КРАСАВЧЕНКО КИРИЛЛ СЕРГЕЕВИЧ

ВЗАИМОДЕЙСТВИЕ АННЕКСИНОВ С БЕЛКОВЫМИ КОМПОНЕНТАМИ МЕМБРАН САРКОПЛАЗМАТИЧЕСКОГО РЕТИКУЛУМА

03.00.03 — молекулярная биология

Автореферат диссертации на соискание ученой степени ккандидата биологических наук

Москва - 2005 г.

1,

Рабо га выполнена на кафедре молекулярной б Московского Государственного Упиверситета	иологии Биологического факультета им. М.В. Ломоносова.
Научные руководители:	
кандидат биологических наук,	
старший научный сотрудник	Мельгунов Владимир Игоревич
кандидат биологических наук, профессор	
	Крашенинников Игорь Александрович
Официальные оппоненты:	
доктор биологических наук, профессор	
	Белозерский Михаил Андреевич
доктор биологических наук, профессор	
	Рубцов Александр Михайлович
Ведущая организация: Институт Экспериментальной кардиологии Ка	ардиологического научного центра РАМН.
Защита диссертации состоится « 10 » ноябр на заседании диссертационного совета Д 501.0 при Московском Государственном Университ по адресу: 119992, Москва, ГСП-2, Ленинские биологии им. А.Н. Белозерского, лабораторны	001.76 сте им. М.В. Ломоносова с горы, МГУ, НИИ Физико-Химической
С диссертацией можно ознакомиться в библис М.В. Ломоносова.	отеке Биологического факультета МГУ им.

Ученый секретарь диссертационного совета доктор биологических наук

Автореферат разослан « 10 » октября 2005 г.

Kanyaya

Н.О. Калинина

2006-4

2202220

Общая характеристика работы

Актуальность проблемы. Аннексины — мультигенное семейство Са²⁺-зависимых фосфолипидсвязывающих белков. Белки этого семейства находят у всех эукариот, они присутствуют во всех тканях организма, однако биологические функции этих белков до сих пор однозначно не установлены. Обнаружено участие аннексинов в таких процессах, как мембранный транспорт, слияние внутриклеточных секреторных пузырьков с плазматической мембраной в ходе экзоцитоза, организация структурных доменов мембран, транспорт ионов, адгезия клеток, проведение сигнала, а также наличие у аннексинов противовоспалительной и антикоагулянтной активности [Мооге, Dedman, 1982, Romish, Paques, 1991, Gerke, Moss, 1997, 2002]. Функция аннексинов в мышечной клетке до сих пор окончательно не установлена.

Несмотря на то, что аннексины являются периферическими белками мембраны, которые взаимодействуют с ними через Ca^{2+} -мостики, аннексины, по-видимому, способны и иным образом взаимодействовать с фосфолипидными везикулами и биологическими мембранами. При этом часть аннексинов остается связанной с мембранами, несмотря на экстракцию ЭГТА и высвобождается только после обработки неионным детергентом Тритоном X-100 [Raeymaekerset al.,1985]. Не исключено, что эта способность аннексинов связана с их функционированием.

Ранее в нашей лаборатории было показано, что в скелетных мышцах присутствуют такие представители семейства аннексинов, как аннексин А6, А5, А4 и А3. Основная доля приходится на аннексин А6, значительно меньше А5, А4 и А3 находятся лишь в небольшом количестве. Аннексины в скелетных мышцах локализуются в саркоплазматическом ретикулуме [Melgunov et al., 1990], поэтому изучение аннексинов саркоплазматического ретикулума может оказаться пролезным для установления тонких механизмов регуляции мышечного сокращения.

Цели и задачи исследования. Цель настоящей работы – изучить взаимодействие аннексинов A5 и A6 с различными компонентами мембран саркоплазматического ретикулума.

Исходя из поставленной цели, были сформулированны следующие задачи:

- 1) разработать и наладить метод получения высокоочищенных препаратов аннексинов А5 и А6;
- изучить влияние нонов двухвалентных металлов на опосредуемую аннексинами агрегацию липосом;

 РОС. НАЦИОНАЛЬНА.

- выяснить, образуют ли аннексины саркоплазматического ретикулума формы, связанные с мембранами Ca²⁺-независимым образом;
- 4) проверить, способны ли аннексины А5 и А6 прочно связываться с мембранными везикулами, не содержащими белков;
- 5) оценить влияние аннексинов A6 и A5 на активность основного фермента саркоплазматического ретикулума Ca²⁺-зависимой ATФазы;
- провести поиск белков мембран саркоплазматического ретикулума, связывающихся с аниексином Аб.

