На правах рукописи

Thony

Копцева Татьяна Сергеевна

ГИДРИДЫ АЛЮМИНИЯ И ГАЛЛИЯ С АЦЕНАФТЕНДИИМИНОВЫМ ЛИГАНДОМ

02.00.08 - химия элементоорганических соединений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Нижний Новгород – 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте металлоорганической химии им. Г.А. Разуваева Российской академии наук

Научный руководитель

Официальные оппоненты:

Федюшкин Игорь Леонидович, доктор химических наук, профессор, член-корреспондент РАН, директор ФГБУН Института металлоорганической химии им. Г.А. Разуваева РАН

Нечаев Михаил Сергеевич,

доктор химических наук, профессор, профессор РАН, ведущий научный сотрудник кафедры органической химии химического факультета ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Болотин Дмитрий Сергеевич,

кандидат химических наук, доцент кафедры физической органической химии Института химии ФГБОУ «Санкт-Петербургский государственный университет»

Ведущая организация:

ФГБУН Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук

Защита диссертации состоится «29» 403 2019 года в 14:00 часов на заседании объединенного диссертационного совета Д 999.130.02 при Национальном исследовательском Нижегородском государственном университете им. Н.И. Лобачевского и Институте металлоорганической химии им. Г.А. Разуваева РАН по адресу: 603950, г. Нижний Новгород, ГСП-20, пр. Гагарина, 23.

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного университета им. Н.И. Лобачевского и на сайте <u>https://diss.unn.ru/958</u>

Автореферат разослан «____» ____ 2019 года

Ученый секретарь диссертационного совета, д.х.н., профессор

Тущи А.В. Гущин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

исследования. Химия Актуальность темы металлоорганических И координационных соединений играет важную роль в развитии химической науки. Достаточно много работ в последние десятилетия посвящены изучению гидридов металлов главных подгрупп. Эти соединения вызывают значительный интерес с точки зрения их практического применения, а также решения фундаментальных ЭТИХ соединений в гидрировании кратных вопросов. Применение связей органических веществ, очистке металлов, хранении и генерировании водорода демонстрирует их исключительную важность. Гидриды алюминия и галлия, в частности, получили широкое распространение благодаря их высокой реакционной способности по отношению к ненасыщенным соединениям, таким как кетоны, нитрилы, олефины и алкины. Гидриды алюминия так же используются в качестве каталитических систем Циглера-Натта для полимеризации компонентов И олигомеризации α-олефинов, а также синтеза стереорегулярных диеновых каучуков. Кроме того, они оказались эффективными реагентами для получения халькогенидов алюминия и алюмоксанов контролируемым гидролизом, а так же используются в качестве восстановителей. Гидриды галлия в то же время служат катализаторами восстановления СО₂ до органических веществ. Однако высокие восстановительные потенциалы гидридов непереходных металлов в некоторых случаях не позволяют использовать эти соединения в качестве селективных восстанавливающих агентов. Один из путей модифицикации реакционнй способности гидридов – их сочетание с азотсодержащими лигандами. Такой подход успешно реализован для соединений dэлементов, в частности 1,2-дииминовых комплексов, которые используются в качестве катализаторов различных химических реакций.

Комбинирование редокс-активного лиганда с непереходным металлом открывает перспективы применения таких соединений в качестве катализаторов различных реакций за счет непосредственного участи лиганда в процессах переноса электрона и образования и разрыва связей с субстратами. Представителями таких лигандов являются аценафтен-1,2-диимины (1,2-бис(арилимино)аценафтены, bian), которые способны обратимо переходить в анион-радикальную или дианионную формы, находясь при этом связанными с атомом металла. Наиболее изучены в настоящее время комплексы металлов главных подгрупп с редокс-активным 1,2бис[(2,6-диизопропилфенил)имино]аценафтеном (dpp-bian). Они вызывают интерес ввиду многообразия их химических свойств. Например, комплекс магния может одноэлектронным восстановителем органических служить галогенидов И ароматических кетонов. С галлием и алюминием были получены уникальные биядерные производные [(dpp-bian)M-M(dpp-bian)] (M = Ga, Al), которые активны по отношению к различным классам органических веществ. В частности, они способны обратимо присоединять алкины, изотиоцианаты, кетены и другие

ненасыщенные субстраты. Как результат они катализируют, например, реакции гидроаминирования алкинов анилинами. Дигаллан [(dpp-bian)Ga-Ga(dpp-bian)] восстанавливается щелочными, а также щелочно- и редкоземельными металлами (M) с образованием гетерометаллических продуктов, содержащих связи Ga-M. Фрагмент [(dpp-bian)Ga] может существовать как в форме аниона [(dpp-bian)Ga:]⁻, так и в форме нейтрального карбеноида [(dpp-bian)Ga:] – аналога карбенов Ардуэнго. Последний присутствует в качестве нейтрального лиганда в комплексе молибдена [(dpp-bian)Ga:→Mo(CO)₅].

В настоящее время в литературе достаточно хорошо рассмотрена реакционная способность гидридов Al и Ga, содержащих редокс-неактивные хелатые N,Nлиганды. Однако, несмотря на перспективность исследований в области гидридов Al и Ga с редокс-активными лигандами, на сегодняшний день в литературе описано лишь несколько подобных соединений. В связи с этим, исследование гидридов 1,2-бис[(2,6-диизопропилфенил)имино]аценафтеном 13 группы С металлов состояниях восстановления является актуальным. Оно позволит различных фундаментальные представления о свойствах координационных расширить соединений и разработать подходы к новым реагентам и катализаторам реакций селективного гидрирования и функционализации органических соединений.

