33%) и IgE в 3,14 и 4,36 раза (на 124,2 и 194,4 МЕ/мл), повышением уровня циркулирующих иммунных комплексов (ЦИК) в 1,44 и 1,93 раза (на 12,3 и 25,5 у.е.);

-нарушениями процессов пролиферации и дифференциации клеток костного мозга (повышенная реакция ретикулярных клеток, нейтрофилия, эозинофилия, лимфоцитоз, моноцитоз, мегакариоцитоз на фоне подавления продукции клеток эритроидного ростка).

2. Мясо телят, полученных от РИД[—]ИД и, особенно, от РИД⁺ИД коровматерей имеет низкие качественные биохимические показатели: в нем понижено содержание сухого вещества в 1,18 и 1,31 раза (на 3,7 и 5,8%), жира в 1,38 и 1,71 раза (на 1,0 и 1,5%), белка в 1,34 и 1,58 раза (на 5,0 и 7,2%), золы в 1,68 и 1,75 раза (на 0,49 и 0,52%) и повышен уровень ААА в 1,09 и 1,21 раза (на 7,0 и 14,8%), ЛЖК в 1,47 и 1,89 раза (на 1,04 и 1,97%), влаги в 1,06 и 1,1 раза (на 4,7 и 7,5%).

3.Проведениеи курса прополисо- и пробиотикотерапии с телятами от РИД-ИД и РИД+ИД коров- матерей способствует значительным позитивным иммунологическим перестройкам в их организме:

-активизируются показатели естественной резистентности (лизоцимная активность сыворотки крови максимально увеличивается в 1,89 и 1,91 раза (на 9,7 и 7,7%), бактерицидная в 1,5 и 1,68 раза (на 13,3 и 9,8%);

-нормализуются гематологические показатели (уровень лейкоцитов понижается в 1,18 и 1,43 раза (на 1,47 и 9,9 тыс./мкл), эозинофилов в 1,12 и 1,14 раза (на 0,9 и 1,6%), палочкоядерных нейтрофилов в 1,45 и 1,9 раза (на 0,79 и 1,98%), сегментоядерных в 1,16 и 1,41 раза (на 3,1 и 11,1%);

-повышается активность T-E-POK-лимфоцитов в крови в 1,76 и 1,81 раза (на 14,3 и 10,2%), Т-хелперов в 1,73 и 2,19 раза (на 8,2 и 9,1%), В-ЕАС-лимфоцитов в 1,11 и 1,57 раза (на 1,7 и 5,2%) и понижается реакция Т-супрессоров в 1,36 и 1,57 раза (на 5,3 и 8,6%);

-нормализуется антителогенез (уровень IgG увеличивается в 1,42 и 1,96 раза (на 6,2 и 8,0 мг/мл), а содержание IgM понижается 1,37 и 1,32 раза (на 0,85 и 1,04 мг/мл), IgE в 2,2 и 2,38 раза (на 102,3 и 146,6 МЕ/мл), восстанавливается баланс циркулирующих иммунных комплексов.

4. Проведение курса прополисо- пробиотикотерапии способствует развитию в организме телят от РИД⁻ИД и РИД⁺ИД коров- матерей микробно-экологических реакций в сторону нормализации баланса кишечной микрофлоры (уровень бифидобактерий увеличивается в 1,18 и 1,3 раза (на 1,4 и 1,9

- lgKOE/r), лактобацилл в 1,24 и 1,38 раза (на 1,6 и 1,6 lgKOE/r), содержание стафилококков понижается в 1,48 и 1,7 раза (на 3,1 и 5,3 lgKOE/r), клостридий в 1,71 и 2,13 раза (на 2,8 и 6,0 lgKOE/r).
- 5. Курс прополисо- и пробиотикотерапии телят от РИД[—] ИД и РИД⁺ИД коров- матерей оказывает положительное влияние на качественные показатели мяса: уровень сухого вещества повышается в 1,04 и 1,1 раза (на 1,8 и 2,0%), жира в 1,26 и 1,47 раза (на 0,7 и 1,0%), белка в 1,17 и 1,22 раза (на 2,5 и 2,8%), золы в 1,34 и1,2 раза (на 0,25 и 0,14%), при понижении ААА в 1,06 и 1,11 раза (на 4,8 и 8,9%), ЛЖК в 1,11 и 1,33 раза (на 0,34 и 1,05 мг), влаги в 1,03 и 1,05 раза (на 2,9 и 4,3%).

ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

- 1. Для получения говядины хорошего качества, отвечающего по биохимическим показателям мяса требованиям ГОСТА РФ, целесообразно с телятами от РИД—ИД и, особенно, от РИД+ИД коров-матерей, с 20-30 дневного возраста животных проводить комплексную прополисо- и пробиотикотерапию с Лактобифидом.
- 2. Прополис в виде прополисного молочка назначать с питьевой водой в дозе 20 мл на голову, 1 раз в день, в течение 14 дней. Пробиотик Лактобифид задавать по 5 доз, один раз в день, в течение 5 дней, с водой. Препарат представляет собой порошок белого цвета с содержанием 10 доз в 1 г. Курс прополисо-пробиотикотерапии повторять ежемесячно.
- 3. Материалы диссертации могут быть использованы при написании монографий, учебных пособий,, при составлении научной, общеобразовательной и информационной литературы, в учебном процессе, при проведении лекционных и лабораторно-практических занятий по иммунологии, вирусологии, микробиологии, эпизоотологии, кормлению сельскохозяйственных животных, а также в ветеринарной практике.

Список опубликованных работ

- 1.Якупов Р.Р. Вторичные дисбактериозы коров матерей и телят / Р.Р.Якупов // Иммунобиологические, технологические, экономические факторы повышения производства продукции сельского хозяйства.- Москва- Уфа, 2002.- С.343-344.
- 2. Якупов Р.Р. Связь вторичных иммунодефицитов маточного поголовья коров и новорожденных телят с синдромом диспепсии / Р.Р. Якупов, Р.Т. Маннапова // Иммунобиологические, технологические, экономические факторы повышения производства продукции сельского хозяйства.- Москва-Уфа, 2002.- С.344-346.
- 3. Якупов Р.Р. Иммунитет телят от иммунодефицитных РИД+ и РИД коров / Р.Т. Маннапова, Р.Р. Якупов, А.Н. Панин //Современные проблемы иммуногенеза, теории и практики борьбы с паразитарными и инфекционными бо-

лезнями сельскохозяйственных животных.- Материалы Международной научно-практической конференции.-Москва- Уфа, 2004.- С.196-197.

- 4. Якупов Р.Р. Характеристика миелограммы при развернутой стадии лейкоза крупного рогатого скота / Р.Т. Маннапова, А.В. Рашитов, Р.Р. Якупов //Современные проблемы интенсификации производства в АПК. Труды Всероссийского научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов.- Москва, 2005.- С. 201-202.
- 5. Якупов Р.Р. Влияние вируса лейкоза крупного рогатого скота на антителогенез и ЦИК / А.В. Рашитов, Р.Р. Якупов // Современные проблемы интенсификации производства в АПК.- Труды Всероссийского научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов.- Москва, 2005.- С.256- 257.
- 6. Якупов Р.Р. Гематологические изменения у больного лейкозом крупного рогатого скота / Р.Р. Якупов, А.В. Рашитов // Современные проблемы интенсификации производства в АПК. Труды Всероссийского научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов.- Москва, 2005.- С.338.
- 7. Якупов Р.Р. Биохимические показатели качества мяса телят, полученных от РИД- и РИД+ коров- матерей / Р.Р. Якупов, Р.Т. Маннапова // Региональные экологические проблемы современности. Сборник научных трудов Международной научно- практической конференции. Уфа, 2006.-С.149- 151.

Сдано в набор 26.10.06 г. Подписано к печати 28.10.06 г. Формат $60x84^{1}/_{16}$. Печать офсетная. Бумага офсетная. Гарнитура Таймс. Печатных листов 1,25. Усл. печ. л. 1,16. Тираж 100. Заказ 387.