Научная новизна работы. В настоящей работе было впервые продемонстрировано прочно-связанных, детергент-нерастворимых форм существование аннексинов саркоплазматическом ретикулуме, иммунологически не отличающихся от детергептрастворимых форм. Показано, что по гидрофобности прочно-связанные аннексины не отличаются от обычных форм. Образование детергент-нерастворимых форм аннексинов также было продемонстрировано в модельной системе, на липосомах, не содержащих белков. Обнаружено, что аннексин Аб увеличивает активность Са²⁺ -зависимой АТФазы саркоплазматического ретикулума. Методами лиганд-блотт инга и аффинной хроматографии был проведён поиск белков саркоплазматического ретикулума, связывающихся с аннексином Аб. Методом лиганд-блоттинга было установлено, что Аб не связывается с Ca²⁺ -зависимой АТФазой и другими интегральными белками мембран саркоплазматического ретикулума. Методом аффинной хроматографии были обнаружены три белка из числа периферических белков мембран саркоплазматического ретикулума, связывающихся с аннексином Аб в присутствии ионов Ca²⁺.

Практическая ценность работы. Результаты работы могут быть использованы в фундаментальных исследованиях при изучении молекулярных механизмов мышечного сокращения. Разработанные методические подходы по получению меченых FITC аннексинов могут быть использованы при идентификации клеток на ранних стадиях апоптоза.

Апробация работы. Результаты исследования были представлены на IV и V Европейских симпозиумах по кальций-связывающим белкам в нормальных и трансформированных клетках (Перуджа, Италия, 2-5 мая 1996 г., Мюнстер, Германия, 30 июля- 2 августа 1998 г.) и XI и XII Международной конференции студентов и аспирантов по фундаментальным наукам «Ломоносов», Москва (2004 и 2005 г.).

Публикации. По результатам диссертации опубликовано 7 печатных работ.

Структура и объем работы. Диссертация состоит из введения, обзора литературы, описания материалов и методов исследования, изложения результатов и их обсуждения,

выводов и списка цитированной литературы, включающего 167 наименований. Работа изложена на 128 страницах машинописного текста, содержит 35 рисунков и

9 габлиц.

Основное содержание работы

Материалы и методы исследования

Поликлональные антитела против аннексинов A5 и A6 (aL5 и Lip6) были получены от доктора Б. Пепински (Blake Pepinsky, Biogen Inc, USA). В работе использовались меченные пероксицазой IgG против IgG кролика (Институт Гамалеи). им. саркоплазматического ретикулума выделяли по методу [Kulaev, Melgunov, 1996]. Липосомы готовили при помощи ультразвуковой обработки суспензии фосфолипида. Одномерный электрофорез выполняли по методу [Laemmli, 1970.]. Иммуноблотинг проводили по методу [Towbin et al., 1979.]. Оценку гидрофильно-гидрофобных свойств белков проводили по методу [Bordier, 1981.]. Активность Ca²⁺ -зависимой АТФазы определяли, инкубируя фермент с АТФ и определяя неорганический фосфат после инкубации. Концентрацию неорганического фосфата определяли по модифицированному методу Беренблюма-Чейна [Kulaev, Melgunov, 1996]. Концентрацию белка в пробе определяли по модифицированному методу [Bradford, 1976.], [Schaffner, Weissman, 1973.] и методу с биуретовым реактивом [Кочетов, 1970].

Результаты и обсуждение

Выделение препаратов аннексинов. Аннексины выделяли из препарата Ca^{2+} связывающих белков, сорбируя их на липосомы в присутствии Ca^{2+} и десорбируя буфером, содержащим ЭГТА. Препарат Ca^{2+} -связывающих белков выделяли, экстрагируя белки из клеточного гомогената ЭДТА, осаждая Ca^{2+} -связывающие белки из экстракта в присутствии Ca^{2+} и затем персрастворяя их в буфере с ЭГТА. Этот метод позволял получить высокоочищенный препарат суммарных аннексинов.

Выделение аннексинов из мышечной ткани затруднено тем, что в мышцах помимо аннексинов, содержится большое количество других Ca^{2+} -связывающих белков, загрязняющих конечные ЭГТА-экстракты из скелетных мышц. Поэтому в препаративных целях мы выделяли аннексины из печени, в которой так же, как и в мышцах, содержатся аннексины А6 и А5, не отличающиеся ни по изоэлектрической точке, ни по молекулярной массе от мышечных аннексинов и выявляющиеся иммунологически теми же антителами. Так же в печени содержится в незначительном количестве аннексин А4.

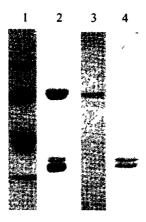


Рис. 1. Выделение очищенных препаратов аннексинов А5 и А6. 1) Молекулярные маркеры (94, 67,45 и 30 кДа); 2) Препарат суммарных аннексинов печени; 3) Очищенный препарат аннексина А5.

При электрофорезе в денатурирующих условиях в выделенных препаратах аннексинов выявлись две группы белков: одна - дублет в районе 67 кДа и вторая - с Мг 32-36 кДа (рис.1, дорожка 2).

Известно, что аннексин А6 при электрофорезе в денатурирующих условиях даёт именно дублет в области 67 кДа, в составе которого находятся две изоформы А6, образованные в результате альтернативного сплайсинга [Gerke, Moss, 2002] Остальные аннексины при электрофорезе в денатурирующих условиях дают полосы в районе 32-36 кДа.