Степень разработанности темы. К настоящему времени опубликовано множество работ о синтезе, строении и реакционной способности гидридов металлов 13 группы стабилизированных би- и тридентатными азотсодержащими лигандами. Исследования в данной области активно проводятся научными группами профессоров С.L. Raston, H.W. Roesky, C. Jones, M.L. Cole, M.R. Crimmin, S. Aldridge, L.A. Berben и др. Несмотря на это, химия гидридов алюминия и галлия с редокс-активными дииминовыми лигандами остается молоизученной.

Цели и задачи. Цель работы состоит в получении гидридов алюминия и галлия с аценафтен-1,2-диимином, установлении их молекулярного строения и выявлении их свойств. Для достижения поставленной цели решались следующие задачи:

- 1. Разработка методов синтеза гидридов алюминия и галлия, содержащих dpp-bian в различных состояниях восстановления;
- Исследование реакционной способности полученных гидридов алюминия и галлия по отношению к соединениям, содержащим кратные связи углерод– кислород и углерод–азот, О–Н кислотам, а также некоторым металлоорганическим соединениям;
- 3. Установление строения полученных комплексов алюминия и галлия, а также продуктов их взаимодействия с ненасыщенными органическими и неорганическими субстратами, О–Н кислотами и МОС в кристаллическом состоянии и в растворе современными физико-химическими методами.

4

Научная новизна.

- 1. Впервые получены гидриды алюминия с редокс-активным дииминовым лигандом в дианионной и анион-радикальной формах;
- 2. Впервые получены гидриды галлия с редокс-активным дииминовым лигандом в анион-радикальной форме;
- 3. Продемонстрировано пассивирующее действие конформационно-жесткого бисамидного dpp-bian лиганда на связь алюминий-водород;
- 4. Впервые осуществлена реакция обратимого циклоприсоедиения диоксида углерода к комплексу непереходного металла.

Теоретическая и практическая значимость. Новые комплексы алюминия и галлия с редокс-активными dpp-bian лигандами дополняют базовые представления о строении и свойствах координационных соединений, а так же являются удобными стартовыми реагентами для синтеза ряда новых комплексов данных металлов с анионными dpp-bian лигандами. На основе полученных соединений и их производных могут быть созданы новые типы эффективных, доступных и малотоксичных реагентов для химического синтеза.

Методология и методы исследования. Все полученные в работе комплексы чувствительны к кислороду и влаге воздуха, поэтому манипуляции, связанные с их синтезом, выделением и идентификацией выполнялись с использованием вакуумной системы, стандартной техники Шленка и азотного главбокса. Состав и строение новых соединений устанавливали с использованием современных физикохимических методов исследования (ЯМР-, ЭПР-, ИК-спектроскопия, PCA).

Положения, выносимые на защиту.

- 1. Методы получения новых гидридов алюминия и галлия на основе редоксактивного dpp-bian лиганда и экспериментальные данные об их строении в кристаллическом состоянии и поведении в растворе;
- 2. Результаты исследования взаимодействия полученных гидридов алюминия с ненасыщенными соединениями, содержащими связи C = X (X = N, O);
- Результаты исследования взаимодействия полученных гидридов алюминия с О-Н кислотами;
- 4. Экспериментальные данные о реакционной способности гидридов алюминия и галлия по отношению к некоторым металлоорганическим соединениям;
- 5. Данные о реакциях комплексов алюминия с оксидом углерода(IV);
- 6. Данные о строении продуктов присоедиения диоксида углерода к комплексу [(dpp-bian)Al-Al(dpp-bian)] и их поведении в растворе и твердом состоянии.

Личный вклад автора. Личный вклад автора заключается в анализе и систематизировании литературных данных, синтезе, выделении и идентификации новых соединений, подготовке образцов для анализа методами ЯМР, ИК, и ЭПР-

спектроскопии. Автор принимал непосредственное участие в планировании и проведении исследований, обработке и интерпретации полученных результатов, формулировании выводов по результатам работы и их обобщении в виде научных статей и тезисов докладов. Рентгеноструктурные эксперименты проведены д.х.н. Фукиным Г.К., к.х.н. Барановым Е.В., к.х.н. Самсоновым М.А., Черкасовым А.В. и Румянцевым Р.В. ИК спектры записаны д.х.н. Кузнецовой О.В. и к.х.н. Хамалетдиновой Н.М., спектры ЭПР получены д.х.н. Пискуновым А.В., спектры ЯМР – к.х.н. Шавыриным А.С. и к.х.н. Базякиной Н.Л. Элементный анализ проведен к.х.н. Новиковой О.В. Автор выражает благодарность всем людям, принимавшим участие в экспериментальной работе и обсуждении результатов, особенно чл.-корр. РАН И.Л. Федюшкину и к.х.н. Соколову В.Г.

Степень достоверности и апробация результатов. Результаты исследований представлены на региональных, всероссийских и международных конференциях: «Нижегородская сессия молодых ученых (естественные, математические науки)» (Н. Новгород, 2017, 2018 (диплом III степени), 2019 (диплом III степени)), «Всероссийская конференция молодых ученых-химиков с международным участием» (Н. Новгород, 2017, 2018), «ХХ Молодежная школа-конференция по органической химии» (Казань, 2017), «27th International Chugaev Conference on Coordination Chemistry» (Н. Новгород, 2017), IV Всероссийская молодежная конференция «Достижения молодых ученых: химические науки» (Уфа, 2018 конференция (диплом Ι степени)), «Динамические процессы В химии элементоорганических соединений» (Казань, 2018).

