На правах рукописи

Лебедев Никита Михайлович

Ренормализационная группа в некоторых моделях критического состояния и стохастической динамики

01.04.02 - Теоретическая физика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в ФГБОУ	ВПО «Санкт-Петербургский государственный университет»
Научный руководитель:	Антонов Николай Викторович, д. фм. н., старший научный сотрудник, профессор Санкт-Петербургского государственного университета
Официальные оппоненты:	Малышев Кирилл Леонидович, д. фм. н., старший научный сотрудник Санкт-Петербургского отделения математического института им. В.А. Стеклова РАН
Ведущая организация:	Прудников Павел Владимирович, д. фм. н., профессор, профессор Омского государственного университета им. Ф.М. Достоевского Объединенный Институт Ядерных Исследований
сертационного совета Д 212.2	2018 г. в часов на заседании дис- 232.24 при Санкт-Петербургском государствен- 199004, Санкт-Петербург, Средний пр., В.О.,
С диссертацией можно ознако СПбГУ и на сайте https://disser.spbu.ru	омиться в Научной библиотеке им. М. Горького
Автореферат разослан «	» 2018 г.
	реферату в двух экземплярах, заверенные печа- ресу 198504, Санкт-Петербург, Ульяновская ул., д.1,
Ученый секретарь диссертационного совета,	
д.фм.н.	Аксёнова Елена Валентиновна

Общая характеристика работы

Актуальность темы исследования. Многочисленные физические системы обнаруживают интересное сингулярное асимптотическое поведение, зависящее только от нескольких глобальных характеристик системы, таких как симметрия или размерность пространства. Подобное поведение, в частности, демонстрируют системы, находящиеся в окрестности своих критических точек. Наиболее изученные фазовые переходы описываются O(n)- симметричными моделями с взаимодействием типа ϕ^4 и n-компонентным векторным параметром порядка. Однако во многих случаях описание с помощью подобных, сравнительно простых, моделей оказывается неадекватным, и приходится рассматривать более сложные симметрии или более сложные типы параметров порядка с тензорной природой. В таких случаях даже задача надежного определения возможности фазового перехода в системе и его типа оказывается достаточно сложной. Поэтому изучение подобных моделей до сих пор продолжает оставаться актуальным.

Аналогичная ситуация имеет место и для многочисленных моделей, описывающих рост и кинетическое огрубление различных границ. Такие модели строятся по аналогии с моделями критической динамики на основе различных феноменологических соображений, учитывающих различные симметрии системы и свойства анизотропии. В отличие от равновесных моделей критического поведения, динамические модели роста зависят не только от своих внутренних характеристик, но и от типа случайного внешнего воздействия. Таким образом, актуальным оказывается изучение не только различных модификаций уже существующих моделей роста, но и вопрос о выборе случайного шума, наиболее полно и точно описывающего различные аспекты реальных физических систем, а также изучение зависимости поведения системы от конкретного выбора.

Степень разработанности темы исследования. Наиболее успешное последовательное количественное описание критического поведения дается с помощью методов теоретико-полевой ренормгруппы. При таком подходе возможные типы критического поведения определяются наличием и характером неподвижных точек соответствующей теоретико-полевой модели, а критические размерности вычисляются в рамках регулярной теории возмущений.

Применение данного подхода к различным моделям равновесного критического поведения позволило надежно установить принадлежность к тому или иному классу универсальности множества различных систем с *п*-компонентным векторным параметром порядка и различными типами симметрии, а также некоторых систем с тензорным параметром порядка. Критические по-

казатели в некоторых моделях были вычислены вплоть до шестого порядка теории возмущений включительно.

Изучение феноменов, связанных с эволюцией границ, позволило построить множество полуфеноменологических моделей, установить в них наличие критического скейлинга и вычислить соответствующие показатели, чаще всего в главном (однопетлевом) приближении. В некоторых случаях подробный анализ симметрий системы позволил получить точные результаты.

Целью настоящей работы является изучение критического поведения равновесных моделей с антисимметричным тензорным параметром порядка: O(n)-симметричной модели с вещественным параметром порядка и U(n)-симметричной модели с комплексным параметром порядка в присутствии магнитного поля. Также проводится изучение скейлинговых режимов нескольких неравновесных моделей: изотропной модели роста и ее бесконечно-зарядного обобщения, непрерывной анизотропной модели самоорганизующейся критичности (СОК) и бесконечно-зарядной модели эрозии ландшафтов. Во всех случаях используется "статическая" форма случайного шума, коррелятор которого не зависит от времени.