Препарат суммарных аннексинов разделяли методом гель-хроматографии на Сефадексе G-100. Белок с колонки элюировался (рис. 2) тремя пиками. Первый пик содержит белок, дающий на форезе полосу в районе 34 кДа, второй пик – полосу в районе 67 кДа, а третий дает на форезе две полосы с молекулярными массами 33 и 35 кДа. Очевидно, первый пик содержит гетеротетрамер аннексина А4 с белком семейства S100, с молекулярной массой около 80 кДа. второй пик содержит аннексин А6, а гретий – изоформы аннексина А5, образованные в результате альтернативного сплайсинга [Gerke, Moss, 1997]. Фракции, содержащие аннексины А6 и А5 объединяли. Полученные препараты аннексинов проверили методом иммуноблотинга. Препарат, содержащий белок с молекулярной массой 67 кДа окращивался антителами к аннексину А6, а препарат,

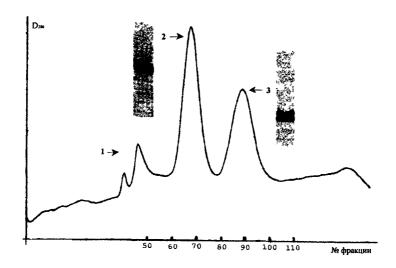


Рис. 2. Гель-хроматография аннексинов печени. 1) Пик гетеротетрамера аннексина A4 и белка S100; 2) Пик аннексина A6; 3) Пик аннексина A5. На вставках — аннексины, выявленные антителами к 2) аннексину A6, 3) аннексину A5.

содержащий белки с молекулярной массой 33 и 35 кДа – антителами к аннексину А5. Полученные таким образом препараты аннексинов А5 и А6 не содержали примесей (рис. 1 дор. 3 и 4) и были использованы для дальнейшей работы.

Влияние ионов двухвалентных металлов на опосредуемую аннексинами агрегацию липосом. Опосредуемую аннексинами агрегацию липосом определяли по изменению поглощения при длине волны 540 нм, в суспензии липосом в буфере, содержащем соответствующий катион. Реакцию инициировали добавлением препарата аннексинов. В результате выяснилось, что опосредуемая аннексинами агрегация липосом может быть вызвана не только ионами Ca²⁺. Способность опосредовать эту реакцию снижается в ряду Cd²⁺>Ba²⁺, Sr²⁺>Ca²⁺>>Mn²⁺>Ni²⁺>>Co²⁺(рис 3). Максимальная агрегация липосом наблюдалась в присутсвии Cd²⁺, Ca²⁺, Ba²⁺ и Sr²⁺.

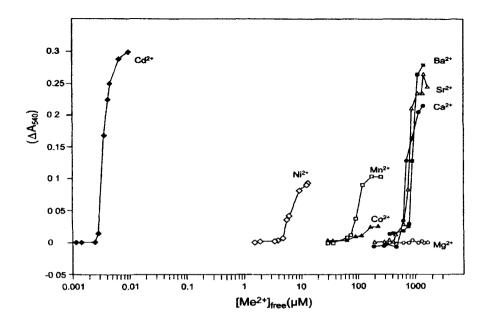


Рис. 3. Влияние нонов двухвалентных металлов на опосредуемую аннексинами агрегацию липосом. По оси абсцисс – поглощение при длине волны 540 нм, по оси ординат концентрация свободного иона

Обнаружение прочно-связанных форм аннексинов. Субфракционирование скелетных мышц кролика в присутствии Ca²⁺ приводит к переходу части аннексинов в такое состояние, когда они перестают экстрагировагься 2 мМ ЭДТА и солюбилизируются лишь при последующей экстракции 10 мМ ЭДТА и 2 % Тритоном X-100[Akimova et al., 1996]. Для оценки специфичности эффекта, вызываемого Ca²⁺. были исследованы мембраны, выделенные в присутствии Ba²⁺. В качестве контрольных мембран брали препараты, полученные стандартным способом, без добавления экзогенных катионов, и препараты, полученные после обработки Ca²⁺.

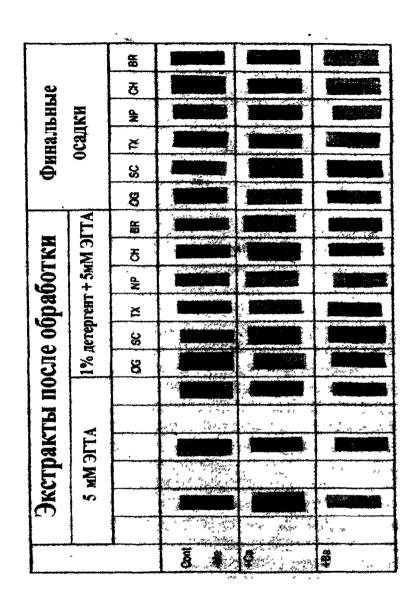


Рис. 4. Выявление аннексинов в экстрактах мембран саркоплазматического ретикулума. Экстракты получали последовательной обработкой мембран 5 мМ ЭГТА, и буфером, содержащим 5мМ ЭГТА и 1% детергента (ОБ – октилглюкозид, SC – холеат натрия, ТХ – Тритон X-100, NP – Нонидет P-40, CH – CHAPS, BR - Бридж 35). Проявление антителами к аннексину А5.