Публикации по теме диссертации. Основное содержание работы отражено в 4 статьях, опубликованных в журналах Inorganic Chemistry, Известия Академии Наук – Серия химическая и Координационная химия, рекомендованных ВАК.

Структура диссертации. Диссертация включает в себя введение, обзор литературы по выбранной тематике, обсуждение полученных результатов, экспериментальную часть, выводы и список цитируемой литературы (298 наименований). Работа изложена на 133 страницах машинописного текста, включает 1 таблицу, 57 схем и 52 рисунка.

Соответствие диссертации паспорту специальности. Изложенный материал и полученные результаты соответствуют п.1 «Синтез, выделение и очистка новых соединений», п.2 «Разработка новых и модификация существующих методов синтеза элементоорганических соединений», п.6 «Выявление закономерностей типа «структура–свойство» паспорта специальности 02.00.08 – химия элементоорганических соединений.

6

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Синтез, строение и свойства дигидрида алюминия с дианионным dpp-bian лигандом. Реакция свободного dpp-bian с одним эквивалентом алюмогидрида лития LiAlH₄ приводит к образованию двух продуктов [(dpp-bian)Al(H)₂Li(THF)₃] (1, 29 %) и [{dpp-bian(H₂)}Al(H)₂Li(Et₂O)₂] (2, 44 %), которые выделены в виде темно-зеленых и бесцветных кристаллов из тетрагидрофурана и диэтилового эфира соответственно (Схема 1). В ИК спектрах полученных соединений наблюдаются интенсивные полосы колебаний связей Al–H (1: 1757 и 1662 см⁻¹; 2: 1662 и 1537 см⁻¹).

Схема 1. Синтез соединений 1 и 2.

В кристаллическом состоянии оба комплекса представлют собой контактные ионные пары, в которых мостиковые гидрид-ионы связывают атомы Al и Li (Puc. 1).

Рис. 1. Молекулярные структуры соединений 1 (слева) и 2 (справа).

Длины связей в дииминовом фрагменте соединений 1 и 2 свидетельствуют о дианионном состоянии dpp-bian. В соединении 2 связи N(1)–C(1) (1.4634(15) Å),

N(2)-C(2) (1.4690(15) Å) и C(1)-C(2) (1.5897(16) Å) удлинены по сравнению с таковыми в гидриде **1** (1.387(2), 1.394(2) и 1.372(3) Å соответственно), по-видимому, это связано с отсутствием сопряжения в металлоцикле -Al-N(1)-C(1)-C(2)-N(2)- в соединении **2**. С другой стороны расстояния Al-H(1) (1.555(17) Å) и Al-H(2) (1.557(17) Å) в комплексе **2** близки к таковым в гидриде **1** (1.588(18) и 1.553(19) Å). Изучение реакционной способности соединения **1** показало, что оно инертно в отношении фенилацетилена и триметилсилилацетилена, а также диизопропиламина. Однако, взаимодействие гидрида **1** с более кислым субстратом, таким как 2,6-ди*трет*-бутил-4-метилфенол (1:1) протекает с протонолизом связи Al-H (Схема 2). Продукт реакции [(dpp-bian) $Al(H)(OC_6H_2-2,6-tBu_2-4-Me)$][Li(THF)₄] (**3**) выделен в виде мелкокристаллического зеленого порошка с выходом 65 %.

Схема 2. Реакция комплекса 1 с 2,6-ди-трет-бутил-4-метилфенолом.

Реакция комплекса 1 с бензофеноном (1:1) протекает в толуоле при 50 °С в течение 15 минут и приводит к продукту внедрения кетона по связи Al–H – комплексу [(dpp-bian)Al(H)(OCHPh₂)Li(THF)₂] (4) (Схема 3). Он выделен в виде сине-зеленых кристаллов с выходом 67 %. Два эквивалента Ph₂C=O внедряются по обеим связям Al–H комплекса 1, давая [(dpp-bian)Al(OCHPh₂)₂Li(THF)] (5), который был выделен в виде синих кристаллов с выходом 70 % и охарактеризован ЯМР и ИК-спектоскопией.

Схема 3. Реакция комплекса 1 с бензофеноном.

Соединения **3** и **4** являются арокси- и алкоксигидридными комплексами алюминия. Комплекс **3** содержит сольватно-разделенные катион [Li(THF)₄]⁺ и анион

 $[(dpp-bian)Al(H)O(2,6-tBu_2-4-MeC_6H_2)]^-$. В отличие от соединения **3** в комплексе **4** катион $[Li(THF)_2]^+$ координирует и атом кислорода, и гидридный лиганд. Различие геометрии комплеков **3** и **4** обусловлено, по-видимому, различным стерическим объемом RO-групп.

