На правах рукописи

Безверхний Александр Иванович

Магнитная и спиновая динамика в многослойных гетероструктурах на основе ультратонких пленок Co, CoFeB и CoFeGd

01.04.17 – Химическая физика, горение и взрыв, физика экстремальных состояний вещества

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в федеральном государственном бюджетном учреждении науки "Институт проблем химической физики Российской академии наук"

Научный

Моргунов Роман Борисович,

руководитель:

доктор физико-математических наук, профессор, главный научный сотрудник Института проблем химической физики

PAH

Официальные оппоненты:

Бердинский Виталий Львович, доктор физико-математических наук, заведующий кафедрой Биофизики и физики конденсированного состояния Оренбургского государственного университета

Калашникова Александра Михайловна, кандидат физикоматематических наук (PhD), и.о. ведущего научного сотрудника - заведующий лабораторией физики ферроиков Физико-технического института имени А.Ф. Иоффе РАН, доцент Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет».

Защита состоится "24" декабря 2020 г. в 10 часов 30 минут на заседании диссертационного совета Д 002.082.03 в ФГБУН «Институт проблем химической физики РАН» по адресу: 142432, Московская область, г. Черноголовка, ул. Проспект академика Семёнова д.1, тел./факс (496)522-51-34.

С диссертацией можно ознакомиться в библиотеке Института проблем химической физики РАН по адресу: 142432 Московская область, г. Черноголовка, ул. Проспект академика Семёнова д.1, и на сайте ИПХФ РАН www.icp.ac.ru.

Автореферат разослан "____" _____ 2020 г.

Ученый секретарь диссертационного совета, д.х.н.

2. Ference

Золотухина Екатерина Викторовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Устройства хранения данных, переключаемые внешним магнитным полем, ограничены трилеммой магнитной записи. При увеличении плотности записи уменьшается объем участка, сохраняющего бит информации, и уменьшается его магнитная анизотропия вместе со временем хранения информации. Попытка подобрать материал с высокой магнитной анизотропией вызывает рост магнитного поля, необходимого для переключения элементов памяти и снижает энергоэффективность, а вместе с ней и плотность записи. Выход из описанного замкнутого круга заключается в использовании устройств памяти, переключаемых спинполяризованым током и светом.

Поскольку такие устройства представляют собой многослойные гетероструктуры, одной из современных проблем химической физики является установление роли химического состояния поверхностей и интерфейсов, гибридизации атомных орбиталей формировании спиновой динамики в тонких пленках и гетероструктурах на их основе. В (СФ) шероховатость синтетических ферримагнетиках поверхности, адгезия химических элементов при напылении, присутствие дефектов и локальные химические превращения в дефектных зонах, диффузия атомов между слоями оказывают определяющее влияние на возможность использования СФ в качестве элементов спинтроники.

СФ с перпендикулярной магнитной анизотропией (ПМА), это простейшие из устройств спинтроники, использующиеся в качестве датчиков магнитного поля и логических элементов магниторезистивной памяти [1]. Перемагничивание влияет на скорость и точность работы таких датчиков. В качестве датчиков магнитного поля используются СФ с площадью поверхности ~ 1 мм², которые перемагничиваются путём множественного зародышеобразования и движения доменной стенки. Ранее обнаружена длительная немонотонная релаксация намагниченности в СФ [2]. Описание немонотонной релаксации намагниченности моделью макроспина [2], пригодной для описания наноразмерных устройств, учитывало перемагничивание путём когерентного вращения намагниченности, но не перемагничивание с образованием зародышей намагниченности и движением доменной стенки.

В исследуемых СФ Pt/Co/Ir/Co/Pt на интерфейсах Co/Pt и Co/Ir возникает антисимметричное обменное взаимодействие Дзялошинского—Мория (ДМ), которое способствует хиральной спиновой структуре ферромагнитного слоя. В литературе имеются работы по изучению

поверхностного взаимодействия ДМ в гетероструктурах, состоящих из НМ/Со/НМ [3] (НМ – немагнитный металл с сильным спин-орбитальным взаимодействием) и межслоевого взаимодействия ДМ [4], однако данных о внутрислойного (интерфейсного) разделении межслоевого И взаимодействий ДМ в СФ в литературе недостаточно. Существуют еще области с искаженной симметрией в дефектных областях пленок, где преимущественно И стартует рост зародышей [5]. обстоятельство может давать разные значения ДМИ при наблюдении зародышей в микроскопе Керра (характеризует дефектные области) и при измерении ДМИ методом Бриллюэновского рассеяния (характеризует интерфейс без локальных дефектов).

Создание СФ, состоящих из сплошных однородных ферромагнитных слоёв толщиной менее 2 нм, является технически сложной задачей. При напылении плёнок, толщина которых всего на порядок превышает параметр решётки, часто возникает нестабильность, приводящая к неравномерному напылению ферромагнитных слоёв. Примером является многослойная гетероструктура $[(Co_{41}Fe_{39}B_{20})_x(SiO_2)_{100-x}/Bi_2Te_3]_{47}$, в которой слой CoFeB– SiO_2 состоит из частиц сплава FeCoB, распределённых в матрице SiO_2 [6]. Подобные нанокомпозиты, при размерах частиц CoFeB в 2–6 нм, обладают гигантским магнитосопротивлением $\sim 6\%$, вполне пригодным для технических применений. При высокой концентрации гранул между ними возникают «мостики», формируя магнитные фракталы сложной формы. Спрогнозировать значение магнитной анизотропии таких гетероструктур становится трудно.

Медико-биологические применения СФ заключаются в экспресс мониторинге количества ферромагнитных частиц - меток биологических объектов. Решение этой задачи требует создания секторов на поверхности СФ для захвата магнитомеченных клеток [7]. Это достигается оптической или электронной литографией. В диссертации предприняты попытки создания микронного рельефа более простым и дешевым методом холодной лазерной абляции маломощными ~ 10-20 мДж/см² фемтосекундными импульсами.

Цель исследования заключалась в выявлении закономерностей возникновения, эволюции и взаимодействия неравновесных магнитных фаз при переключении внешнего магнитного поля в Pt/Co/Ir/Co/Pt, а также в установлении роли дефектов спиновой и кристаллической структуры в формировании магнитной и спиновой динамики в гетероструктурах Pt/Co/Ir/Co/Pt, CoFeB—SiO₂ и Ta/Pt/GdFeCo/IrMn/Pt большой площади.