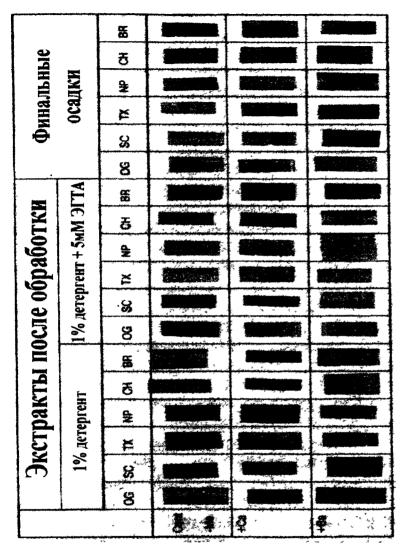


Рис. 5. Выявление аннексинов в экстрактах мембран саркоплазматического ретикулума. Экстракты получали последовательной обработкой мембран 1% детергентом, и буфером, содержащим 5мМ ЭГТА и 1% детергента (ОС – октилглюкозид, SC – холеат натрия, ТХ – Тритон X-100, NP – Нонидет P-40, CH – CHAPS, BR – Бридж 35). Проявление антителами к аннексину А5.

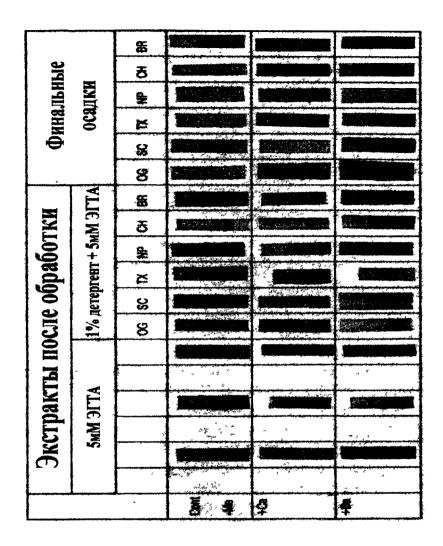


Рис. 6. Выявление аннексинов в экстрактах из мембран саркоплазматического ретикулума. Экстракты получали последовательной обработкой мембран 5 мМ ЭГТА, и буфером, содержащим 5мМ ЭГТА и 1% детергента (ОС – октилглюкозид, SC – холеат натрия, ТХ – Тритон X-100, NP – Понидет P-40, CH – CHAPS, BR – Бридж 35). Проявление антителами к аннексипу А6.

Экстракты после обработки Финальные 1% детергент осадки 1% детергент + 5мМ ЭГТА SC OG **TX** NP 8R SC CH 88 OG ΤX NP CH 8A SC CH OG TX

антителами к аннексину Аб. нагрия, ТХ – Тритон X-100, NP – Нонидет Р-40, CH – CHAPS, BR – Бридж 35). Проявление буфером, содержащим 5мМ ЭГТА и 1% **ретикулума.** Экстракты получали последовагельной обработкой мембран 1% детергентом, и Рис. 7. Выявление аннексинов в экстрактах из мембран саркоплазматического детергента (ОС – октилглюкозид, SC – холеат

В первом варианте опыта сначала проводили стандартное выделение аннексинов, для этого мембраны экстрагировали буфером, содержащим ЭГТА. Затем для выявления прочно связанных форм аннексинов мембраны повторно экстрагировали буфером, содержащим и ЭГТА, и детергент. Экстракты использовали для последующего Вестерн-блотинга с моноспецифическими поликлональными антителами к аннексинам А5 и А6 (рис. 4, 5, 6,7)

Результаты иммунохимического анализа вполне определенно свидетельствуют о том, что прочно связанные формы аннексинов А5 и А6 практически полностью выслобождаются из мембран после одновременного воздействия хслатирующего агента и детергента При этом присутствие Ba²⁺ при выделении мембран вызывает почти такой же эффект, как и обработка Ca²⁺. В обоих случаях часть связанных с мембранами аннексинов становится недоступной для хелатирующих агентов. Все исследованные нами детергенты, а именно тритоп X--100, октилглюкозид, холеат натрия, ионидет P-40, CHAPS и бридж 35, достаточно эффективно экстрагировали прочно связанные аннексины А5 и А6 из мембран. Таким образом, получаются две фракции аннексинов: одна может элюироваться из мембран хелатирующим агентом, а вторая остается связанной с мембранами, несмотря на интенсивную промывку ЭГ1А Для солюбилизации такой устойчивой к ЭГТА фракции требуется добавление неионных или ионных детергентов.