Синтез, строение и свойства моногидрида алюминия с дианионом dpp-bian. Моногидрид [(dpp-bian)AlH(THF)] (6), стабилизированный дианионом dpp-bian был получен реакцией динатриевой соли dpp-bian с дихлораланом HAlCl₂ (Схема 4). Реакция соединения 6 с имидазол-2-илиденом проходит с заменой молекулы THF на карбен. В ИК спектре продукта [(dpp-bian)AlH(*i*Pr₂Im^{Me})] (7) колебания связи Al–H проявляются в виде интенсивной полосы при 1732 см⁻¹. Это значение заметно отличается от такового для исходного соединения 6 (1864 см⁻¹). Производные 6 и 7 представляют собой мономерные четырехкоординационные комплексы (Puc. 2).

Схема 4. Синтез соединения 6.

Рис. 2. Молекулярные структуры соединений 6 (слева) и 7 (справа).

Длины связей в металлоциклах комплексов 6 и 7 указывают на дианионное состояние dpp-bian лигандов в них. Связи Al–H в 6 и 7 (1.533(17) и 1.524(18) Å соотвтетственно) близки между собой. Подобно комплексу [(dpp-bian)AlEt(Et₂O)] [Dalton Transactions. **2016**, 15872] и бис(имино)пиридиновым гидридам алюминия

[*J. Am. Chem. Soc.* **2013**, *135*, 9988] соединение **6** реагирует с 2,6-ди-*трет*-бутил-4метилфенолом (1:1) по связи Al–N. Реакция сопровождается изменением цвета раствора с синего на фиолетовый и приводит к образованию комплекса [(dppbianH)Al(H)(OC₆H₂-2,6-*t*Bu₂-4-Me)] (**8**) с выходом 74 % (Схема 5).

Схема 5. Реакция комплекса 6 с 2,6-ди-трет-бутил-4-метилфенолом.

В ИК спектре комплекса **8** колебания связи Al–H проявляются в виде интенсивной полосы при 1900 см⁻¹, что близко к таковому значению для исходного гидрида **6** (1864 см⁻¹). Полоса при 3244 см⁻¹ соответствует колебаниям связи N–H.

Реакция соединения 6 с 1,3-дициклогексилкарбодиимидом протекает в эфире при 50 °С в течение 15 минут. Продукт присоединения [(dpp-bian)Al(CH(NCy)₂)] (9) (Схема 6) выделен в виде синих кристаллов при концентрировании раствора. По данным РСА в молекуле соединения 9 плоскости металлоциклов практически ортогональны.

Схема 6. Реакция комплекса 6 с 1,3-дициклогексилкарбодиимидом.

Таким образом, конформационно-жесткий дииминовый лиганд пассивирует связь Al–H в комплексе 6. С одной стороны, соединение 6, подобно описанному ранее гидриду [(dpp-bian)Al(H)₂Li(THF)₃] (1), способно восстанавливать кратные связи (например, реакция с карбодиимидом). С другой стороны реакция комплекса 6 с 2,6-ди-*трет*-бутил-4-метилфенолом указывает на то, что основность амидного азота в этом гидриде выше, чем основность гидрид-иона. Это отличает гидрид 6 от

соединения [(dpp-bian)Al(H)₂Li(THF)₃], которое реагирует с 2,6-ди-*трет*-бутил-4метилфенолом с протонолизом связи Al–H.

Синтез, строение и свойства гидридов алюминия с анион-радикалом dppbian. Реакция H₂AlCl с мононатриевой солью dpp-bian в соотношении 1:1 в Et₂O (Схема 7) приводит к образованию комплекса [(dpp-bian)AlH₂] (10), который был выделен в виде коричневых кристаллов с выходом 34 % из реакционной смеси. Выход продукта может быть увеличен до 53 % заменой эфира на толуол и последующей кристаллизацией из него. В эфире комплекс 10 медленно превращается в эфират соединения 6 за счет элиминирования одного атома водорода (предположительно в виде H₂). Продуктом реакции эквимольных количеств HAlCl₂ и [(dpp-bian)Na] является соединение [(dpp-bian)Al(H)Cl] (11), выход которого составил всего 5 %. Однако, гидрид 11 может быть получен с выходом до 78 % реакцией двух эквивалентов H₂AlCl с [(dpp-bian)Na] (Схема 7).

Схема 7. Синтез соединений 10 и 11.

С целью получения смешанного алкил-гидридного комплекса алюминия была проведена реакция соединения **11** с одним эквивалентом метиллития CH₃Li. Продукт реакции [(dpp-bian)Al(H)CH₃] (**12**, 65 %) выделен в виде коричневых кристаллов из гексана. В его ИК спектре колебания Al–H связи проявляются в виде полосы при 1805 см⁻¹, что близко соответствующим значениям для соединений **10** (1835 и 1804 см⁻¹) и **11** (1876 см⁻¹). Ввиду присутствия анион-радикала dpp-bian соединения **10-12** парамагнитны и при комнатной температуре в растворе демонстрируют разрешённые сигналы ЭПР.

Строение соединений 10-12 установлено методом РСА. Координационное окружение атома алюминия в комплексах 10-12 – искаженный тетраэдр (Рис. 3).

Длины связей в дииминовом фрагменте данных соединений укорочены по сравнению с соответсвующими связями в комплексах 1, 3, 4, 6, 7 и 9, что свидетельствует о присутствии анион-радикала dpp-bian.

Рис. 3. Молекулярные структуры соединений 10 и 12.

Длины связей Al–H(1) и Al–H(2) в комплексе **10** (1.539(16) и 1.533(16) Å) сопоставимы с расстояниями Al–H в гидриде **1** (1.588(18) и 1.553(19) Å). Связи Al–H(1) в комплексах **11** (1.492(5) Å) и **12** (1.470(17) Å) несколько меньше расстояний в гидриде **10**, но близки между собой.