В соответствии с целью исследования были поставлены следующие основные задачи:

- (1) Построить квантовополевую формулировку изучаемой модели, исследовать тип и структуру ультрафиолетовых расходимостей, показать мультипликативную ренормируемость модели.
- (2) Найти неподвижные точки уравнений ренормгруппы и установить их характер.
- (3) В случае, если в модели возможно скейлинговое поведение, получить численные значения соответствующих ему критических размерностей.

Научная новизна. Все основные результаты диссертации получены впервые, что подтверждается их публикацией в ведущих отечественных и международных журналах, и включают следующее:

- (1) Исследовано критическое поведение систем, роль параметра порядка в которых играет вещественный антисимметричный тензор.
- (2) Исследовано критическое поведение систем с комплексным антисимметричным параметром порядка, взаимодействующим с магнитным полем.
- (3) Показано, что стохастическая модель кинетического огрубления Кардара-Паризи-Занга (КПЗ), ее бесконечно-зарядное обобщение, бесконечно-зарядная модель эрозии ландшафтов и непрерывная модель СОК Хуа-Кардара со "статическим" случайным шумом могут быть переформулированы в виде мультипликативно-ренормируемых теоретико-полевых моделей, а также исследовано их асимптотическое поведение.

Теоретическая и практическая значимость. Полученные в данной работе результаты могут быть использованы для описания критического поведения систем фермионов с дополнительными степенями свободы, а также жидких кристаллов и ферроэластиков. Результаты, полученные при изучении стохастических моделей, могут использоваться для описания роста различных границ раздела, описания эрозии ландшафтов, а также феномена самоорганизованной критичности. Разработанные методы могут применяться для анализа других многозарядных моделей, а также стохастических моделей со "статическим" случайным шумом. Кроме того, результаты работы могут послужить стимулом для проведения новых экспериментальных измерений критических показателей в различных системах, проявляющих скейлинговое поведение.

Методология и методы исследования. В работе систематически применяется метод ренормализационной группы, позволяющий доказать перенормируемость изучаемых моделей, изучить асимптотическое поведение корреляционных функций, установить возможность их скейлингового поведения в инфракрасной асимптотике, а также вычислить скейлинговые показатели в рамках регулярной теории возмущений. Кроме того, используются различные функциональные методы, позволяющие определить асимптотические свойства коэффициентов рядов теории возмущений, а также найти некоторые точные соотношения (тождества Уорда), связывающие различные корреляционные функции.

Достоверность результатов обеспечивается использованием мощного и хорошо развитого математического аппарата квантовополевой ренормгруппы, а также сравнением полученных результатов с результатами, известными ранее для некоторых частных случаев и родственных задач.

Основные положения, выносимые на защиту:

- (1) Для U(n)-симметричной модели с комплексным антисимметричным тензорным параметром порядка установлено, что в случае n>19 взаимодействие с магнитным полем приводит к появлению двух новых фиксированных точек в физической области параметров. На однопетлевом уровне обе точки являются седловидными точками, а единственным возможным поведением модели в рамках теории возмущений оказывается фазовый переход первого рода.
- (2) Для O(n)-симметричной модели с вещественным антисимметричным тензорным параметром порядка обнаружено, что при n>4 существует седловидная фиксированная точка, а единственным возможным поведением модели в рамках теории возмущений является фазовый переход первого рода. Кроме того, установлено, что в случае n=4 в модели присутствуют две до-

полнительные фиксированные точки, одна из которых является инфракрасно притягивающей. В этом случае поведение модели оказывается неуниверсальным: в случае, если начальные данные лежат в ее области притяжения, в модели реализуется фазовый переход второго рода.