Поскольку при экстракции буфером с детергентом и ЭГТА переход белков в раствор был обусловлен суммарным воздействием сразу двух факторов, в эту фракцию, скорее всего, переходили аннексины, прочно связанные и с мембранами клетки. и с так называемым «цитоскелетом мембран» [Luna, Hitt, 1992].

Поэтому далее представлялось целесообразным раздельно исследовать взаимодействие аннексинов с «цитоскелетными» и с мембранными структурами. Для этого мы изменили последовательность обработки мембран. В этом случае первую экстракцию проводили в присутствии одного из дегергентов, который должен был в первую очередь воздействовать на липидный бислой мембраны и солюбилизировать те белки, которые непосредственно связаны с мембраной. Для высвобождения белков, несолюбилизируемых детергентами, нерастворенный матсриал («цитоскелет») обрабатывали далее буферами, содержащими не голько детергент, но и ЭГТА, чтобы условия обработки совнадали с условиями повторной экстракции в первом варианте опыта.

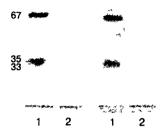


Рис. 8. Поведение аннексинов V и VI при индуцированном температурой разделении фаз в Тритоне X-114. а) Контрольные мембраны, 6) Мембраны, выделенные в присутствии Ca^{2+} ; 1) водная фаза, 2) фаза, обогащенная детергентом.

В результате, несмотря на го, что при такой постановке опыта в экстракт с детергентом переходит основная часть белка мембран, часть аннексинов по-прежнему солюбилизируется только после обработки буфером с ЭГТА и детергентом. Это относится и к аннексину А5, и к аннексину А6. Следует особо отметить, что при этом некоторое количество аннексина А5 вообще не экстрагируется из мембран и выявляется даже в нерастворимом остатке. После выделения мембран в присутствии Ba²⁺ образование прочпо связанных форм аннексина А5 особенно усиливается. В этом случае ни один из исследованных детергентов не способен полностью его экстрагировать.

В качестве одного из возможных объяснений образования прочно связанных форм одного и того же аннексина было высказано предположение о том, что прочно связанные формы отличаются по гидрофобности от белков, выделяемых обычным способом с применением хелатирующих агентов.

Для проверки этого предположения мы провели индуцированное темперагурой разделение фаз по методу Бордье. Последующее иммунохимическое выявление аннексинов А5 и А6 (рис 8), показало, что аннексины А5 и А6 из мембран. выделенных в присутствии Са²⁺, ведуг себя точно так же, как и аннексины, выделенные из контрольных мембран. При этом опи, в основном, остаются в водной фазе и не переходят в фазу, обогащенную детергентом Это говорит о том, что гидрофобность аннексинов А5 и А6 не возрастает настолько, чтобы эти белки могли непосредственно встраиваться в фосфолипидные структуры мембраны.

Таким образом, нами было установлено, что часть аннексинов саркоплазматического ретикулума ведёт себя нетипичным образом, а именно - связавшись с мембраной Ca^{2+} -зависимым образом переходит в прочно-связанное состояние, не солюбилизируется хелаторами и требует для растворения обработки неионным детергентом. Это позволяет предположить, что в результате действия какого-то до сих пор не установленного механизма значительная часть аннексинов, связавшихся с мембраной в присутствии Ca^{2+} , переходит в состояние, независимое от наличия Ca^{2+} в среде, и начинает вести себя как интегральные белки мембраны. Не исключено, что эта способность аннексинов связана с их функционированием в саркоплазматическом ретикулуме

Образование прочно-связанных форм аннексинов может быть объяснено либо тем, что аннексины взаимодействуют с детергент-устойчивыми доменами мембран, либо тем, что они взаимодействуют с какими-либо белками мембран. Для проверки того, могут ли аниексины А5 и А6 переходить в прочно связанное состояние при взаимодействии с мембранами, лишенными белков, нами был проведен эксперимент с липосомами из азолектина типа II-S. В препарат суммарных аннексинов добавляли липосомы в присутствии Ca²⁺, после чего экстрагировали белки с липосом либо буфером, содержащим ЭГТА, либо буфером, содержащим Тритон X-100 Оказалось, что в обоих вариантах опыта на липосомах остаются несолюбилизированные аннексины Казалось бы, таким образом удалось показать образование прочно связанных форм аннексинов в системе, где мембраны не содержали посторонних белков. Однако, при этом на липосомах остается меньше одной десятой части аннексинов, в то время, как в опыте с мембранами саркоплазматического ретикулума около половины аннексинов А5 и А6 переходили в прочно-связанное состояние после обработки Ca²⁺. Из этого можно сделать вывод, что одного липидного компонета не достаточно для образования аннексинами Ca²⁺-независимой связи с мембраной

Влияние на активность Са²⁺-АТФазы. Влияние аннексипов на активность Са²⁺-АТФазы саркоплазматического ретикулума, оценивали по изменению активности фермента после инкубации с очищенным препаратом анпексина А6 или А5 Для определения активности АТФазы фермент инкубировали в среде с АГФ, после чего определяли концентрацию неорганического фосфата по методу Беренблюма-Чейна в модификации Мельгунова.