Установлено, что парамагнитные гидриды 10-12 инертны по отношению к гептену-1 и ацетонитрилу, а гидриды 11 и 12 также не реагируют с терминальными алкинами. Хотя соединение 10 и реагирует с фенилацетиленом, выделить и охарактеризовать продукт данной реакции не удалось. С имидазол-2-илиденом гидрид 10 реагирует путем элиминирования одного атома водорода, при этом дииминовый лиганд восстанавливается до дианиона, а продуктом реакции является комплекс [(dpp-bian)AlH(*i*Pr₂Im^{Me})] (7).

Реакции [(dpp-bian)AlH(Cl)] (11) с металлоорганическими соединениями. реакционной способности комплекса Изучение 11 по отношению К металлорганическим производным показало, что продуктом реакции могут быть не только производные состава [(dpp-bian)AlH(R)]. Так, реакция соединения 11 с трет-[(dpp-bian)AltBu(Et₂O)] (13) (Схема 8), который бутиллитием дает комплекс образуется, вероятно, из нестабильного интермедиата [(dpp-bian)AlH(tBu)] при восстановительном элиминировании водорода. При этом дииминовый лиганд восстанавливается от анион-радикала до дианиона. Координационное окружение атома алюминия в комплексе 13 – искаженный тетраэдр. Длины связей в дииминовом фрагменте подтверждают присутствие в комплексе дианиона dpp-bian.

12

Схема 8. Реакция соединения 11 с трет-бутиллитием.

Одним из продуктов реакции комплекса 11 с фенилацетиленидом натрия (1:2) в эфире является комплекс [(dpp-bian)Al(C=CPh)₂Na(Et₂O)₂] (14, 38 %), который выпадает в виде темно-зеленого мелкокристаллического осадка из реакционной смеси. Другой продукт – комплекс [{dpp-bian(H)}Al(C=CPh)₃Na(Et₂O)₂] (15, 12 %), выделен в виде темно-фиолетовых кристаллов после упаривания маточного раствора (Схема 9). Комплекс 15 образуется, вероятно, в результате взаимодействия соединения 14 с PhC=CH. Проведение данной реакции в толуоле, при тех же условиях, приводит к образованию производного 14 с выходом 62 %.

Схема 9. Реакция комплекса 11 с фенилацетиленидом натрия.

В ИК спектрах соединений 14 и 15 валентные колебания тройных связей С–С проявляются в виде слабых узких полос при 2114 и 2111 см⁻¹ соответственно. Слабая полоса при 3330 см⁻¹ в спектре комплекса 15 соответствует колебаниям связи N–H. Соединения 14 и 15 представляют собой фенилэтинильные производные алюминия. Координационное окружение атомов алюминия в них искаженный тетраэдр. В обоих случаях сольватированые катионы натрия координируют две фенилэтинильных группы. Длины связей дииминового фрагмента в соединениях 14

и 15 несколько различаются между собой. Причина этого, по-видимому, состоит в различной координации азотных лигандов атомами алюминия: в соединении 14 азотсодержащий фрагмент хелатирует атом алюминия, тогда как в соединении 15 он является монодентатным.

Реакция соединения **11** с пентаметилциклопентадиенидом натрия (Схема 10) протекает в 1,2-диметоксиэтане при комнатной температуре и сопровождается изменением цвета раствора с коричневого на зеленый. Темно-зеленые кристаллы соединения [(dpp-bian)Al(H)Cl][Na(DME)₃] (**16**) получены концентрированием реакционной смеси. Комплекс **16** так же может быть получен реакцией гидрида **11** с металлическим натрием в DME.

Схема 10. Реакция комплекса 11 с пентаметилциклопентадиенидом натрия.

В ИК спектре соединения 16 интенсивная полоса поглощения характерная для связи Al–H проявляется при 1789 см⁻¹. Анион [(dpp-bian)Al(H)Cl] в соединении 16 изоструктурен нейтральному комплексу [(dpp-bian)Al(H)Cl] (11): в обоих производных атомы алюминия имеют искаженную тетраэдрическую координацию. Дииминовые лиганды в них симметрично хелатируют атомы алюминия. Следует отметить, что в результате реакции соединения 11 с 1 мольным эквивалентом бензилкалия в толуоле образуется трудноразделимая смесь продуктов.

Реакционная способность комплексов алюминия по отношению к диоксиду углерода. В реакциях CO_2 с комплексами алюминия, содержащими дианион dpp-bian, образуется трудноразделимая смесь продуктов. В то же время в реакциях парамагнитных гидридов с оксидом углерода(IV) удалось выделить и охарактеризовать продукты реакций. Так, в реакции [(dpp-bian)AlH₂] (10) с одним эквивалентом диоксида углерода происходит восстановление обеих связей C=O в последнем. Продукт реакции – комплекс [{(dpp-bian)AlO₂CH₂}₂] (17) выделен в виде коричневых кристаллов с выходом 59 % (Схема 11). Соединение 17 является парамагнитным, о чем свидетельствует спектр ЭПР кристаллического образца. Из-за очень низкой растворимости продукта получить его спектр ЭПР в растворе не удалось. По данным РСА комплекс 17 представляет собой димер, в котором два мостиковых метан-1,1-диолатных лиганда связывают два фрагмента [(dpp-bian)Al].