- (3) Показана мультипликативная перенормируемость модели Кардара-Паризи-Занга со "статическим" случайным шумом. На однопетлевом уровне обнаружена фиксированная точка, которая лежит в нефизической области и не может отвечать за скейлинговое поведение корреляционных функций модели. Также показана мультипликативная перенормируемость непрерывной модели самоогранизованной критичности Хуа-Кардара со "статическим" случайным шумом. На однопетлевом уровне обнаружена инфракрасно притягивающая фиксированная точка и вычислены критические размерности.
- (4) Исследованы бесконечно-зарядные модели роста и эрозии ландшафтов со "статическим" случайным шумом. Для обеих моделей показана их мультипликативная перенормируемость, а контрчлен явно вычислен в однопетлевом приближении. В обоих случаях обнаружена двумерная поверхность фиксированных точек, которая может содержать инфракрасно притягивающие области. Показано, что соответствующий этим областям скейлинг является неуниверсальным, но подчиняется точному соотношению на критические размерности.

Апробация результатов и публикации. Результаты и положения работы докладывались и обсуждались на следующих научных конференциях и школах:

1. Международная студенческая конференция «Физика и Прогресс — 2013» (Санкт-Петербург, Россия, 2013 г.).

http://www.phys.spbu.ru/grisc/science-and-progress/archive.html

2. Международная школа «Advanced Methods of Modern Theoretical Physics: Integrable and Stochastic Systems» (Дубна, Россия, 2015 г.).

http://www.dubnaschool.cz/2015/

3. 5я международная конференция «Модели квантовой теории поля» (Санкт-Петербург, Россия, 2015 г.).

http://hep.phys.spbu.ru/conf/mqft2015/index.htm

4. Международная студенческая конференция «Физика и Прогресс — 2015» (Санкт-Петербург, Россия, 2015 г.).

http://www.phys.spbu.ru/grisc/science-and-progress/archive.html

5. 19
я международная конференция по физике высоких энергий «
QUARKS —

```
2016» (Пушкин, Россия, 2016 г.). http://quarks.inr.ac.ru/2016/
```

6. 54я Международная школа по субатомной физике (Эричи, Италия, 2016 г.).

http://www.ccsem.infn.it/issp2016/index.html

7. Международная студенческая конференция «Физика и Прогресс — 2017» (Санкт-Петербург, Россия, 2017 г.).

 $\verb|http://www.phys.spbu.ru/grisc/science-and-progress/archive.html|$

8. 51-я Зимняя Школа Петербургского Института Ядерной Физики (Санкт-Петербург, Россия, 2017 г.).

http://hepd.pnpi.spb.ru/WinterSchool/archive/2017/program_school.html

Публикации. По теме диссертации опубликовано 5 научных работ в изданиях, рекомендованных ВАК РФ и входящих в базы данных РИНЦ, Web of Science и Scopus [1–5].

Личный вклад автора. Все основные результаты получены соискателем лично либо при его прямом участии в неразделимом соавторстве. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка литературы из 107 наименований. Работа изложена на 134 страницах и содержит 8 таблиц.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, описаны методология и методы исследования, степень разработанности темы исследования, а также показана практическая значимость полученных результатов и представлены выносимые на защиту научные положения.

В первой главе кратко приводятся основные сведения об аппарате квантовополевой ренормгруппы применительно к задачам критического поведения. Приводится общий вид задачи критического поведения, формулируется диаграммная техника в теории возмущений, описывается способ анализа ультрафиолетовых расходимостей и выводится общий вид уравнения ренормгруппы. В качестве примера рассматривается инфракрасная асимптотика парного коррелятора в модели ϕ^4 .

Вторая глава посвящена ренормгрупповому анализу критических режимов двух равновесных моделей с антисимметричным тензорным параметром порядка.

В работе [7] изучалось критическое поведение системы нерелятивистских ферми-частиц с n возможными проекциями спина, описываемой микромоделью:

$$S = \psi_i^+ (\partial_t - \frac{1}{2m} \partial^2 - \mu) \psi_i - \frac{\lambda}{2} (\psi_i^+ \psi_i) (\psi_j^+ \psi_j). \tag{1}$$

Ее авторами с помощью преобразования Хаббарда—Стратоновича были введены бозонные поля χ_{ik} , χ^{+ik} , являющиеся комплексными, антисимметричными тензорами второго ранга, после чего с помощью уравнений Швингера было показано, что данные поля непосредственно связаны с параметром порядка сверхпроводящего фазового перехода и было построено эффективное действие для данных полей в окрестности точки фазового перехода:

$$S = tr(\chi^{+}(-\partial^{2} + \tau)\chi) + \frac{g_{1}}{4}(tr(\chi\chi^{+}))^{2} + \frac{g_{2}}{4}tr(\chi\chi^{+}\chi\chi^{+}).$$
 (2)