Аннексины не оказывали влияния на активность Ca²⁺-ATФазы, если их вносили в среду непосредственно перед определением. Так же они не влияли на активность ATФазы после 10 и 30 минут инкубации. Аннексины оказывали влияние на активность Ca²⁺-ATФазы лишь после предварительной инкубации в течение часа при 37°C. Инкубация в течение 90 и 120 мин, в

Рис 9. Влияние аннексина A6 на активность Ca²⁺-ATФазы саркоплазматического ретикулума. Варианты опыта: 1 – без прединкубации; 2 – активность фермента определяли после часовой прединкубации при 37°C без аннексина A6; 3 – активность фермента определяли после часовой прединкубации при 37°C в присутствии аннексина A6.

сравнении с часовой инкубацией, не давала дополнительного эффекта. Поэтому в дальнейшем мы проводили предварительную инкубацию АТФазы с аннексинами в течение часа Молярное соотношение аннексин А5.АТФаза в инкубационной смеси было выбрано равным 30:1, поскольку такое соотношение используется в ряде работ по взаимодействию АТФазы с белками [] Молярное соотношение аннексин А6:АТФаза было равно 15:1, т.к. в огличие от аннексина А5 аннексин А6 содержит не четыре, а восемь «аннексиновых повторов» [Gerke, Moss, 1997].

Для предотвращения агрегации и выпадения в осадок, препараты аннексинов содержали ЭГТА. Однако, известно, что избыток ЭГТА в среде приводит к остановке Ca^{2+} насоса. В этих условиях доступный свободный кальций связывается хелатом, но концентрация АТФ и других реагентов сохраняется на прежнем уровне. При этом наблюдается отток Ca^{2+} , вызванный разобщением Ca^{2+} - Λ ТФазы. Чтобы избежать этого, мы сначала путем диализа переводили препарат в буфер, по составу практически не отличающийся от среды инкубации Ca^{2+} - Λ ТФазы. Оставшийся небольшой избыток ЭГТА непосредственно в ходе опыта нейтрализовывали добавлением $CaCl_2$. При этом концентрация свободного Ca^{2+} в среде инкубации, рассчитаная по программе WinMaxC, изменялась лишь незначительно (с 13,8 мкМ до 15,8 мкМ). Активность АТФазы все равно несколько снижалась (до 91% от исходной).

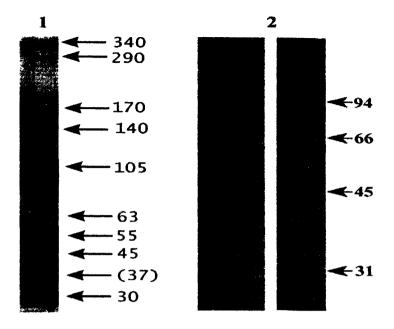


Рис. 10. Электрофоретическое разделение интегральных и периферических белков мембран саркоплазматического ретикулума. Стрелками указаны молекулярные массы, кДа. 1) Интегральные белки, разделение в градиентном геле с концентрацией полиакриламида 8-16%. 2) Периферические белки, разделение в 10% акриламидном геле. Правая дорожка — молекулярные маркеры.

В этих условиях предварительная инкубация АТФазы с аннексипом Аб восстанавливала активность фермента и даже увеличивала ее по сравнению с исходным значением (до 115 % от исходной). Предварительная инкубация с аннексином А5 не оказывала влияния на активность АТФазы.

Такое действие Аб на активность АТФазы может иметь несколько объяснений

Во-первых, Аб может взаимодействовать с мембраной саркоплазматического ретикулума, формируя в ней Ca²⁺-канал[Golczak et al., 2001]. Но, при рН выше 6,0 Аб не обладает канальной активностью, а в нашем эксперименте рН был равен 7,0. Кроме того, поскольку в среде присутствовал ионофор. саркоплазматический ретикулум был

разобщенным, и появление еще одного кальциевого канала не могло повлиять на активность АТФазы.

Во-вторых, аннексин А6 может взаимодействовать непосредственно с АТФазой, хотя то, что активность АТФазы менялась всего на 25% ставит под сомнение такую гипотезу. Кроме того, А6 может связываться не с АТФазой, а каким-либо другим белком саркоплазматического ретикулума и влиять на активность АТФазы опосредованно.

Поиск белков саркоплазматического ретикулума, связывающихся с аннексином Аб. Для поиска белков-мишеней были выбраны методы аффинной хроматографии и лиганд-блоттинга. Взаимодействие аннексина Аб с интегральными белками мембран саркоплазматического ретикулума, к которым относятся и Са²⁺-зависимая АТФаза, составляющая до 80% общего содержания белка и рианодиновый рецептор и другие белки было изучено методом лиганд-блоттинга. Взаимодействие аннексина с периферическими белками мембран саркоплазматического ретикулума было оценено методом аффинной хроматографии.