Схема 11. Реакция комплекса 10 с СО_{2.}

В то же время, реакция родственного комплексу 10 соединения [(dpp-bian)AlH(Cl)] (11) с избытком CO₂ приводит к образованию оксо-комплекса [{(dpp-bian)AlCl}₂(µ-O)] (18) (Схема 12). Продукт 18 выделен в виде коричневых кристаллов с выходом 73 % и образуется, вероятно, в результате восстановления диоксида углерода до монооксида углерода.

Схема 12. Реакция комплекса 11 с СО₂.

Поскольку установить характер превращения CO₂ на гидридах алюминия, содержащих дианион dpp-bian не удалось, мы решили вовлечь в реакцию с CO₂ диалан [(dpp-bian)Al–Al(dpp-bian)], который также содержит дианионные dpp-bian лиганды. Известно, что он активен по отношению к кратным связям алкинов [*Chem. Eur. J.* **2012**, *18*, 11264]. Неожиданно оказалось, что направление реакции диаллана с CO₂ сильно зависит от растворителя. Так, при добавлении избытка CO₂ к замороженному до стеклообразного состояния синему раствору диалана в эфире и постепенном размораживании цвет реакционной смеси становится черным. Через 12 часов из реакционной смеси были выделены красно-фиолетовые кристаллы комплекса [{(dpp-bian(CO₂))Al}(μ -O){(dpp-bian)Al}] (**19**, 73 %) (Схема 13). Из-за очень низкой растворимости продукта **19** получить его спектр ЯМР не удалось.

Схема 13. Реакция диалана с СО₂ в диэтиловом эфире.

По данным PCA соединения **19** (Рис. 4) восстановление диаланом CO₂ приводит к разрыву связи металл–металл, а так же образованию связи N–C(CO₂). Образовавшийся карбаматный фрагмент связывает два атома металла. Вторым мостиком между атомами алюминия является лиганд O^{2–} (оксо-мостик).

Рис. 4. Молекулярная структура соединения 19.

В несольватирующих растворителях (бензол или толуол) в реакции CO₂ с диаланом образуется продукт 2+4 циклоприсоединения [{(dpp-bian(CO₂))Al}₂] (**20**) (Схема 14). После добавления избытка CO₂ к раствору диалана в толуоле наблюдается изменение цвета раствора с синего на красно-коричневый и образование мелкокристаллического аддукта **20**. Выдерживание ампулы с реакционной смесью при -18 °C в течение двух часов позволяет получить продукт

20 в виде красных кристаллов (60 %). В реакции происходит раскрытие одной связи С=О диоксида углерода и формирование новых связей С–С и АІ–О. В ИК спектре продукта **20** присутствует полоса колебаний связи С=О (1715 см⁻¹).

Схема 14. Реакция диалана с СО₂ в толуоле.

Установлено, что реакция образования циклоаддукта **20** является обратимой. Доказательством этого служит образование исходного диалана после перерастворения кристаллов аддукта **20** и удаления CO₂. Обратимость процесса циклоприсоединения также доказана методом ЯМР спектроскопии (Рис. 5).

Рис. 5. Область алифатических протонов ЯМР ¹Н спектра соединения **20** при 303 К (верхний) и 233 К (нижний) (400 МГц, С₇D₈).

Спектр комплекса **20**, полученного с использованием ¹³CO₂ при 233 К демонстрирует набор сигналов циклоаддукта, который при повышении температуры до 303 К сменяется набором сигналов симметричного диалана. Получить

удовлетворительный спектр ЯМР ¹³С коплекса **20** не удалось из-за его низкой растворимости. Однако в полученном спектре отчетливо наблюдаются сигналы свободного и присоединенного ¹³CO₂ при δ 124.32 и 173.38 м.д., соответственно. При повышении температуры до 303 К низкопольный сигнал пропадает.

Молекулярная структура соединения **20** (Рис. 6) подтверждает факт циклоприсоединения CO₂ к диалану по фрагментам Al–N–C обоих металлоциклов с образованием C–C и O–Al связей.

Рис. 6. Молекулярная структура соединения 20.

Увеличение координационного числа атомов алюминия с трех до четырех в комплексе **20** приводит к незначительному удлинению связи Al–Al (2.5500(13) Å), по сравнению с исходным диаланом (2.522(1) Å). Связи C(37)–O(1) (1.319(4) Å), C(74)–O(3) (1.317(4) Å) являются одинарными и удлинены по сравнению со значениями межатомных расстояний C(37)–O(2) (1.206(4) Å) и C(74)–O(3) (1.202(4) Å), соответствующих двойным связям молекулы CO₂.

Гидриды галлия с аценафтен-1,2-дииминовыми лигандами. Помимо гидридов алюминия, так же были получены гидриды галлия, стабилизированные как дианионом dpp-bian, так и его анион-радикалом. Попытки получить гидриды галлия взаимодействием дигалогенидов [(dpp-bian)GaX₂] с MH (X = Cl или I; M = Na или K соответственно) в толуоле оказались безуспешными. Поэтому было решено применить для синтеза целевых соединений подход, состоящий в расшеплении связи Ga–O фенилсиланом. В основе этого подхода предположение о том, что движущей силой процесса получения гидрида галия станет образование прочной связи Si–O. Установлено, что действие четырех эквивалентов фенилсилана на раствор оксо-производного галлия [(dpp-bian)Ga(μ -O)₂Ga(dpp-bian)] в эфире приводит к образованию дигидрида галлия [(dpp-bian)GaH₂] (**21**) (Схема 15).