В настоящей работе в разделе 2.1 изучается модель (2), в которую минимальным образом введено взаимодействие с магнитным полем. В случаях n=2,3 такая модель совпадает с аналогичными O(2)- и O(6)-симметричными моделями ϕ^4 , и должна давать такие же предсказания. Данный факт можно использовать для дополнительной проверки полученных результатов. При n>3 изучаемая модель является независимой двухзарядной моделью, функционал действия которой имеет вид:

$$S(\Phi) = tr((\nabla + ie_0 \mathbf{A})\chi^+ (\nabla - ie_0 \mathbf{A})\chi) + \tau_0 tr(\chi^+ \chi) + \frac{g_{10}}{4} (tr(\chi \chi^+))^2 + \frac{g_{20}}{4} tr(\chi \chi^+ \chi \chi^+) + \frac{1}{2} (\nabla \times \mathbf{A})^2 + \frac{1}{2\xi_0} (\nabla \mathbf{A})^2.$$
(3)

Приводятся ограничения на константы взаимодействия, необходимые для обеспечения устойчивости модели, а также формулируются правила Фейнмана. С помощью анализа канонических размерностей и симметрий данного функционала устанавливается перенормируемость модели и находятся тождества Уорда, связывающие константы ренормировки эффективного заряда e, параметра, фиксирующего калибровку ξ и векторного потенциала \mathbf{A} . Константа ренормировки потенциала \mathbf{A} , а также константы ренормировки остальных полей и зарядов и соответствующие аномальные размерности были вычислены в однопетлевом приближении.

В результате анализа β -функций модели были обнаружены два набора фиксированных точек. Первый набор соответствует фиксированному значению $e_* = 0$, и совпадает с набором точек модели (2) известным ранее из работы [7]. Второй набор соответствует нетривиальному значению $e_* = 6\varepsilon/n(n-1)$

и является оригинальным результатом данной работы. Данный набор состоит из четырех точек. Координаты двух точек имеют нетривиальную мнимую часть для любого n>1 и не могут быть достигнуты ренормгрупповыми потоками. Оставшиеся две точки имеют координаты:

$$g_1^* = \frac{2\left(n^2 - n + 36 \pm \sqrt{n^4 - 2n^3 - 359n^2 + 360n - 2160}\right)\epsilon}{n(n-1)\left(n^2 - n + 8\right)}, \quad g_2^* = 0.$$
 (4)

Они являются вещественными для n>19, но при этом оказываются седловидными точками.

Кроме того, было установлено, что аномальная размерность γ_{χ} оказывается калибровочно зависимой. В то же время перенормировка параметра ξ приводит к тому, что его РГ поток должен удовлетворять уравнению:

$$D_s\bar{\xi} = \bar{\xi}\gamma_{\xi}.\tag{5}$$

Видно, что калибровка $\xi=0$ является фиксированной точкой данного уравнения и инвариантна по отношению к процедуре ренормировки.

В разделе 2.2 изучается модель:

$$S(\phi) = \frac{1}{2}tr(\phi(-\partial^2 + m_0^2)\phi) - \frac{g_{10}}{4!}(tr(\phi^2))^2 - \frac{g_{20}}{4!}tr(\phi^4)$$
 (6)

с вещественным антисимметричным тензорным полем второго ранга $\phi_{ik}(\boldsymbol{x})$. Приводятся ограничения на константы взаимодействия, формулируются правила Фейнмана и обсуждаются некоторые частные случаи, в которых модель сводится к однозарядной.

В разделе 2.2.2 модель (6) изучается в рамках размерной регуляризации. Доказывается перенормируемость модели и приводятся результаты четырехпетлевого расчета β -функций и аномальной размерности поля. Их анализ показывает, что для любого n в модели существует фиксированная точка, лежащая на оси $g_{2*}=0$. В случае $n\leq 4$ в модели присутствуют еще две фиксированные точки с вещественными координатами. Координаты всех трех фиксированных точек и соответствующих им критических показателей η и ω приводятся в форме ε -разложения с точностью до $O(\varepsilon^5)$ для единственного нетривиального случая n=4.

В разделе 2.2.2.4 методом перевала изучается асимптотика высоких порядков коэффициентов разложения функций Грина по числу петель. В результате устанавливается асимптотический характер данных рядов, и, как следствие, ε -разложений критических индексов, и явно вычисляются параметры этой асимптотики:

$$g_{1,2*}^{(N)} = Const \cdot N! N^{b+1} \left(-a(g_{1*}^{(1)}, g_{2*}^{(1)}) \right)^N \left(1 + O(\frac{1}{N}) \right), \tag{7}$$

где $b=(n^2-2n+22)/4$, $a(g_{1*}^{(1)},g_{2*}^{(1)})=(2kg_{1*}^{(1)}+g_{2*}^{(1)})/4k$, $g_{1,2*}^{(1)}$ - однопетлевые значения координат неподвижных точек. С использованием известного вида асимптотики численные значения критических индексов были получены с помощью пересуммирования методом конформного отображения Бореля. В результате оказалось, что при n=4 в модели существует инфракрасно притягивающая фиксированная точка, и, как следствие, возможность фазового перехода второго рода.

В разделе 2.2.3 модель (6) изучается в рамках подхода ренормировки в фиксированной размерности пространства. При этом в ренормированное действие вводится произвольная ренормировочная масса, что вкупе с выбором нормировочных условий на 1-неприводимые функции Грина позволяет воспользоваться стандартным уравнением ренормгруппы. В рамках такого подхода β -функции и аномальная размерность поля были вычислены с четырехпетлевой точностью для случаев d=2,3. В обоих случаях координаты фиксированных точек и соответствующие им критические индексы вычислены в форме псевдо- ε -разложения (τ -разложения) с точностью до $O(\tau^5)$. Численные значения координат неподвижных точек и критических индексов получены путем подстановки в эти разложения значения $\tau=1$.

Полученные таким путем численные значения качественно согласуются с результатами обработки ε -разложений для всех трех неподвижных точек. Таким образом, подтверждается вывод о том, что при n=4 в модели возможен фазовый переход второго рода. Тем не менее, численные значения критических индексов, полученные в рамках разных подходов, могут довольно существенно отличаться количественно. Более того, в рамках τ -разложения в случае d=2 одна из седловидных точек выходит за границу физической области параметров. Возможным объяснением данного факта может служить более сильная расходимость рядов теории возмущений в случае d=2 в рамках обоих подходов, приводящая к необходимости учитывать асимптотические свойства τ -разложений уже на уровне четырех петель.

В **третьей главе** приводится стандартная формулировка стохастической задачи:

$$\partial_t h(x) = U(x,h) + f(x), \quad \langle f(x)f(x')\rangle = D(x,x').$$
 (8)

и описан стандартный метод [6] ее сведения к теоретико-полевой модели с дополнительным полем:

$$S(h, h') = \frac{1}{2}h'Dh' + h'(-\partial_t h + Lh + n(h)).$$
(9)

Приводится краткое описание анализа структуры расходимостей в динамических моделях в изотропном и анизотропном случаях. Обсуждается вопрос о

выборе формы шума, поднятый в работе [8] и приводятся важные для дальнейшего детали анализа структуры расходимостей в динамических моделях со "статическим" случайным шумом:

$$\langle f(x)f(x')\rangle = 2D_0\delta^{(d)}(\boldsymbol{x} - \boldsymbol{x'}). \tag{10}$$

В частности, оказывается, что пропагатор:

$$\langle hh \rangle_0 \equiv \Delta_{12}(k,\omega) D_o \delta(\omega) \Delta_{12}^T(k,\omega) \tag{11}$$

всегда будет содержать дополнительную дельта-функцию от частоты, что в свою очередь приводит к необходимости учитывать ее размерность при подсчете индекса расходимости диаграмм.

Четвертая глава посвящена ренормгрупповому анализу асимптотических режимов четырех моделей роста со "статическим" случайным шумом (10).

В разделе 4.1 изучается модель КПЗ [9], задающаяся стохастическим уравнением:

$$\partial_t h = \nu \,\partial^2 h + \lambda (\partial h)^2 / 2 + f. \tag{12}$$

Для модели приводятся ограничения на физическую область параметров и формулируются правила Фейнмана. Константы ренормировки и ренормгрупповые функции вычислены в однопетлевом приближении. Их анализ показывает, что в модели присутствует инфракрасно притягивающая фиксированная точка, однако она лежит в нефизической области параметров и не может отвечать на скейлинговое поведение модели. Тем не менее, для полноты приводятся соответствующие ей критические размерности.