Поиск белков-мишеней среди интегральных белков мембран саркоплазматического ретикулума. При проведении лиганд-блоттинга, препарат интегральных белков мембран саркоплазматического ретикулума разделяли электрофоретически и переносили белковые полосы на нитроцеллюлозную мембрану. После этого фильго в присутствии Ca²⁺ инкубировали либо с препаратом аннексинов, которые нотом выявляли специфическими антителами, либо с препаратом меченных FITC аннексинов, для выявления которых потом фильтр облучали ультрафиолетом. Препарат меченных FITC аннексинов А5 и А6 был изготовлен по разработанной нами методике. Для контроля антителами обрабатывали мембраны, не инкубированные с аннексинами. Методом лиганд-блоттинга не удалось обнаружить взаимодействия аннексина А6 с какими-либо интегральными белками саркоплазматического регикулума. В то же время, аппексины А5 и эффективно связывались с эндогенными аннексинами, входящими в состав саркоплазматического ретикулума, о чем можно было судить по более интенсивным полосам соответствующих белков, в сравнении с контрольными мембранами.

То, что аннексины не связывались с белками в ходе лиганд-блоттинга, можно объяснить тем, что белки, после электрофореза по Леммли и переноса на нитроцеллюлозный фильтр денатурировали.

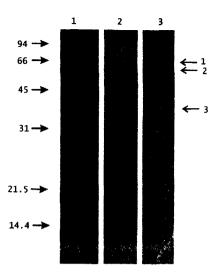


Рис 11. Электрофореграмма фракций, полученных при элюции периферических белков легкой фракции саркоплазматического ретикулума с аффинной колонки (с аннексином Аб в качестве лиганда). 1 — белковые маркеры; 2 — белки, элюированные ЭГТА; 3 — белки, элюированные Тритоном X-100. Гели окрашивали серебром.

Поэтому полученные данные не опровергают однозначно гипотезу о том, что аннексины могут связываться с мембран какими-либо интегральными белками саркоплазматического ретикулума. В ro же время, денатурация В ходе электрофоретического разделения и электропереноса не нарушила структуру молекул аннексинов настолько, чтобы препятствовать связыванию аннексинов друг с другом. Такое связывание, или агрегация аннексинов в присутствии нонов Ca²⁺ описана рядом авторов [Kaetzel et al., 2001, Gerke, Moss, 2002]. В целом, результаты лиганд-блотгинга позволяют если не утверждать категорически, то с некогорой долей вероятности сказать, что белков, связывающихся с аннексинами среди интегральных белков саркоплазматического ретикулума нет.

Поиск белков-мишеней среди периферических белков мембран саркоплазматического ретикулума. Периферические белки получали, обрабатывая препарат мембран саркоплазматического ретикулума буфером, содержащим 0,6 М КСІ. Препарат периферических белков пропустили через аффинную колонку из Affigel 15 с иммобилизованным А6, после чего промыли колонку буфером нанесения. При этом около десятой части периферических белков связалось с колонкой.

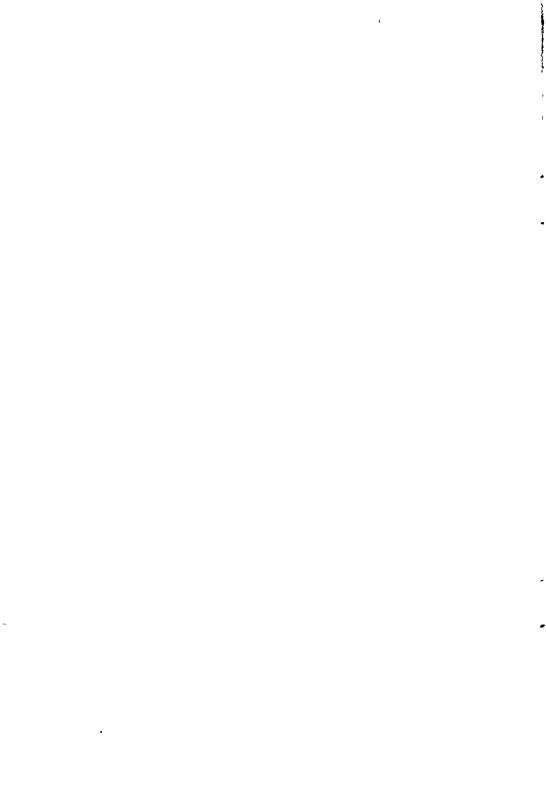
Связавшиеся на колонке белки элюировали спачала градиентом ионной силы (от 150 до 500 мМ NaCl). потом градиентом комплексона (от 1 мМ до 5 мМ ЭГТА), потом 5 мМ ЭГТА, и, наконец, градиентом неионного детергента (от 0 % до 2% тритона X-100) (рис. 10).