Задачами исследования являлись:

- 1. Экспериментальное установление причин длительной немонотонной релаксации намагниченности в СФ Pt/Co/Ir/Co/Pt, а также анализ динамики образования, взаимодействия и развития зародышей намагниченности, вариаций интегральной намагниченности, вызванных переключением постоянного магнитного поля.
- 2. Разработка модели, описывающей монотонную, немонотонную и осциллирующую релаксации магнитного момента СФ, и установление роли взаимодействия между зародышами намагниченности разных типов в динамике магнитной релаксации в постоянном магнитном поле.
- 3. Установление критерия возникновения немонотонной релаксации намагниченности в СФ Pt/Co/Ir/Co/Pt с различной толщиной слоев Со и при различной температуре и его экспериментальная проверка в постоянном магнитном поле.
- 4. Установление условий генерации неравновесных состояний намагниченности (магнитных фаз) в быстро нарастающем магнитном поле, обеспечивающем превышение скорости зарождения неравновесных магнитных фаз над скоростью их релаксации в Pt/Co/Ir/Co/Pt.
- 5. Установление количественных характеристик антисимметричного обменного взаимодействия ДМ на границе слоев, где теряется симметрия по отношению к инверсии, ДМ в дефектных областях, а также межслойного ДМ в СФ Pt/Co/Ir/Co/Pt.
- 6. Определение магнитной анизотропии нанокомпозитов $CoFeB-SiO_2$ со сложной разупорядоченной структурой наночастиц CoFeB и их кластеров в матрице SiO_2 в зависимости от количества напыленного ферромагнитного материала.
- 7. Создание дисковых кратеров регулируемой глубины на поверхности гетероструктуры Ta/Pt/GdFeCo/IrMn/Pt под действием фемтосекундных лазерных импульсов и исследование элементного состава, механических и магнитных свойств материала внутри кратеров.

Методология и методы исследования

Релаксация намагниченности полевые зависимости намагниченности в диапазоне температур от 50 К до 300 К были измерены методом СКВИД-магнитометрии. Динамика доменных стенок и зависимости намагниченности, записанные полевые при скоростях развёртки магнитного поля, были измерены методом полярной магнитооптической микроскопии Керра (МОКЕ). Константы магнитной анизотропии гетероструктур серии CoFeB-SiO₂ были извлечены из угловых зависимостей резонансных полей, полученных методом ФМР- спектроскопии. Структурный анализ, и анализ толщин слоёв образцов Pt/Co/Ir/Co/Pt произведены методом рентгеновской дифракции. Анализ толщин слоёв и их структуры для образцов CoFeB—SiO₂ был произведен методом просвечивающей электронной микроскопии (TEM). Анализ рельефа поверхности и распределения сил магнитного взаимодействия между поверхностью гетероструктуры Ta/Pt/GdFeCo/IrMn/Pt и зондом произведён методами атомно-силовой и магнитно-силовой микроскопии. Аналитические расчеты произведены в следующих программах: Origin Pro 2007, Wolfram Mathematica 12.

Научная новизна

- 1. Получен универсальный количественный критерий немонотонной релаксации намагниченности, пригодный ДЛЯ прогнозирования их возникновения в любых СФ с ПМА. В условиях, при наблюдается немонотонная релаксация, методом обнаружены одновременно три магнитные фазы: исходная фаза АР+ и зарождающиеся конкурирующие фазы АР- и Р-.
- 2. Предложена математическая одновременно модель, описывающая немонотонную осциллирующую И релаксации намагниченности в СФ на основе нелинейной динамической системы уравнений. Фазовый дифференциальных портрет макроскопических колебаний, длительный период колебаний, магнитных спонтанные изменения магнитного момента, нуклеация зародышей и пространственновременные корреляции аналогичны особенностям реакции Белоусова-Жаботинского в химической физике.
- 3. Обнаружена немонотонная зависимость скорости доменной границы вблизи поля переключения между состояниями СФ и предложено уравнение, которое её описывает с учётом обменного асимметричного межслойного взаимодействия. Произведено сравнение вкладов межслоевого и внутрислойного (на интерфейсе) взаимодействий ДМ в Pt/Co/Ir/Co/Pt.
- 4. Получены значения энергии ДМ на интерфейсе, в дефектных областях и между слоями Pt/Co/Ir/Co/Pt. Обнаружено влияние взаимодействия ДМ на немонотонную релаксацию магнитного момента.
- 5. Установлено, что фемтосекундные лазерные импульсы сравнительно малой мощности создают кратеры, невидимые в оптический микроскоп из-за их малой глубины ~ 10 нм. Возникновение таких кратеров важно для интерпретации экспериментов по полностью оптическому переключению намагниченности и для прогнозирования количества допустимых циклов оптической записи информации.

Практическая значимость

- 1. В диссертации произведены подробные измерения релаксации намагниченности в СФ Pt/Co/Ir/Co/Pt и определены температуры, толщины верхнего слоя Со и прикладываемые постоянные поля, при которых наблюдаются немонотонные и осциллирующие релаксации намагниченности. Предложенный критерий немонотонной релаксации может быть использован для предотвращения неустойчивости работы датчиков магнитного поля на основе СФ.
- 2. Доказано, что лазерные импульсы длительностью 50 фс и пороговым значением плотности светового потока 12–15 мДж/см² способны многослойной слой вещества гетероструктуры точечно удалять Ta/Pt/GdFeCo/IrMn/Pt, создавая кратеры круглой формы без крупных дефектов, трещин и следов плавления. Запатентована технология создание рельефа поверхности многослойных гетероструктур фемтосекундными лазерными импульсами, которая может применяться для производства датчиков концентрации магнитомеченных клеток с возможностью их захвата поверхностью датчика.