Схема 15. Синтез соединений 21 и 22.

Если соотношение реагентов равно 1 к 2, то основным продуктом является гидридсилоксан [(dpp-bian)Ga(H)OSi(Ph)H₂] (22) (Схема 15). Гидриды 21 и 22 были выделены в виде коричневых кристаллов с выходами 47 и 53 % соответственно. Попытки выделить кремнийсодержащие продукты из данной реакции не предпринимались. Предполагаемым вторым продуктом этих реакций является силоксан H₂(Ph)SiOSi(Ph)H₂. ИК спектры соединений 21 и 22 содержат характерные полосы валентных колебаний Ga–H (1897 и 1872 см⁻¹ для 21; 1939 см⁻¹ для 22). Оба гидрида парамагнитны и демонстрируют хорошо разрешенные сигналы ЭПР. Соединения 21 и 22 представляют собой мономерные четырехкоординационные комплексы галлия (Рис. 7).

Рис. 7. Молекулярная структура соединений 21 (слева) и 22 (справа).

Анализ длин связей в металлоциклах комплексов **21** и **22** указывает на присутствие в них анион-радикала dpp-bian. Длины связей Ga–H в комплексах **21** (1.53(2) и 1.47(2) Å) и **22** (1.49(3) Å) близки между собой.

Попытка синтеза гидрида галлия с дианионом dpp-bian по реакции, подобной реакции примененной для синтеза производного алюминия [(dpp-bian)AlH(THF)] (6) не увенчалась успехом. Однако, нагревание раствора соединения **21** в пиридине, обладающем большой донорной способностью, приводит к элиминированию одного из атомов водорода и образованию комплекса [(dpp-bian)GaH(Py)] (**23**) (Схема 16). Соединение **23** выделено в виде синих кристаллов с выходом 77 %. Колебания связи Ga–H в его ИК спектре проявляются в виде интенсивной полосы при 1933 см⁻¹.

Схема 16. Синтез соединения 23.

В соединении 23 (Рис. 8) связи N(1)–C(1) и N(2)–C(2) (1.3850(18) и 1.3991(17) Å соответственно) удлинены по сравнению с соответствующими связями в комплексах 21 и 22, что указывает на дианионное состояние dpp-bian лиганда в нем.

Рис. 8. Молекулярная структура соединения 23.

Обменная реакция мононатриевой соли [(dpp-bian)Na] с HGaCl₂ в эфире приводит к образованию гидрида галлия [(dpp-bian)Ga(H)Cl] (**24**) (Схема 17). В ИК спектре соединения **24** полоса поглощения при 1951 см⁻¹ соответствует валентным

колебаниям связи Ga–H. Благодаря наличию анион-радикала dpp-bian гидрид 24 демонстрирует хорошо разрешенный изотропный спектр ЭПР в толуоле при 298 К.

Схема 17. Синтез соединения 24

По аналогии с гидридом алюминия [(dpp-bian)AlH(Cl)] (11) нами была исследована реакционная способность гидрида галлия 24 по отношению к некоторым металлоорганическим производным. Смешанный алкил-гидридный комплекс галлия [(dpp-bian)Ga(H)CH₃] (25) был получен реакцией соединения 24 с одним эквивалентом метиллития CH₃Li (Cxema 18). В ИК спектре соединения 25 наблюдается интенсивная полоса поглощения при 1870 см⁻¹ характерная для валентных колебаний Ga–H связи.

Схема 18. Синтез соединения 25.

Соединения 24 и 25 (Рисунок 9) аналогично комплексам 21 и 22 содержат анион-радикал dpp-bian, на что указывают длины связей дииминового фрагмента в них (N(1)–C(1) 1.327(3), N(2)–C(2) 1.326(3), C(1)–C(2) 1.425(3) Å) для 24 и (N(1)–C(1) 1.326(3), N(2)–C(2) 1.328(3), C(1)–C(2) 1.428(3) Å) для 25. Связь Ga–H в комплексе 25 равна 1.48(2) Å и близка к таковым значениям для соединений 21-23. К сожалению, при определении молекулярного строения соединения 24 атом водорода H(1) не был локализован, но зафиксирован в заданном положении, что не позволяет обсуждать длину связи Ga–H(1).

Рис. 7. Молекулярная структура соединений 24 (слева) и 25 (справа).

Продуктом реакции гидрида 24 с *трет*-бутиллитием является дигаллан [(dpp-bian)Ga–Ga(dpp-bian)] [*Chem. Eur. J.* 2007, 25, 7050]. Анализ летучих продуктов этой реакции показал наличие в них изобутана и изобутилена. При взаимодействии комплекса 24 с фенилацетиленидом натрия с выходом 42 % был получен известный комплекс [(dpp-bian)Ga(C=CPh)₂] [*Organometallics* 2015, *34*, 1498], который образуется, вероятно, в результате обменной реакции с выпадением в осадок хлорида и гидрида натрия. Дальнейшие исследования реакционной способности полученных гидридов галлия показали, что они инертны по отношению к таким субстратам как гептен-1, винилбутиловый эфир, стирол, фенилацетилен, 2,6-ди-*mpem*-бутил-4-метилфенол и CO₂.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Разработаны методы синтеза гидридов алюминия и галлия, содержащих конформационно-жесткий 1,2-бис[(2,6-диизопропилфенил)имино]аценафтен (dpp-bian).
- 2. Впервые получены гидриды алюминия и галлия с анион-радикальным и дианионным дииминовым лигандом. Полученные гидриды с анион-радикалом dpp-bian являются первым примером парамагнитных гидридов металлов 13 группы.
- 3. Показано, что дианионный dpp-bian пассивирует связь металл-водород в гидридах алюминия и галлия. Показано, что в гидридах алюминия, содержащих дианион dpp-bian, реакции с одними и теми же субстратами могут протекать, как по связи Al-H, так и по связи Al-N.