На основе данных электрофореза можно достаточно уверенно утверждать, что при пропускании NaCl с колонки не элюировались какие-либо белки.

При элюции как ЭГТА. так и тритоном X-100 с колонки сходили два белка, с M_r 66 и 63 кДа. При элюции тритоном X-100 с колонки также сходил белок с M_r 35 кДа.

Поскольку белки с молекулярными массами 66 и 63 кДа элюировались как при обработке хелатирующим агентом, так и при обработке детергентом, можно предположить, что для их связывания с молскулами аннексина А6 важны и ионы ${\rm Ca}^{2+}$ и гидрофобные взаимодействия. Возможно, что эти белки экспонируют гидрофобные участки молекулы, связывая ион ${\rm Ca}^{2+}$, подобно многим ${\rm Ca}^{2+}$ связывающим белкам. Белок с молекулярной массой 35 кДа, видимо, связывается с аннексином А6 только гидрофобными взаимодействиями.

Во всяком случае, можно сказать, что эти белки не являются ни иммобилизованным А6, ни его протеолитическими фрагментам, поскольку они должны были бы сойти с колонки при элюции градиентом NaCl, чего не наблюдалось в наших экспериментах.


Выводы.

- Впервые показано, что аннексины саркоплазматического ретикулума после предварительной обработки Ca²⁺ образуют прочно связанные формы, для солюбилизации которых требуется как хелатор, так и детергент. При этом гидрофобность молекул аннексинов не меняется.
- 2) Обнаружено, что при взаимодействии с липосомами, не содержащими белков, часть аннексинов также образует прочную связь При этом количество переходящих в прочно-связанное состояние аннексинов гораздо меньше, чем при взаимодействии с природными мембранами. Обнаружено, что опосредуемую аннексинами аг регацию липосом кроме ионов Ca²⁺, способны запускать ионы Ba²⁺, Sr²⁺, Mn²⁺, Ni²⁺, Co²⁺ и Cd²⁺ При этом способность ионов металлов индуцировавать опосредуемую аннексинами агрегацию, снижается в следующем порядке: Cd²⁺> Ba²⁺, Sr²⁺> Ca²⁺>> Mn²⁺> Ni²⁺>> Co²⁺.
- Установлено, что предварительная инкубация с анцексином А5 не влияет на активность Ca²⁺-зависимой АТФазы сапкоплазматического ретикулума, а предварительная инкубация с аннексином А6 увеличивает ее.

- 4) Выяснено, что аннексины А5 и А6 не связываются с интегральными белками мембран саркоплазматического ретикулума скелетных мышц.
- Пролемонстрировано, что аннексин А6 связывается с тремя периферическими белками мембран саркоплазматического ретикулума с молекулярными массами 35, 63 и 66 кЛа.

Список работ, опубликованных по теме диссертации.

- Akimova E.I., Nabokina S.M., Melgunov V.I., Krasavchenko K. S. Tightly bound forms of annexins VI and V in rabbit skeletal muscles. (1996). Abstracts IV Europ. Symp. on Calcium Binding Proteins in Normal and Transformed Cells, Perugia, Italy, May 2-5, p.159.
- Krasavchenko K. S., Akimova E.I., Melgunov V.I. Overlay assays do not reveal any
 interaction of annexins V and VI with major proteins of rabbit sarcoplasmic reticulum and
 sarcolemma. (1998). Abstracts V Europ. Symp. on Calcium Binding Proteins in Normal and
 Transformed Cells, Nordkirchen/Muenster, July 30- August 2, p.122a.
- Красавченко К.С., Акимова Е. И., Мельгунов В. И. Образование прочно связанных форм аннексинов V и VI в мембранах скелетных мышц кролика, выделенных в присутствии ионов бария. (1999). Биохимия, гом 64, вып.10, с. 89 –96.
- Melgunov V.I., Akimova E.I., Krasavchenko K. S.Effect of divalent metal ions on annexinmediated aggregation of asolectin liposomes. (2000). Acta Biochimica Polonica, Vol. 47, No 3, p. 675 – 683.
- Красавченко К.С., Акимова Е. И., Мелы унов В. И. Стабилизирующее действие аннексинов на активность Ca²⁺ -АТФазы саркоплазматического ретикулума в присутствии комплексонов. (2004) Материалы XI Международной конференции студентов и аспирантов по фундаментальным наукам «Ломоносов», Москва, Россия, сгр. 72-73.
- Красавченко К С. Поиск белков-мишеней для аннексина аб. (2005). Материалы XII
 Международной конференции студентов и аспирантов по фундаментальным наукам
 «Ломоносов», Москва, Россия, стр. 111-112.

Подписано в печать 06.10.2005

Формат 60×88 1/16. Объем 1.5 п.л. Тираж 100 экз. Заказ № 119 Отпечатано в ООО «Соцветие красок»

119992 г. Москва, Ленинские горы, д.1 Главное здание МГУ, к.102

模20085

РНБ Русский фонд

 $\frac{2006-4}{20772}$