Положения, выносимые на защиту

- 1. Немонотонная и осциллирующая релаксации намагниченности возникают в СФ Pt/Co/Ir/Co/Pt в результате конкуренции динамики развития и энергетического преимущества двух магнитных фаз: равновесной в данном постоянном магнитном поле, и неравновесной промежуточной фазы с повышенной скоростью образования, возникающей вокруг дефектов структуры.
- 2. За возникновение длительной немонотонной релаксации намагниченности отвечает баланс энергий барьеров перемагничивания ферромагнитных слоёв, энергий Зеемана ферромагнитных слоёв и обменной межслойной энергии. Количественный критерий, выведенный из энергетического баланса, пригоден для прогнозирования температуры и толщины ферромагнитных слоёв любых СФ с ПМА, при которых будет наблюдаться немонотонная релаксация намагниченности.
- 3. Причиной немонотонной зависимости скорости движения доменной стенки от постоянного магнитного поля в СФ Pt/Co/Ir/Co/Pt является взаимодействие двух типов магнитных зародышей, которое определяется межслоевым и внутрислойным взаимодействием ДМ.
- 4. Энергия поверхностного антисимметричного обменного взаимодействия ДМ СФ, измеренная методом Бриллюэновского рассеяния света, отличается в СФ Pt/Co/Ir/Co/Pt от энергии, определяемой по полевой зависимости скорости движения доменных стенок, потому, что развитие

магнитных зародышей наблюдают в локальных дефектных областях, а спиновая волна на 99% характеризует не дефектные области интерфейса.

- 5. Немонотонная зависимость эффективной магнитной анизотропии нанокомпозитов $CoFeB-SiO_2$ от толщины слоя вызвана конкуренцией вкладов поверхностной и объёмной магнитокристаллической анизотропии.
- 6. Использование фемтосекундных лазерных импульсов позволяет создавать на поверхности Ta/Pt/GdFeCo/IrMn/Pt кратеры с контролируемым диаметром и глубиной, вблизи которых отсутствуют крупные дефекты. Градиент поля рассеяния границы кратера достаточен для захвата ферромагнитных микрочастиц.

Достоверность и обоснованность полученных результатов обеспечивается: сопоставимостью полученных в работе данных о магнитной анизотропии, намагниченности, скоростей доменных стенок, энергии взаимодействия ДМ с данными работ других авторов для аналогичных систем; независимой экспертизой и рецензированием статей в международных журналах.

Апробация работы

Материалы работы докладывались на семинарах Отдела Строения Вещества ИПХФ РАН, а так же на следующих международных конференциях: Joint European Magnetic Symposia (Mainz, Germany, 2018), V Международная научно-практическая конференция «Виртуальное моделирование, прототипирование и промышленный дизайн» (Тамбов, 2018), Joint European Magnetic Symposia (Uppsala, Sweden, 2019), XXIV Международная конференция «Релаксационные явления в твёрдых телах» (Воронеж, 2019), VII Euro-Asian Symposium «Trends in MAGnetism» (Ekaterinburg, Russia, 2019). А.И.Безверхний поддержан грантом РФФИ № 19-32-90128 для аспирантов. Работа выполнена в рамках гранта 2644.2020.2 Президента Российской Федерации для государственной поддержки ведущих научных школ и при финансовой поддержке Минобрнауки России (грант № 075-15-2020-779).

Публикации автора по теме диссертации

По теме диссертации опубликовано 6 статей в рецензируемых изданиях, рекомендованных ВАК и индексируемых в Scopus и Web of Science, 2 монографии, 1 патент на изобретение, а также 6 тезисов докладов на международных научных конференциях.

Личный вклад автора

Автором диссертационной работы были проведены измерения и обработка временных и полевых зависимостей намагниченности образцов с использованием СКВИД-магнетометра. Выполнено измерение и обработка

зависимостей скоростей доменных стенок от приложенного магнитного поля методом МОКЕ. Определены значения температур и полей, при которых возникает длительная немонотонная релаксация намагниченности. Исследована взаимосвязь результатов измерений c результатами, авторами. Постановка полученными другими задач, проведение экспериментов, интерпретация экспериментальных, формулировка выводов и написание статей осуществлялась совместно с научным руководителем.

Структура и объем диссертации

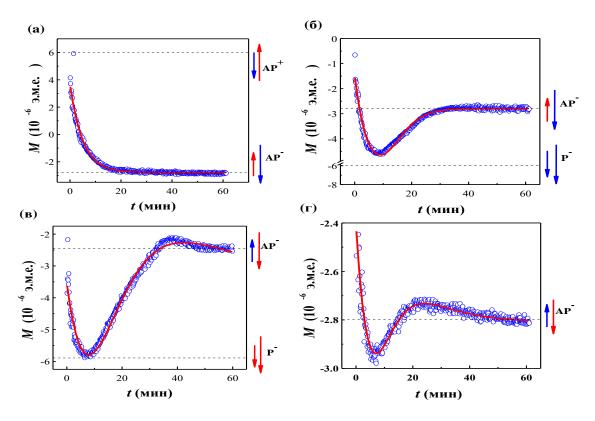
Диссертация изложена на 159 страницах, содержит 90 рисунков и 3 таблицы. Библиография включает 140 наименований. Диссертация состоит из введения, пяти глав, заключения и списка литературы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулированы цель работы, задачи исследования, отмечены основные положения, выносимые на защиту.

В первой главе проведён литературный обзор современного области создания СФ с ПМА, и текстурированных гетероструктур. Выполнен анализ модели Фатуззо-Лабруне, описывающей перемагничивания механизмы путём множественного зародышеобразования И движения доменной стенки. Рассмотрены антисимметричного обменного взаимодействия ДМ интерфейсах ферромагнетик/НМ при отсутствии центров инверсии. Произведён анализ модели межслойного антисимметричного обменного взаимодействия, приводящего к неколлинеарности магнитных моментов в двух ферромагнитных слоях СФ. Проанализированы магнитооптические методы записи информации и возможные дефекты, создаваемые лазером на поверхности магнитных пленок, а также методы создания рельефа поверхности плёнок. Сформулированы тонких цели И задачи диссертационной работы.

Во второй главе описаны образцы и экспериментальные методы, используемые в данной диссертационной работе. Описаны методы измерения полевых зависимостей намагниченности, релаксаций намагниченности СКВИД магнитометром и проверочные эксперименты. Описана методика измерения скорости доменной стенки и асимметричного расширения магнитных доменов методом МОКЕ. Описан метод измерения


энергии взаимодействия ДМ методом Бриллюэновского рассеяния света и аттестация образцов рентгеноструктурным анализом. Описано применение ФМР для установления магнитной анизотропии. Приведены детали измерения рельефа поверхности и распределения силы магнитного взаимодействия зонд-образец методами атомно-силовой (АСМ) и магнитно-силовой микроскопии (МСМ). Приведено описание исследуемых образцов и методика их получения.

В третьей главе представлены экспериментальные данные о немонотонной магнитной релаксации и ее зависимости от температуры и толщины пленки Со. Представлены результаты моделирования длительной осциллирующей релаксации намагниченности, основанные на взаимодействиях зародышей разных знаков. Описаны условия наблюдения немонотонной релаксации намагниченности в СФ при переходе системы из начального равновесного состояния намагниченности АР⁺ в выгодное по энергии состояние АР⁻ через промежуточное невыгодное состояние Р⁻ (рисунок 16). Осциллирующая релаксация является частным случаем немонотонной релаксации и показана на рисунках 1в и 1г.

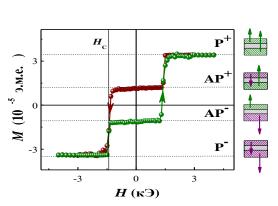
Для анализа осциллирующей релаксации намагниченности предложена система дифференциальных уравнений:

$$\begin{cases} \frac{dx}{dt} = \alpha z - \beta x - \delta xy \\ \frac{dy}{dt} = \gamma z + \beta x + \delta xy \\ x + y + z = 1 \end{cases}$$
 (1)

где x ($0 \le x \le 1$) доля фазы P^- , y ($0 \le y \le 1$) доля фазы AP^- , z ($0 \le z \le 1$) доля фазы AP^+ , $\alpha(H, T)$ — эффективность зарождения фазы P^- из начальной фазы AP^+ , $\gamma(H, T)$ — эффективность зарождения фазы AP^- из начальной фазы AP^+ , β — частота переходов из P^- в AP^- , δ — частота встреч зародышей AP^- и P^- . Начальные условия x(0) = 0, y(0) = 0, z(0) = 1. Нелинейный член δxy учитывает взаимодействие зародышей намагниченности AP^- и P^- . Аппроксимации монотонной, немонотонной и осциллирующей релаксаций решением системы (1) показаны на **рисунке 1** сплошными линиями.

Рисунок 1. Типы магнитной релаксации, наблюдаемые в Pt(3.2 нм)/Co(1.1 нм)/Ir(1.4 нм)/Co(0.7 нм)/Pt(3.2 нм) в магнитных полях: $-1350 \ \Im$ (а), $-1360 \ \Im$ (б) $-1354 \ \Im$ (в), $-1370 \ \Im$ (г) при $T=100 \ \mathrm{K}$. Сплошные линии — точные решения динамической системы (1).

Параметры α и γ зависят от энергии активации ΔE как $\alpha = \alpha_0(-\Delta E/kT)$, где α_0 частота попыток зарождения фазы P^- , а $\gamma = \gamma_0(-\Delta E/kT)$, где γ_0 зарождения фазы AP^{-} . При аппроксимации попыток осциллирующей релаксации, показанной на рисунке 1г, получены следующие параметры: $\alpha = 0.045 \pm 0.005 \text{ мин}^{-1}$, $\beta = 0.013 \pm 0.002 \text{ мин}^{-1}$, $\gamma =$ 0.006 ± 0.0005 мин⁻¹, $\delta = 0.151 \pm 0.01$ мин⁻¹. Из сравнения параметров осциллирующей релаксации с параметрами α, β, γ, δ немонотонных релаксаций в разных полях следует, что осциллирующая релаксация (рисунок 1г) отличаются сильным, по сравнению с немонотонной релаксацией (рисунок 16) взаимодействием между зародышами АР- и Р-, из-за высокой частоты встреч зародышей – δ .


Немонотонная релаксация наблюдается вблизи поля перехода $H_{\rm c}$ между тремя стабильными состояниями намагниченности (рисунок 2). Перемагничивание является термоактивационным процессом, а время ожидания скачка перемагничивания зависит от энергии активации ΔE , как $\tau = \tau_0 \exp(-\Delta E/kT)$, где $1/\tau_0$ — частота попыток скачкообразного перемагничивания, k — постоянная Больцмана, T — температура. Энергия активации определяется энергией анизотропии, которая зависит от температуры и толщины ферромагнитных слоёв. Меняя эти параметры,

можно управлять полями переключения и вызвать совпадение двух полей переходов, как показано на **рисунке 2.** Выразив значения полей переключения из условия минимизации энергии и приравняв их между собой, получаем количественный критерий немонотонной релаксации намагниченности:

$$E_{t} = 2E_{EX}(1 - (M_{t}/M_{b})) - E_{b}(M_{t}/M_{b})$$
(2)

где M_b и M_t — намагниченности нижнего и верхнего слоев Со, E_{EX} — энергия обменного взаимодействия между слоями Со, E_b и E_t — энергии анизотропии нижнего и верхнего слоя.

На **рисунке 3** чёрными точками показаны экспериментально подтверждённые критические температуры T^* и толщины t_{Co} верхнего слоя Со, при которых наблюдается немонотонная релаксация. Прогнозы уравнения (2) показаны на **рисунке 3** треугольниками и согласуются с экспериментальными данными. Зная температурные зависимости намагниченности, энергий анизотропии ферромагнитных слоёв и обменной межслойной энергии, можно предсказать условия наблюдения немонотонной релаксации для любых СФ с ПМА.

Рисунок 2. Зависимость M(H) образца с толщиной верхнего слоя Со $t_{Co} = 0.7$ нм при T = 100 К. H_c — совпадение полей $AP^+ \rightarrow AP^ P^- \rightarrow AP^-$. переходов Направление развёртки поля указано стрелками. Пунктирные горизонтальные линии – равновесные состояния намагниченности. Направления моментов магнитных верхнего и нижнего слоев Со для равновесных состояний

намагниченности указаны стрелками на

боковых вставках.

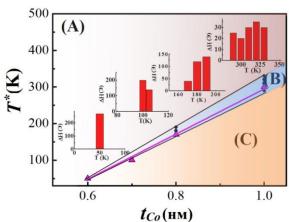
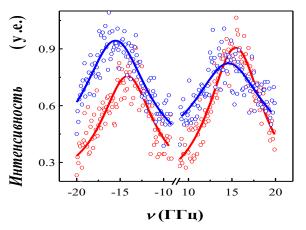



Рисунок 3. Зависимость критической температуры T^* , при которой наблюдается немонотонная релаксация намагниченности, от толщины верхнего слоя слоя Со t_{Co} (черные символы). Интервалы ΔH магнитных полей H^* , в наблюдаются немонотонные релаксации в зависимости от T^* , показаны соответствующих вставках ДЛЯ значений Области (A) И (C) t_{Co} . соответствуют условиям монотонной магнитной релаксации, область условиям соответствует немонотонной релаксации. Фиолетовые символы расчетные значения, полученные помощью уравнения (2).

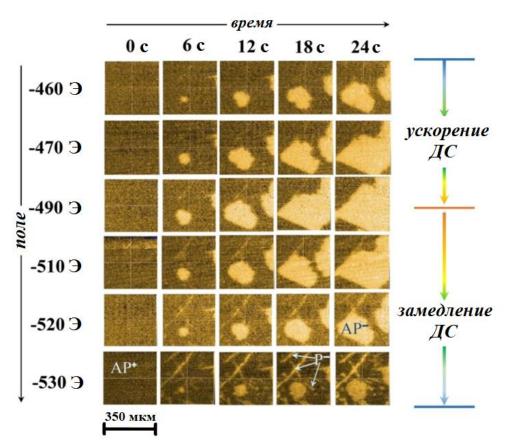
В четвёртой главе определена энергия поверхностного обменного антисимметричного взаимодействия ДМ в СФ и предложена причина торможения границы зародышей АРзародышах Р-. на Энергия взаимодействия ДМ была поверхностного измерена методами Бриллюэновского рассеяния света (BLS) [8] и асимметричного расширения пузырьковых доменов [9]. На характерном спектре BLS (рисунок 4) показаны пики рассеяния, ассиметричные по частоте и разные по интенсивности. Из закона дисперсии спиновых волн, выведенного из уравнения Ландау-Лифшица-Гильберта при декременте затухания α = 0 [8], плотность энергии D поверхностного взаимодействия ДМ:

$$D = \frac{\Delta v \pi M_S}{2\gamma k} \tag{3}$$

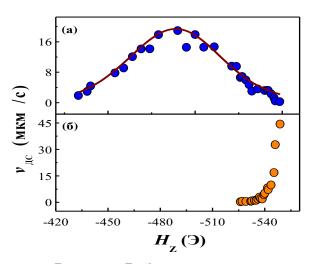
где Δv — разница частот пиков рассеяния Стокса и анти—Стокса, $M_{\rm S}$ — намагниченность насыщения, γ — гиромагнитное отношение, k — волновой вектор спиновой волны, равный проекции волнового вектора падающего света. Измерения произведены для значений k = 7 мкм $^{-1}$, 11 мкм $^{-1}$, 17 мкм $^{-1}$, 20 мкм $^{-1}$. Усреднённое значение плотности энергии для образца с толщиной верхнего слоя $t_{\rm Co}$ = 1.0 нм составило D = 1.15 \pm 0.15 мДж/м 2 , что близко к величине, полученной другими авторами для гетероструктур Pt/Co/Ir [3].


Рисунок 4. Нормированные спектры BLS в поле 8 кЭ (красная линия) и -8 кЭ (синяя линия) при T = 300 К. Волновой вектор $k_x = 11$ мкм⁻¹.

Методом асимметричного расширения пузырьковых доменов измерены скорости доменных стенок в присутствии поля -1 к $\ni \leqslant H_x \leqslant +1$ к \ni , лежащего в плоскости образца, и постоянного поля H_Z , направленного перпендикулярно поверхности образца. Из асимметрии скоростей доменных стенок, расположенных с противоположных сторон зародыша, (рисунок 5a) было получено значение D = 0.63 мДж/м 2 . Асимметричное


расширение доменов чувствительно к взаимодействию ДМ, возникающему вблизи дефектов, в то время, как Бриллюэновское рассеяние света чувствительно к ДМИ в неискаженных дефектами областях. Это является причиной несовпадения D, измеренного разными методами.

Скорость доменных границ определялась по изменению размера центрального домена (рисунок 6). Для образца с толщиной верхнего слоя Со $t_{\text{Co}} = 1.0$ нм, полевая зависимость скорости границы зародышей APнемонотонна вблизи поля $H = -480 \ \Im$ (рисунок 7a). Между магнитными моментами в ферромагнитных слоях СФ может наблюдаться ненулевой угол [4], как показано на рисунке 8, который возникает из-за межслойного взаимодействия асимметричного обменного ДМ Ненулевой угол между магнитными моментами двух слоёв Со приводит к появлению перпендикулярной составляющей поля рассеяния поверхности образца в зародыше Р-, которое создает барьер для границы АР-. В полях выше -511 Э на снимках МОКЕ вместе с зародышами АР видны зародыши Р-. С ростом поля выше –511 Э скорость генерации зародышей P^- увеличивается (рисунок 76), а скорость границы AP^- уменьшается v = $v_0 \exp(-\Delta E/kT)$. Энергия активации движения доменной стенки включает энергию Зеемана, энергию анизотропии, обменную межслойную энергию и энергию межслоевого взаимодействия ДМ $E_i = D_i N S_t S_b \sin \varphi$, где D_i – плотность энергии антисимметричного межслойного связи взаимодействия, N – количество спинов в активационном объёме, S_b и S_t – связанные спины в нижнем и верхнем слое Со. Аппроксимация немонотонной зависимости (рисунок 7а) произведена с учётом энергии $E_{\rm i}$, от которой зависит скорость доменной стенки зародышей AP $^-$:


$$v = v_0 \exp[-(E_t + E_b + DNS_t S_b (1 + \exp((H_Z M_t - E_t) / kT))^{-1} - 2(M_b - M_t) \cdot H_Z) / kT]$$
(4)

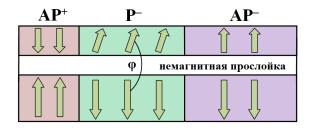
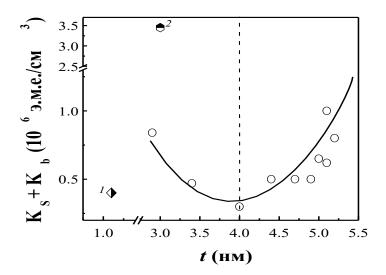


Рисунок 5. (а) Асимметрия верхней и нижней доменных стенок от поля H_x , (б) зависимость скорости противоположных доменных стенок от поля H_x образца Pt(3.2 нм)/Co(1.1 нм)/Ir(1.4 нм)/Co(1.0 нм)/Pt(3.2 нм) в присутствии перпендикулярного поля $H_z = -578 \ \Im$ при $T = 300 \ \mathrm{K}$.

Рисунок 6. Последовательность изображений МОКЕ для Pt(3.2 нм)/Co(1.1 нм)/Ir(1.4 нм)/Co(1.0 нм)/Pt (3.2 нм), записанных с интервалом времени 6 с при T=300 К. Записи предшествовало насыщение образца в поле +800 Э, после которого поле было уменьшено до одного из значений, представленных на левой оси.

Рисунок 7. Зависимость скорости движения границы зародышей (а) AP^- при переходе $AP^+ \rightarrow AP^-$ и (б) границы P^- при $AP^+ \rightarrow P^-$ от движущего поля H_Z при T=300 K.


Рисунок 8. Эскиз намагниченности в верхнем и нижнем слоях Со в магнитном поле $H < H_{\rm S}$.

Получено значение $E_{\rm i}=9\cdot 10^{-3}\,{\rm эрг/cm^2}$, близкое к значению ~ 6 · $10^{-3}\,{\rm эрг/cm^2}$, полученному в [4] для энергии межслойного антисимметричного обменного взаимодействия в аналогичных СФ.

объединены результаты пятой главе исследований многокомпонентных сверхтонких магнитных пленок. Представлен анализ гетероструктурах CoFeB-SiO₂/Bi₂Te₃ магнитной анизотропии В продемонстрирована возможность создания дисковых секторов заданной глубины диаметра В материале магнитооптической SiO₂/Ta/Pt/GdFeCo/IrMn/Pt методом холодной абляции под действием лазерных импульсов длительностью 50 фс. В гетероструктурах СоFeB-SiO₂/Bi₂Te₃ ось лёгкого намагничивания направлена вдоль плоскости образца. Эффективная константа магнитной анизотропии $K_{\rm eff}$ получена аппроксимацией угловых зависимостей резонансного поля линии ФМР уравнением Ч. Киттеля:

$$\left(\omega_{0}/\gamma\right)^{2} = \left(H_{res}\cos\left(\theta_{M} - \theta\right) - 4\pi M_{eff}\cos^{2}\theta\right) \times \left(H_{res}\cos\left(\theta_{M} - \theta\right) - 4\pi M_{eff}\cos\left(2\theta_{M}\right) + H_{2||}\right)$$
(5)

где $\omega_0 = 9.505$ ГГц — резонансная частота спектрометра, γ — гиромагнитное отношение, $H_{\rm res}$ — резонансное поле ФМР линии, $4\pi M_{\rm eff} = -2(K_{\rm b}+K_{\rm S})/M_{\rm S} + 4\pi M_{\rm S}$ — эффективное поле, $K_{\rm b}+K_{\rm S} = K_{\rm eff}$ (где $K_{\rm b}$ — константа объёмной анизотропии, $K_{\rm S}$ — константа поверхностной анизотропии), θ — угол между нормалью к поверхности образца и направлением магнитного поля спектрометра, θ_M — угол между нормалью к поверхности образца и вектором намагниченности, $H_{2\parallel}$ — поле анизотропии первого порядка в плоскости плёнки.

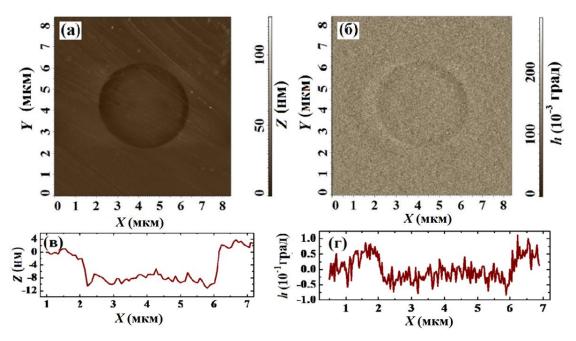


Рисунок 9. Зависимость константы магнитной анизотропии $K_b + K_S$ от толщины слоя CoFeB-SiO₂. Точка I показывает значение магнитной анизотропии для сплошной пленки FeCoB толщиной 1.1 нм [10], точка 2 – значение магнитной анизотропии отдельной наночастицы CoFeB диметром 3 нм [11].

Зависимость эффективной константы магнитной анизотропии $K_{\rm eff} = K_{\rm b} + K_{\rm S}$ от толщины слоёв CoFeB—SiO₂ немонотонна и имеет минимум при толщине t=4 нм (**рисунок 9**). С ростом толщины слоя наблюдается увеличение вклада объёмной анизотропии и уменьшение вклада поверхностной анизотропии. Из сравнения магнитной анизотропии композитов CoFeB—SiO₂/Bi₂Te₃ с анизотропией сплошной ферромагнитной плёнки CoFeB [10] (**рисунок 9**, точка 1) и с анизотропией отдельной наночастицы CoFeB [11] (**рисунок 9**, точка 2) следует, что исследуемые многослойные структуры не эквивалентны ни сплошным пленкам, ни отдельным наночастицам.

Многослойные структуры SiO₂/Ta/Pt/Gd_{21.6}Fe_{67.8}Co_{10.5}/IrMn/Pt перспективны для устройств сверхбыстрой магнитооптической памяти, в которой перемагничивание осуществляется фемтосекундными лазерными импульсами без разрушения поверхности [12]. Создание рельефа поверхности на поверхности таких образцов может быть применено для датчиков концентрации магнитомеченых производства клеток возможностью их удержания внутри секторов. Методом атомно-силовой было доказано, что области облученные микроскопии импульсами длительностью 50 фс и плотностью потока 12–15 мДж/см² представляют собой кратеры диаметром несколько микрометров, и глубиной ~ 10 нм. На рисунке 10а показано изображение облученной области, полученное атомно-силовым микроскопом, а на рисунке 106 взаимодействия показано распределение силы магнитного поверхностью образца и зондом. Из рисунка 10в, на котором показан профиль поверхности видно, что края ямки ровные, и вблизи них отсутствуют наплывы, или другие дефекты структуры. Изменение намагниченности облученной зоны, показанное рисунке 10б, полученном магнитно-силовой микроскопией, вызвано полями размагничивания краёв ямки, a не полностью оптическим перемагничиванием.

Оценка силы (0.8 пН), воздействующей на ферромагнитные частицы микронного размера со стороны поля рассеяния краев кратеров, показывает эффективность захвата таких частиц в кратеры.

Рисунок 10. (а) – АСМ изображение облученной зоны, (б) – МСМ изображение облученной зоны, (в) профиль АСМ рельефа облученной зоны, (г) профиль МСМ облученной зоны.

Основные выводы

- 1. Осциллирующая и немонотонная релаксация намагниченности в СФ Pt/Co/Ir/Co/Pt с ПМА возникает, когда соотношение энергий барьеров перемагничивания ферромагнитных слоёв обеспечивает равенство критических полей переходов между тремя устойчивыми состояниями намагниченности P⁻, AP⁻ и AP⁺.
- 2. Немонотонная динамика развития трёх типов зародышей намагниченности P⁻, AP⁻ и AP⁺ и конкуренция их развития в постоянном магнитном поле описывается нелинейной динамической системой с периодическими и апериодическими решениями, затухающими во времени. Взаимодействие зародышей фаз намагниченности разного типа определяет доли немонотонной и монотонной составляющих магнитной релаксации СФ Pt/Co/Ir/Co/Pt.
- 3. Совпадение критических полей переходов между состояниями AP^+ , AP^- и P^- (т.е. условие немонотонной магнитной релаксации) достигается ДЛЯ слоев Co разной толщины путем подбора соответствующей обеспечивающей температуры, критическое соотношение между энергиями магнитной анизотропии двух слоев СФ Pt/Co/Ir/Co/Pt.
- 4. Обнаружены импульсные изменения магнитного момента вблизи полей переходов между антиферромагнитными состояниями AP^+ и AP^- , вызванные генерацией неравновесных зародышей P^+ и P^- в быстро нарастающем поле 16 к9/c, генерирующем вокруг дефектов

неравновесные зародыши намагниченности с пониженной активационной энергией нуклеации.

- 5. В СФ Pt/Co/Ir/Co/Pt обнаружены три типа взаимодействия ДМ: взаимодействие ДМ на интерфейсе 1.15 ± 0.15 мДж/м², взаимодействие ДМ вблизи дефектов структуры 0.67 мДж/м² и межслойное взаимодействие ДМ ~ 9 мкДж/м².
- 6. В магнитных нанокомпозитах CoFeB-SiO₂/Bi₂Te₃ немонотонная эффективной магнитной анизотропии OT толщины ферромагнитного слоя CoFeB-SiO₂ связана с конкуренцией поверхностной объёмной анизотропии. Увеличение количества напыленного материала сдвигает баланс в сторону ферромагнитного объемной анизотропии.
- 7. С помощью фемтосекундного лазера на поверхности магнитооптической пленки GdFeCo созданы углубления в виде дисков диаметром ~ 10 мкм и глубиной ~ 5-30 нм. Изменение намагниченности в облученных секторах вызвано: 1) частичным удалением лазерной абляцией слоёв Pt, IrMn и GdFeCo; 2) изменением магнитной анизотропии под действием механических напряжений и химического состава в облученной области; 3) полем размагничивания на краях углублений.

Публикации по теме диссертации

Публикации в журналах из перечня ВАК РФ

- 1. R.B. Morgunov, A.V. Yurov, V.A. Yurov, A.D. Talantsev, **A.I. Bezverhnii**, O.V. Koplak. Oscillatory dynamics of the magnetic moment of a Pt/Co/Ir/Co/Pt synthetic antiferromagnet // Phys. Rev. B. –2019. –V. 100. –P. 144407.
- 2. R.B. Morgunov, **A.I. Bezverkhnii**. Criterion of non monotonic magnetic relaxation in Pt/Co/Ir/Co/Pt synthetic ferrimagnet with perpendicular anisotropy // Superlattices and Microstructures. –2020. –V. 142. –P. 106509.
- 3. **A.I. Bezverhnii**, A.D. Talantsev, Yu.E. Kalinin, A.V. Sitnikov, V.A. Nikitenko, O.V. Koplak, O.S. Dmitriev, R.B. Morgunov. Magnetic anisotropy of [(Co₄₁Fe₃₉B₂₀)_x(SiO₂)_{100-x}/Bi₂Te₃]₄₇ multilayer heterostructures // Physics of the Solid State. –2019. –V. 61. –P. 127–133.
- 4. **A.I. Bezverhnii**, A.D. Talantsev, S. Mangin, R.B. Morgunov. Interaction of magnetization centers of different signs as the cause of the nonmonotonic fields dependence of the domain wall velocity in synthetic Pt/Co/Ir/Co/Pt ferrimagnets // J. of Experimental and Theoretical Physics. 2019. –V. 129. –P. 998-1004.

- 5. R.B. Morgunov, **A.I. Bezverkhnii**, O.S. Dmitriev, M.V. Bakhmet'ev. Conditions for the occurrence of spontaneous oscillating magnetic relaxation in synthetic Pt/Co/Ir/Co/Pt ferrimagnets// Physics of the Solid State. 2020. –V. 62. –P. 458-463.
- 6. R.B. Morgunov, **A.I. Bezverkhnii**. Генерация неравновесных зародышей намагниченности в быстро нарастающем магнитном поле в синтетических ферримагнетиках Pt/Co/Ir/Co/Pt // Физика твёрдого тела. 2020. T. 62. C. 1847-1853.

Монографии

- 1. Моргунов, Р.Б. Магнетизм на острие иглы. Основы атомносиловой и магнитно-силовой микроскопии: монография / Р.Б. Моргунов, О.В. Коплак, **А.И. Безверхний**, О.С. Дмитриев. Тамбов: Издательство ФГБОУ ВО «ТГТУ», 2018.— 183 с.
- 2. Моргунов, Р.Б. Магнитная релаксация в устройствах спиновой электроники: монография / Р.Б. Моргунов, О.В. Коплак, А.Д. Таланцев, О.С. Дмитриев, **А.И. Безверхний**. Тамбов: Издательство ФГБОУ ВО «ТГТУ», 2019.— 156 с.

Тезисы докладов

- 1. Koplak O., **Bezverhny A.**, Shashkov I., Kunitsyna E., Gornakov V., Morgunov R. Dynamics of the magnetic relaxation of surface inhomogeneity induced by femtosecond laser impulse in Ta/Pt/GdFeCo/IrMn/Pt film // Book of Abstracts of IX Joint European Magnetic Symposia (JEMS 2018) / Mainz, Germany, 2018. –P.–A.082.
- 2. Моргунов Р.Б., Дмитриев О.С., Таланцев А.Д., **Безверхний А.И.** Моделирование осциллирующего перемагничивания спиновых вентилей // Сборник тезисов V Международная научно-практическая конференция Виртуальное моделирование, прототипирование и промышленный дизайн / Тамбов, Россия, 2018. –С. 413-420.
- 3. **Bezverkhnii A.**, Talantsev A., Morgunov R., Fache T., Mangin S. Non Walker limit of domain wall speed in Pt/Co/Ir/Co/Pt spin valve with perpendicular anisotropy // Book of Abstracts of X Joint European Magnetic Symposia (JEMS 2019) / Uppsala, Sweden, 2019. –P. 133.
- 4. Morgunov R., Koplak O., Yurov A.V., Yurov V.A., Talantsev A., **Bezverhnii A.**, Fache T., Lu Y., Mangin S. Spontaneous quasiperiodical magnetization reversal in spin valves with perpendicular anisotropy // Book of Abstracts of VII Euro-Asian Symposium «Trends in MAGnetism» / Ekaterinburg, Russia, 2019. –P. D.O2 -352.
- 5. **Безверхний А.И.**, Таланцев А.Д., Моргунов Р.Б. Немонотонная полевая зависимость скорости доменной стенки как

следствие взаимодействия зародышей намагниченности разного знака в синтетических ферримагнетиках с перпендикулярной магнитной анизотропией Pt/Co/Ir/Co/Pt // Сборник тезисов XXIV Международной конференции «Релаксационные явления в твёрдых телах» / Воронеж, Россия, 2019. —С. 130-132.

6. Morgunov R.B., **Bezverhnii A.I.**, Koplak O.V. Oscillatory dynamics of magnetic relaxation in Pt/Co/Ir/Co/Pr synthetic antiferromagnet // Сборник тезисов XXIV Международной конференции «Релаксационные явления в твёрдых телах» / Воронеж, Россия, 2019. –С. 129-130.

Патент

1. Пат. 2704972 РФ, МПК G01R 33/12, B82Y25/00, G16H10/40. Способ изготовления дисковых секторов для захвата, удержания и анализа магнитных микрочастиц и меченных ими биологических объектов на поверхности спиновых вентилей с помощью фемтосекундного лазерного облучения: №2019122272: заявл. 16.07.2019, опубл. 01.11.2019 / Алдошин С.М., Палий А.В., Моргунов Р.Б., Коплак О.В, **Безверхний А.И.** – 22 с.

Список цитируемых источников

- 1. Fert A., Nguyen Van Dau F. // C. R. Physique. –2019. V. 20. –P. 817-831.
- 2. Fache T., Tarazona H.S., Liu J., L'vova G., Applegate M.J., Rojas-Sanchez J. C., Petit-Watelot S., Landauro C.V., Quispe-Marcatoma J., Morgunov R., Barnes C.H. W., Mangin S. // Phys. Rev. B. –2018. –V. 98. –P. 064410.
- 3. Hrabec A., Porter N.A., Wells A., Benitez M.J., Burnell G., McVitie S., McGrouther D., Moore T.A., Marrows C. H. // Phys. Rev. B. –2014. –V. 90, P. 020402(R).
- 4. Han D.-S., Lee K., Hanke J.-P., Mokrousov Y., Kim K.-W., Yoo W., van Hees Y.L. W., Kim T.-W., Lavrijsen R., You C.-Y., Swagten H. J. M., Jung M.-H., Kläui M. // Nature Materials. –2019. –V. 18. –P. 703-708.
- 5. Mishels A., Mettus D., Titov I., Malyeyev A., Bersweiler M., Bender P., Peral I., Birringer R., Quan Y., Hautle P., Kohlbrecher J., Honecker D., Rodriguez-Fernandez J., Fernandez-Barquin L., Metlov K.L. // Phys. Rev. B. 2019. –V. 99. –P.014416.
- 6. Komogortsev S.V., Denisova E.A., Iskhakov R.S., Baleev A.D., Chekanova L.A., Kalinin Yu.E., Sitnikov A.V. // J. Appl. Phys. –2013. –V. 113. –P. 17C105.
- 7. Patent United States Pub. No.: US 2008/0284419 A1. Magnetic material sensor and detection method employing this sensor, and target material

- detection sensor and target material detection kit. N28852957 B2: 07.10.2014 / Ikeda T. 14 pp.
- 8. Kai D., Li Zhang V., Siah Lim H., Choon Ng S. // Phys. Rev. Lett. 2015. –V. 114. –P. 047201.
- 9. Je S.-G., Kim D.-H., Yoo S.-Ch., Min B.-C., Lee K.-J., Choe S.-B. // Phys. Rev. B. -2013. -V. 88. -P.214401.
- 10. Naik V.B., Meng H., Sbiaa R. // AIP Advances. –2012. –V. 2. P.042182.
- 11. Molina Concha B., Zysler R.D., Troiani H., Romero H. // Physica B: Condensed Matter. –2004. –V. 354. –P. 121-124.
- 12. Hohlfeld J., Gerrits Th., Bilderbeek M., Rasing Th., Awano H., Ohta N. // Phys. Rev. B. -2001. -V. 65. -P. 012413.