Одна из возможных модификаций модели КПЗ была предложена в работе [10]:

$$\partial_t h = \nu_0 \,\partial^2 h + \partial^2 h^2 / 2 + f. \tag{13}$$

Суть данной модификации сводится к добавлению случайной поправки к члену, описывающему релаксацию за счет поверхностного натяжения $\partial^2 h^2 = 2(\partial h)^2 + 2h\partial^2 h$. Однако в работе [11] было указано, что для "теплового" случайного шума:

$$\langle f(x)f(x')\rangle = 2D_0\delta(t-t')\delta^{(d)}(\boldsymbol{x}-\boldsymbol{x'})$$
(14)

нелинейность в (13) неизбежно порождает бесконечное число контрчленов вида $\partial^2 h^n$. В силу этого для корректности анализа необходимо рассматривать следующую модификацию модели (13):

$$\partial_t h = \nu_0 \,\partial^2 h + \partial^2 V(h) + f,\tag{15}$$

где функция V(h) задается своим рядом Тейлора:

$$V(h) = \sum_{n=2}^{\infty} \frac{\lambda_{n0} h^n}{n!}.$$
(16)

В разделе 4.2 изучается модель (15) со "статическим" случайным шумом (10). Анализ размерности полей h, h', а так же дополнительный учет производной, входящей во все вершины, позволяет заключить, что поверхностные УФ расходимости содержатся во всех 1-неприводимых функциях Грина, содержащих одно поле h' и любое количество полей h. При этом контрчлены во всех случаях имеют вид $(\partial^2 h')h^n$. Таким образом изучаемая модель оказывается мультипликативно перенормируемой.

Однопетлевой контрчлен может быть явно вычислен с помощью петлевого разложения 1-неприводимых функций Грина [6]. В частности, он дается расходящейся частью выражения:

$$\Gamma^{(1)}(\Phi) = -(1/2)Tr \ ln(W/W_0), \tag{17}$$

где

$$W(x,y) = -\delta^2 S_R(\Phi)/\delta\Phi(x)\delta\Phi(y). \tag{18}$$

Данное вычисление оказывается возможным в силу того факта, что вблизи логарифмической размерности все диаграммы модели расходятся лишь логарифмически, из-за чего при вычислении их расходящихся частей можно игнорировать неоднородность $\partial^2 h'(x)$ и h(x). В результате для контрчлена было получено следующее выражение:

$$L\Gamma^{(1)}(\Phi) = \frac{S_d}{(2\pi)^d} \frac{\mu^{-\varepsilon}}{\varepsilon} \int dx \frac{V''(h(x))}{(\nu + V'(h(x)))^2} \,\partial^2 h'(x),\tag{19}$$

в котором L – контрчленная операция. Посредством разложения этого выражения в ряд были явно вычислены аномальная размерность γ_{ν} и β -функции. Из явной формы последних следует, что в модели существует двумерная поверхность фиксированных точек, параметризуемая значениями g_{2*} и g_{3*} , выбираемыми произвольно.

Для того, чтобы на этой поверхности существовали области ИК притяжения, необходимо чтобы вещественные части всех собственных чисел матрицы ω_{nm} , были бы положительны. Необходимым, но не достаточным, условием для этого является требование, чтобы сумма всех диагональных элементов ω_{nn} данной матрицы была положительной величиной. Было показано, что существует такая область на плоскости параметров g_{3*} и g_{2*}^2 для которой все ω_{nn} являются положительными.

Если инфракрасно притягивающая область на поверхности фиксированных точек действительно существует, то изучаемая модель может проявлять ИК скейлинг с не универсальными критическими размерностями, зависящими от конкретного выбора параметров g_{3*} и g_{2*}^2 , подчиняющимися, тем не менее, точному соотношению $2\Delta_h=d-2\Delta_\omega$.

В работе [12] была предложена непрерывная модель самоорганизованной критичности, возникающей при рассмотрении эволюции некоторой границы в анизотропной системе. Примером такой системы может выступать эрозия песчаного ландшафта на склоне, имеющем некоторое выделенное направление. Данная модель задается стохастическим дифференциальным уравнением:

$$\partial_t h = \nu_{\perp 0} \, \partial_{\perp}^2 h + \nu_{\parallel 0} \, \partial_{\parallel}^2 h - \partial_{\parallel} h^2 / 2 + f. \tag{20}$$

Детерминистская часть данного уравнения выражает собой локальный закон сохранения. Поэтому в отсутствие шума уравнение (20) сводится к уравнению неразрывности для поля высоты:

$$\partial_t h + \nabla \cdot \mathbf{j} = \mathbf{0}. \tag{21}$$

Такое представление запрещает включение в уравнение членов типа τh , которые ввели бы в модель управляемые характерные размеры и времена корреляций.

В разделе 4.3 рассматривается модель (20) со "статическим" случайным шумом (10). Приводятся ограничения на физическую область параметров и формулируются правила Фейнмана. Анализ канонических размерностей полей и параметров показывает, что модель является мультипликативно перенормируемой, при этом не возникает контрчленов с производной ∂_{\perp}^2 , т.к. поле h' всегда входит в функции Грина только в форме производной $\partial_{\parallel}h'$.

Константы ренормировки и РГ функции модели были вычислены в однопетлевом приближении. Их анализ позволил обнаружить в модели инфракрасно притягивающую фиксированную точку, лежащую в физической области параметров. Соответствующие ей критические размерности были вычислены в первом порядке ε -разложения. Тем не менее, полученные оценки на критические размерности в физически интересной размерности d=2 едва ли могут считаться надежными. Причина состоит в том, что в данной размерности формальный параметр разложения $\varepsilon=4$ оказывается отнюдь не мал, а потому учет следующих порядков теории возмущений может существенно сказаться на характере ИК устойчивости данной фиксированной точки и численных оценках критических размерностей.

В работе [8] была предложена анизотропная модель, описывающая процессы переноса на малых масштабах (масштабах, на которых вектор, задаю-

щий выделенное направление, можно считать константой), задающаяся сто-хастическим уравнением:

$$\partial_t h = \nu_\perp \,\partial_\perp^2 h + \nu_\parallel \,\partial_\parallel^2 h + \frac{\lambda}{3} \partial_\parallel^2 h^3 + f. \tag{22}$$

В качестве симметрии модели авторы выбрали $x_{\parallel}, h, f \to -x_{\parallel}, -h, -f$, что отличает ее от модели Хуа-Кардара (20) и приводит к другой форме нелинейности. Однако, в работе [13] было показано, что в случае "теплового" шума (14) нелинейность в (22) порождает бесконечное число контрчленов вида $\partial_{\parallel}^2 h^n$. Поэтому в той же работе было сформулировано бесконечно-зарядное обобщение модели эрозии, задающееся уравнением:

$$\partial_t h = \nu_\perp \, \partial_\perp^2 h + \nu_\parallel \, \partial_\parallel^2 h + \partial_\parallel^2 V(h) + f. \tag{23}$$

В разделе 4.4 изучается модель (23) со "статическим" случайным шумом (10). Анализ размерности полей h, h', с учетом производной входящей во все вершины, приводит к выводу, что поверхностные УФ расходимости содержатся во всех 1-неприводимых функциях Грина, содержащих одно поле h' и любое количество полей h. При этом контрчлены во всех случаях имеют вид $(\partial_{\parallel}^2 h')h^n$ (член действия с производной ∂_{\perp}^2 не ренормируется).

Поскольку вблизи логарифмической размерности все диаграммы модели расходятся лишь логарифмически, явный вид однопетлевого контрчлена был вычислен в рамках такой же схемы, что и в случае изотропной бесконечно-зарядной модели роста. В результате, для расходящейся части (17) было получено выражение:

$$L\Gamma^{(1)}(\Phi) = \frac{S_d}{(2\pi)^d} \frac{\mu^{-\varepsilon}}{\varepsilon} \int dx \frac{V''(h(x))}{\sqrt{\nu_{\perp}(\nu_{\parallel} + V'(h(x)))}} \,\partial^2 h'(x). \tag{24}$$

Посредством разложения данного выражения в ряд были явно вычислены аномальная размерность γ_{\parallel} и β -функции, из явной формы которых следует, что в модели существует двумерная поверхность фиксированных точек, параметризуемая значениями g_{2*} и g_{3*} , выбираемыми произвольно. Было показано, что на данной поверхности существует область в которой все ω_{nn} являются положительными, что означает что на плоскости параметров g_{2*} и g_{3*} могут существовать инфракрасно притягивающие области. Если это действительно так, то корреляционные функции и функции отклика модели могут проявлять скейлинговое поведение с не универсальными критическими показателями, подчиняющимися точному соотношению $2\Delta_h = d-1 + \Delta_{\parallel} - \Delta_{\omega}$.

В Заключении диссертации представлены основные результаты и выводы, а также благодарности и список использованной литературы.

Благодарности

Диссертант выражает благодарность Антонову Николаю Викторовичу за научное руководство, терпение и неоценимую помощь при выполнении данной работы.

Автор благодарит Компанийца Михаила Владимировича за многочисленные советы и полезные обсуждения.

Также диссертант благодарит преподавателей и сотрудников кафедры физики высоких энергий и элементарных частиц Санкт-Петербургского Государственного Университета и преподавателей Кировского Физико-Математического Лицея за развитие интереса к теоретической физике, а также за годы преподавания и наставлений.

Кроме того, автор благодарит своих родителей и друзей за неоценимую помощь и моральную поддержку.

Список публикаций по теме диссертации из перечня ВАК

- 1. N.V. Antonov, M.V. Kompaniets, N.M. Lebedev. Critical behaviour of the O(n)- ϕ^4 model with an antisymmetric tensor order parameter // J.Phys. A: Math. Theor. 46:40, 405002, (2013)
- 2. Н.В. Антонов, М.В. Компаниец, Н.М. Лебедев. Критическое поведение O(n)- ϕ^4 -модели с антисимметричным тензорным параметром порядка: трехпетлевое приближение // ТМФ, 190:2, Р. 239–253, (2017); Theoret. and Math. Phys., 190:2, Р. 204–216, (2017)
- 3. N.V. Antonov, M.V. Kompaniets, N.M. Lebedev. Critical behavior of U(n)- χ^4 -model with antisymmetric tensor order parameter coupled with magnetic field // EPJ Web of Conferences 125, 05021 (2016)
- 4. П.И. Какинь, Н.М. Лебедев. Критическое поведение некоторых неравновесных систем с "замороженным" случайным шумом // Вестник СПбГУ. Физика и Химия. Том 4(62), выпуск 4, Р. 398, (2017)
- 5. М.В. Компаниец, Н.М. Лебедев. Критическое поведение O(n)-симметричной модели с антисимметричным тензорным параметром порядка: ренормгруппа в реальном пространстве // Вестник СПбГУ. Физика и Химия. Том 4(62), выпуск 4, P. 417, (2017)

Цитируемая литература

- 6. А.Н. Васильев. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике // СПб.: ПИЯФ, 1998.
- 7. М.В. Комарова, М.Ю. Налимов, Ю. Хонконен. Температурные функции Грина в ферми-системах: сверхпроводящий фазовый переход // ТМ Φ , 176:1, Pp. 89–97, (2013)
- 8. R. Pastor-Satorras, D.H. Rothman. Scaling of a slope: The erosion of tilted landscapes // J. Stat. Phys., Vol. 93, no. 3-4. Pp. 477–500, (1998)
- 9. M. Kardar, G. Parisi, Y.C. Zhang. Dynamic Scaling of Growing Interfaces // Phys. Rev. Lett., Vol. 56, P. 889, (1986)
- 10. С.И. Павлик. Скейлинг для растущей границы раздела с нелинейной диффузией // ЖЭТФ., 106:2, Р. 553, (1994)
- 11. Н.В. Антонов, А.Н. Васильев. Квантово-полевая ренормгруппа в задаче о растущей границе раздела // ЖЭТФ, 108:3, Р. 885, (1995)
- 12. T. Hwa, M. Kardar. Dissipative transport in open systems: An investigation of selforganized criticality // Phys. Rev. Lett., Vol. 62, no. 16, Pp. 1813–1816, (1989)
- 13. Н.В. Антонов, П.И. Какинь. Скейлинг в эрозии ландшафтов: ренормгрупповой анализ бесконечнозарядной модели // ТМФ, 190:2, Pp. 226-238 (2017)