- 4. Установлено, что при замещении галогена в галоген-гидридном комплексе алюминия на органические радикалы возможен внутримолекулярный перенос электрона с гидридного лиганда на диимин.
- 5. Показано, что аценафтен-1,2-дииминовые комплексы гидридов алюминия способны восстанавливать кратные связи углерод-кислород как в органических, так и неорганических субстратах.
- 6. Открыта реакция обратимого циклоприсоединения диоксида углерода к диалану [(dpp-bian)Al–Al(dpp-bian)] в толуоле, являющаяся первым примером такого рода реакций в химии непереходных металлов с участием CO₂.
- 7. Взаимодействие диалана с углекислым газом в диэтиловом эфире, в отличие от реакции в толуоле, приводит к продукту внедрения CO₂ по связи Al–N.

СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

- Sokolov V.G. Aluminum hydrides with radical-anionic and dianionic acenaphthene-1,2-diimine ligands / V.G. Sokolov, T.S. Koptseva, M.V. Moskalev, A.V. Piskunov, M.A. Samsonov, I.L. Fedushkin // Russian Chemical Bulletin.– 2017.– T. 66, № 9.– C. 1569–1579.
- Sokolov V.G. Gallium Hydrides with a Radical-Anionic Ligand / V. G. Sokolov, T. S. Koptseva, M.V. Moskalev, N.L. Bazyakina, A.V. Piskunov, A.V. Cherkasov, I.L. Fedushkin // Inorganic Chemistry. 2017. T. 56, № 21. C. 13401–13410.
- Sokolov V.G. Reactivity of an aluminum hydride complex with a redox-active diimine ligand / V.G. Sokolov, T.S. Koptseva, V.A. Dodonov, R.V. Rumyantsev, I.L. Fedushkin // Russian Chemical Bulletin.– 2018.– T. 67, №12.– C. 2164–2171.
- Соколов В. Г. Реакции аценафтендииминового гидрида Алюминия с 1,3дициклогексилкарбодиимидом и 2,6-ди-*трет*-бутил-4-метилфенолом / В. Г. Соколов, Т. С. Копцева, М. В. Москалев, Е. В. Баранов, И. Л. Федюшкин // Координационная химия. – 2019. – Т.45, № 9. – С. 539–545.
- 5. Копцева Т.С. Гидриды алюминия и галлия с аценафтен-1,2-дииминовым лигандом / Копцева Т.С., Соколов В.Г. // ХХІІ Нижегородская сессия молодых ученых. Естественные, математические науки: материалы докладов. Княгинино, 2017, С. 100-101.
- 6. Копцева Т.С. Гидриды алюминия и галлия с анионными аценафтендииминовыми лигандами / Копцева Т.С., Соколов В.Г., Москалев М.В. // XX Молодежная школа-конференция по органической химии, Казань, 2017, С. 42.
- 7. Sokolov V. G. The first aluminum and gallium hydrides based on anionic diimine ligands / V. G. Sokolov, **T. S. Koptseva**, M. V. Moskalev, A. A. Skatova, I. L.

Fedushkin // 27th International Chugaev Conference on Coordination Chemistry, Nizhny Novgorod, 2017, C. O98.

- Копцева Т. С. Гидридные и алкильные аценафтен-1,2-дииминовые комплексы алюминия и галлия / Т. С. Копцева, В. Г. Соколов // XXIII Нижегородская сессия молодых ученых. Естественные, математические науки, Нижний Новгород, 2018, С. 73.
- Копцева Т. С., Соколов В. Г., Федюшкин И. Л. Гидриды алюминия и галлия с анион-радикальными и дианионными аценафтен-1,2-дииминовыми лигандами / Т. С. Копцева, В. Г. Соколов, И. Л. Федюшкин // Всероссийская молодежная конференция «Достижения молодых ученых: химические науки», Уфа, 2018, С. 34.
- 10. Соколов В. Г. Синтез новых комплексов галлия и алюминия с редокс-активным аценафтен-1,2-дииминовым лигандом / В. Г. Соколов, Т. С. Копцева, В. А. Додонов, И. Л. Федюшкин // Динамические процессы в химии элементоорганических соединений, Казань, 2018, С. 160.
- Копцева Т. С. Аценафтен-1,2-дииминовые комплексы алюминия. Синтез и реакционная способность по отношению к оксиду углерода (IV)/ Т. С. Копцева, В. Г. Соколов // XXIV Нижегородская сессия молодых ученых. Технические, естественные, математические науки, Нижний Новгород, 2019, С. 152–153.

Копцева Татьяна Сергеевна

ГИДРИДЫ АЛЮМИНИЯ И ГАЛЛИЯ С АЦЕНАФТЕНДИИМИНОВЫМ ЛИГАНДОМ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук