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Общая характеристика работы 

Актуальность. Магнитно-резонансная томография (МРТ) является одним из 

наиболее эффективных методов диагностики ввиду высокой информативности и 

безопасности исследования. Обычно в клинических исследованиях регистрируется 

сигнал только от ядер водорода (1H, протонов) из-за их высокого содержания в живых 

тканях, что позволяет эффективно визуализировать анатомические структуры. Однако, 

как у любого метода, у него есть свои ограничения (трудности в визуализации легких, 

желудочно-кишечного тракта и др.), преодолеть которые в рамках протонной МРТ 

практически невозможно.  

На сегодняшний день все большую известность стали приобретать методы, 

основанные на регистрации ЯМР сигнала не от протонов, а от других ядер (натрия-23, 

фосфора-31, углерода-13 и др.). Эти методы позволяют получать дополнительную 

информацию о функциях как отдельных органов, так и всего организма в целом. 

Настоящая диссертационная работа относится к развитию методов МРТ на ядрах фтора-

19. Данное ядро высокочувствительно к ЯМР, но при этом в организме фтор содержится 

только в костях и эмали зубов, твердое агрегатное состояние которых не позволяет 

визуализировать его методом МРТ. Зато использование различных фторсодержащих 

соединений в качестве контрастных агентов дает возможность получать 19F МРТ 

изображения без фонового сигнала и только от тех органов или тканей, которые 

накапливают введенные агенты.  

Одним из наиболее актуальных приложений в медицинской диагностике является 

визуализация легких. Существующие методы (спирометрия, рентгенография, 

флюорография, компьютерная томография (КТ), позитронно-эмиссионная томография 

(ПЭТ) и др.) либо используют вредное для человека излучение, либо способны выявлять 

лишь глобальные патологические повреждения. Многие годы “ахиллесовой пятой” МРТ 

было плохое качество визуализации легочной ткани из-за низкого содержания в ней 

протонов. Существующие гиперполяризационные подходы повышения качества 

визуализации легких не являются общедоступными, поскольку они чрезвычайно 

дорогостоящие и требуют разработки сложных вспомогательных устройств и больших 

трудозатрат при подготовке визуализирующих препаратов. В то же время значительно 

более экономный метод 19F МРТ может успешно применяться при визуализации легких 

с использованием фторсодержащих газов в качестве контрастных агентов.  

Еще одним перспективным приложением метода 19F МРТ является мониторинг 
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способных к фагоцитозу клеток в организме человека. Так, например, при внутривенном 

введении жидких эмульсий перфторуглеродов (ПФУ) они поглощаются макрофагами и 

моноцитами, которые при наличии в организме локальных воспалительных процессов 

мигрируют в зону воспаления, позволяя визуализировать ее методами 19F МРТ. Применяя 

подобные методики, можно диагностировать различные патологии (опухоли, 

повреждения и др.) и следить за ходом их лечения. Также с помощью ПФУ эмульсий 

можно пометить, например, стволовые клетки и отслеживать их кинетику в организме 

при клеточной терапии.  

Таким образом, метод 19F МРТ способен значительно расширить границы 

применимости МРТ.  

Степень разработанности темы. Разработка методов 19F МРТ в настоящее время 

является особенно актуальной, о чем можно судить по большому количеству 

исследований, посвященных визуализации этим методом легких и воспалительных 

процессов в доклинической практике. Вместе с тем существует ряд проблем, почему эти 

методы до сих пор не применяются в клиниках. Основная проблема методов 19F МРТ 

заключается в их невысокой чувствительности, при этом используемые фторсодержащие 

контрастные агенты не идеальны для МРТ. Например, при визуализации легких обычно 

используют газы гексафторида серы (SF6) и перфторпропана (C3F8), которые имеют 

сверхкороткие времена релаксации (1-18 мс), а последний имеет еще и сложный спектр, 

что дополнительно снижает сигнал на 19F МРТ изображениях. Для отслеживания 

фагоцитирующих клеток в организме методом 19F МРТ в качестве контрастных агентов 

обычно используются высокочувствительные для МРТ ПФУ эмульсии, однако все они 

имеют чересчур длительные времена полувыведения из организма (до нескольких лет) 

и/или формируют нестабильные эмульсии, что исключает возможность их применения в 

клинике. 

Цель диссертационного исследования. Разработка новых методов 19F МРТ, 

направленных на расширение диагностических возможностей клинической МРТ. Для 

достижения указанной цели решаются следующие задачи: 

1. Оптимизация процессов 19F МРТ сканирования в полях 0.5 и 7 Тл для 

визуализации использованных фторсодержащих соединений. 

2. Разработка методов 19F МРТ визуализация легких при использовании газа 

октафторциклобутана (ОФЦБ) в поле 7 Тл. Сравнение свойств нового контрастного 

агента ОФЦБ и прежде применяемого в 19F МРТ при визуализации легких гексафторида 
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серы. Получение 19F МРТ изображений легких человека на слабопольном (0.5 Тл) 

клиническом томографе. 

3. Разработка методов 19F МРТ визуализации жидких ПФУ в поле 7 Тл. Изучение 

кинетики ПФУ эмульсий в организме крыс. Визуализация опухолевых процессов у 

мышей с использованием Перфторана в качестве контрастного агента.  

4. Исследование желудочно-кишечного тракта (ЖКТ) и легких человека методом 19F 

МРТ.  

Объект и предмет исследования. Объектом представленных исследований 

являются методы 19F МРТ. Предмет исследования – визуализация различных органов и 

тканей (легких, тимуса, ЖКТ, опухолей) при использовании фторсодержащих газов и 

жидкостей в качестве контрастного агента. 

Научная новизна. В диссертационной работе впервые получены следующие 

научные данные: 

1. Показаны возможность и эффективность использования газа ОФЦБ для 19F МРТ 

функциональной диагностики легких.  

2. Получены 3D изображения дыхательной системы крыс, больных фиброзом легких 

(включая, трахею и бронхи), методом 19F МРТ в поле 7 Тл при использовании газа ОФЦБ.  

3. Построены оксигенационные карты легких здоровых крыс и крыс с легочной 

гипертензией на основе карт Т1, полученных методом спинового эхо. 

4. Продемонстрирована способность газа ОФЦБ растворяться в тканях легких (проникать 

в мембрану альвеол) и разработан метод оценки параметров газообмена/проницаемости 

мембраны. 

5. Проведена визуализация легких человека с использованием газа ОФЦБ в качестве 

контрастного агента методом 19F МРТ в слабом поле 0.5 Тл. 

6. Обнаружено, что ПФУ эмульсии способны накапливаться в тимусе. При этом 

количество ПФУ, попавшего в тимус, зависит от способа введения препарата в организм.  

7. Установлена возможность использования препарата Перфторан для визуализации 

воспалительных процессов. 

8. Проведены исследования ЖКТ человека методом 19F МРТ в слабом поле (0.5 Тл) при 

использовании в качестве контрастного агента капсул, заполненных ПФУ и 

предназначенных для перорального введения. 

Теоретическая и практическая значимость работы. Теоретическая значимость 

работы заключается в изучении поведения в организме фторсодержащих контрастных 
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агентов, которые ранее не применялись в 19F МРТ, а также того, какую принципиально 

новую функциональную информацию они могут предоставить в рамках этого метода. В 

процессе исследований были выявлены такие фундаментальные аспекты, как 

способность некоторых ПФУ (ОФЦБ) проникать в мембрану альвеол в количестве, 

достаточном для их регистрации с помощью спектроскопии ядерного магнитного 

резонанса (ЯМР). Подробно исследована также фармакокинетика жидких ПФУ эмульсий 

в организме лабораторных животных и показана возможность визуализации тимуса.  

Практическая значимость работы заключается в исследовании диагностических 

свойств фторсодержащих веществ, весьма перспективных для клинических применений. 

Каждая из поставленных в диссертации задач (визуализация легких, ЖКТ, локальных 

воспалительных процессов в организме, тимуса) представляет важное направление 

медицинской диагностики. В отличие от применяемой в современной клинической 

практике рентгеновской КТ разработанные новые способы МРТ являются в полной мере 

безопасными и имеют потому особое практическое значение.  

Методология диссертационного исследования. В работе использовались 

методы 1H и 19F МР томографии и спектроскопии. Обработка полученных ЯМР спектров 

проводилась с помощью программы TopSpin, а изображений – программами ParaVision 

и ImageJ. 

 Положения, выносимые на защиту:  

1. Применение газа ОФЦБ в качестве контрастного агента для 19F МРТ позволяет 

получать данные о перфузировании и  вентилируемости тканей легких, необходимые при 

диагностике таких патологий, как COVID пневмония, фиброз легких и легочная 

гипертензия.  

2. Реализация метода 19F МРТ по визуализации легких человека на слабопольных 

клинических сканерах при использовании газа ОФЦБ оказывается возможной и 

эффективной. 

3. Применение ПФУ эмульсий как контрастных агентов для 19F МРТ позволяет 

визуализировать тимус и локальные воспалительные процессы, определяющие 

функциональное состояние иммунной системы.  

4.  19F МРТ наблюдение за продвижением по ЖКТ перорально введенных капсул, 

заполненных жидкими ПФУ, обеспечивает получение информации о проходимости и 

моторике кишечника.  
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Степень достоверности. Достоверность результатов настоящего исследования 

подтверждается адекватными способами обработки полученных изображений/спектров, 

физически корректной постановкой проведенных экспериментов и воспроизводимостью 

полученных в процессе их выполнения результатов. 

Личный вклад автора. Все представленные в диссертационной работе 

результаты получены автором лично либо при его непосредственном участии. 

Содержание диссертации и основные положения, выносимые на защиту, отражают 

персональный вклад автора в опубликованные работы. Подготовка к публикации 

полученных результатов проводилась совместно с соавторами. 

Публикации. По теме диссертационной работы опубликовано 9 статей в 

рецензируемых научных изданиях, индексируемых в базах данных Web of Science, 

Scopus и RSCI. 

Апробация работы. Результаты исследований доложены на 6-ти российских и 

международных конференциях (представлены в 6-ти опубликованных тезисах докладов). 

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, 

заключения, трех приложений и списка цитированной литературы. Общий объем работы 

составляет 113 страниц, включая 35 рисунков и 2 таблицы. Библиография содержит 182 

наименования на 10 страницах. 

СОДЕРЖАНИЕ РАБОТЫ 

Во введении обсуждается актуальность темы диссертационной работы, 

сформулированы цели и задачи исследования, показаны практическая значимость и 

научная новизна работы, дается общая постановка задач, кратко описано содержание 

работы по главам. 

Первая глава является обзорной. В ней приведены основы метода МРТ, которые 

необходимы и полезны для понимания ряда вопросов, поднятых в диссертационной 

работе и касающихся таких понятий, как чувствительность МРТ измерений, 

взвешенность изображений, отношение сигнала к шуму (SNR) и др. Сделанный обзор не 

дает исчерпывающей информации по всем методикам МРТ. Вместе с тем приведенного 

описания вполне достаточно для понимания технических сторон диссертационной 

работы.  

Вторая глава диссертационной работы посвящена разработке методов 19F МРТ 

визуализации легких при использовании газа ОФЦБ в качестве агента контрастирования 



7  

МРТ изображений. В §2.1 описывается актуальность разработки метода МРТ для 

визуализации легких и то, какими способами это осуществляется. В §2.2 приводится 

описание материалов и методов ко второй главе. Работа проводилась на 7-Тл МРТ 

сканнере Bruker BioSpec 70/30 USR. Для получения изображений использовали 

объемный резонатор с внутренним диаметром 7.2 см, а также дополнительную 

беспроводную плоскую катушку диаметром 4 см для усиления фторного сигнала (в in 

vivo исследованиях) [А1]. Более подробно о основных характеристика этой катушки и о 

том, какое возбуждающее РЧ поле она формирует описано в Приложении 1 [1-3]. В 

качестве контрастирующих газов в 19F МРТ использовали ОФЦБ (C4F8) и гексафторид 

серы (SF6). В работе проводились in vitro измерения на фантомах, ex vivo – на вырезанных 

легких интактных крыс, а также in vivo – на здоровых крысах и крысах с легочной 

гипертензией (ЛГ)/фиброзом легких. Подробнее о том, как создавалась модель ЛГ, а 

также результаты проведенного гемодинамического анализа и ex vivo измерений после 

МРТ исследований представлены в Приложении 2. 

Учитывая особенности визуализации фторированных газов (короткие времена 

релаксации, ограничение на полное время сканирования), оптимизировались быстрые 

ИП, основанные на методе градиентного эхо: ИП FLASH – Fast Low Angle SHot (быстрая 

визуализация с малым углом отклонения), ИП FISP – Fast Imaging with Steady state 

Precession (быстрая визуализация с устойчивым состоянием прецессии) и ИП UTE - Ultra-

short TE (ИП со сверхкоротким TE), а также ИП, основанная на спиновом эхо, FSE – fast 

spin-echo (быстрое спин-эхо). Времена релаксации Т1 и Т2 на фантомах определялись 

спектроскопическими методами с помощью ИП IR - inversion-recovery (инверсия-

восстановление) и CPMG - метода Карр-Перселла-Мейбума-Гилла, соответственно. Для 

построения карт Т1 легких использовали ИП RARE-VTR - Rapid Acquisition with 

Refocused Echoes and Variable Time of Repetisions (быстрый сбор сигнала с 

рефокусированными эхо и переменными временами повторения). Для получения и 

обработки МРТ изображений использовали пакеты ParaVision и ImageJ. SNR на МРТ 

изображениях определяли по формуле [4]: SNR=(S-N)/sd(N), где S и N – средняя 

интенсивность сигнала на МРТ-изображении от фантома/легких и шума, соответственно, 

sd(N) – среднее отклонение от сигнала шума. Для получения и обработки ЯМР спектров 

использовали пакеты TopSpin и Dynamic Center.  

Предварительно осуществлялись выбор сканирующих ИП и оптимизация их 

параметров – §2.3 [А2]. Работа выполнялась сначала  посредством in vitro исследований 
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на фантомах, а затем в ex vivo экспериментах на вырезанных легких интактной крысы.  

В диссертационной работе было продемонстрировано, что ОФЦБ является 

эффективным контрастным агентом для 19F МРТ легких. Его сравнение с наиболее часто 

используемым в этом направлении газом гексафторидом серы (§2.4) показало, что 

чувствительность ОФЦБ в 4.5 раза превосходит SF6 (рис. 1).  

 

Рис. 1. 19F МРТ изображения легких крысы, полученные с помощью ИП UTE (а, д), FSE (б, е), 

FISP (в, ж) и FLASH (г, з) при использовании газа ОФЦБ (верхний ряд) и гексафторида серы 

(нижний ряд); и – диаграмма, отображающая минимальное, среднее и максимальное значение 

SNR на соответствующих изображениях 
 

 

Ключевым фактором в пользу выбора ОФЦБ в качестве контрастного агента 

являются его более длительные времена релаксации (~60 мс) по сравнению с другими 

газами (например, у SF6 времена релаксации ~1.8 мс). Стоит отметить, что ИП на основе 

спинового эхо невозможно применять для газов с короткими временами релаксации. В 

то же время МРТ изображения, полученные с помощью спинового эхо, гораздо меньше 

подвержены искажениям, связанным с неоднородностью поля. 

В §2.5 проводился анализ возможности применения метода 19F МРТ для 

диагностики фиброза легких у крыс. Целью данного исследования было разработать 

эффективную методику для анализа вентилируемости легких. В работе показана 

перспективность использования трехмерных (3D) ИП для этих целей. По сравнению с 

двумерными (2D) ИП сигнал на изображениях, полученных с помощью 3D ИП, 

оказывается выше за счет того, что в случае 3D сканирования не происходит дефазировки 

спинов, вызванной диффузией газа в легких, поскольку при этом срез-селектирующий 

градиент отсутствует [5]. Тогда же становится возможным визуализировать нижние 

дыхательные пути (трахею и бронхи), диффузия газа в которых является довольно 

быстрой [А3]. 19F МРТ изображения легких здоровой крысы, полученные с помощью ИП 

3D UTE с разрешением 1.56×1.56×1.56 мм3 за 5 мин, показаны на рис. 2а. Их объемные 
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реконструкции, построенные по принципу MIP (maximal intensity projection - проекция 

максимальной интенсивности), представлена на рис. 2б-г. 

 
Рис. 2.  19F МРТ изображения легких здоровой крысы (а) и их MIP реконструкции в трех 

ортогональных проекциях (б-г). Стрелочками указаны трахея и бронхи; A-P – anterior-posterior 

(перед-назад), L-R – left-right (право-лево), H-F – head-foot (голова-ноги); Цветовая шкала 

соответствует значению SNR 
 

 

Эффективность методики была продемонстрирована при диагностике фиброза 

легких у крыс – рис. 3. На 1Н МРТ изображениях фиброз проявляется в виде светлых 

пятен на темном фоне легочных тканей. При этом на 19F изображениях отчетливо видны 

выпадения сигнала в этих же областях, что свидетельствует о нарушении 

вентилируемости легких.  

 
Рис. 3. 1H (верхний ряд), 19F (средний ряд) и 1H+19F (нижний ряд) МРТ изображения легких 

крысы с фиброзом; Стрелками отмечены области фиброза. Цветовая шкала соответствует 

значениям SNR 
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Перспективность газа ОФЦБ связана не только с его высокой чувствительностью 

для 19F МРТ, но также и его длительными временами релаксации (~60 мс). Это делает 

ОФЦБ эффективным маркером для измерения уровня оксигенации тканей (ввиду 

линейной зависимости Т1 и Т2 от концентрации кислорода, [O2]). У используемых ранее 

фторсодержащих газов времена релаксации короткие (1-18 мс), что делает их 

нечувствительными к слабым перепадам в содержании кислорода. Построение карт [O2] 

легких является важной задачей, поскольку они предоставляют информацию о 

перфузировании различных отделов легких и газообмене в них. В §2.6 описан метод 

получения релаксационных  карт легких и проведена оценка их информативности на 

здоровых крысах и крысах с ЛГ. При этом для исследования были взяты согласно 1Н МРТ 

(рис. 4а) крысы без фиброзных поражений, но с нарушением вентилируемости легких, 

обнаруженным с помощью 19F МРТ (рис. 4б) – MIP реконструкция этих изображений 

показана на рис. 6б. 

 
Рис. 4. 1Н (а) и 19F (б) МРТ изображения легких крысы с ЛГ. Цветовая шкала соответствует 

значению SNR 
 

Для сопоставления релаксационных карт с концентрацией кислорода в легких 

проводилась калибровка – измерялись зависимости Т1 и Т2 ОФЦБ от содержания [O2] в 

газовой смеси. Работу проводили сначала на фантоме, а затем на вырезанных легких 

крысы – рис. 5.  
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Рис. 5. Калибровочные кривые зависимости Т1 и Т2 времени релаксации в фантоме (а) и 

вырезанных легких интактной крысы (б) 
 

 

Поскольку величина Т2 газа сильно снижается в легких крысы ввиду их губчатой 

структуры, то для оценки оксигенации подходят только Т1 карты. На рис. 6 д,е приведены 

карты Т1 легких здоровой крысы и крысы с ЛГ, соответственно. 

 
Рис. 6. 19F MIP образ (а,б), Т1 (в,г) и [O2] (д,е) карты легких здоровой крысы (верхний ряд) и 

крысы с ЛГ (нижний ряд) 
 

У крыс с ЛГ наблюдается снижение не только вентилируемого объема легких, но 

и времени Т1, что соответствует повышению [O2] в патологических легких. В случае, 

представленном на рис. 6, концентрация кислорода в патологических легких в среднем 

была на 14% выше. Это говорит о нарушении газообмена и плохом перфузировании 

легочных тканей. При этом 1Н МРТ не выявила каких-либо патологических изменений в 

легких. 

В §2.7 изучались возможности ОФЦБ растворяться в тканях легких, на основе чего 
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был разработан метод оценки газообмена. Большинство фторированных газов сильно 

липофобны и проникают в мембрану лишь в малой степени, а потому невозможно 

напрямую исследовать газообмен в легких. Газ ОФЦБ является наиболее липофильным 

среди них. При этом фтор имеет большое электронное облако, что делает его 

эффективным сенсором (по химическому сдвигу) к молекулярному окружению. На рис. 

7 показан характерный 19F ЯМР спектр, полученный от организма крысы спустя 1.5 часа 

после дыхания фторсодержащей дыхательной смесью (70%ОФЦБ, 30%O2) под 

аппаратом ИВЛ. На спектре хорошо визуализируются два пика на расстоянии ~7 м.д. (их 

интегральное соотношение ~1:5.5). Левый пик соответствует растворенной в тканях фазе 

ОФЦБ, а правый – газовой фазе. Величина Т1 растворенной фазы ОФЦБ – 2.3±0.1 с, а Т2 

– 34±2 мс.  

 
Рис. 7. а: 19F ЯМР спектр здоровой крысы, дышащей дыхательной смесью 70%ОФЦБ+30%O2; 

б,в: 19F ЯМР спектры, полученные спустя различные промежутки времени после перевода крысы 

на дыхание воздухом; г,д: графики выведения ОФЦБ из фаз растворенной в тканях организма и 

газовой, соответственно 
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В исследовании изучалась кинетика выведения ОФЦБ из организма. Для этого 

крысу переводили с дыхания фторсодержащей газовой смесью на воздушное дыхание и 

получали 19F ЯМР спектры в различные промежутки времени – рис. 7 б,в. На основе этих 

спектров были построены графики выведения растворенной и газовый фазы ОФЦБ из 

организма крысы - рис. 7 г,д. По этим графикам определяли характерное время 

выведения – время, за которое сигнал соответствующей фазы спадает в е раз. Для газовой 

фазы ОФЦБ это время составило ~2 мин, а для растворенной ~90 мин. 

 

Подробный селективный анализ ОФЦБ, находящегося в легких в газовой и 

растворенной фазах, перспективен для оценки проницаемости мембраны альвеол и 

процесса газообмена. Эффективным было бы раздельно визуализировать эти фазы и 

определять интегральное соотношение сигналов и характерные времена выведения 

препарата не в среднем от всего объема легких, а от их различных отделов (путем 

построения карт, как в §2.6). Однако даже простая визуализация растворенной фазы 

ОФЦБ затруднительна ввиду слишком длительного Т1 и короткого Т2. 

Во второй главе был рассмотрен новый контрастный агент – ОФЦБ, обладающий 

рядом положительных характеристик, отличающих его от других фторированных газов. 

Его применение для 19F МРТ позволило разработать несколько новых методов, которые 

могут быть эффективны и полезны для функциональной оценки состояния легких – их 

вентилируемости, перфузии, а также газообмену. В §2.8 приводятся основные выводы ко 

второй главе.  

В третьей главе описано исследование легких человека методом 19F МРТ в слабом 

поле (0.5 Тл) [А4]. Во введении к главе (§3.1) описана актуальность таких исследований. 

Ранее подобные работы проводились только в полях 3 и 1.5 Тл. В §3.2 приводится 

описание материалов и методов, используемых в исследованиях третьей главы. 

Эксперименты проводились на клиническом 0.5-Тл МРТ сканнере Bruker Tomikon S50. 

Для получения МРТ изображений использовалась модифицированная фирменная 

катушка, предназначенная для исследований крупных фрагментов тела и способная 

перестраиваться с частоты 1H (21.08 МГц) на 19F (19.83 МГц). В качестве контраста 

использовался только газ ОФЦБ. В работе проводили in vitro измерения по оптимизации 

сканирования, а также in vivo исследование здорового добровольца (мужского пола, 71 

год, 105 кг).  

Результаты по отработке наиболее эффективной ИП и оптимизации ее параметров 



14  

представлены в §3.3. Для получения 19F МРТ изображений использовали ИП GRE и FSE. 

Было показано, что ИП FSE обеспечивает более сильный сигнал (примерно на 20% выше) 

и меньшие искажения (из-за неоднородности магнитного поля), чем ИП GRE – рис. 8. 

 
Рис. 8. а: фото фантома – пластикового баллона Platipus объемом 2л, заполненного газом ОФЦБ; 

б,в: 19F МРТ изображения этого фантома, полученные с помощью ИП GRE и FSE 2D, 

соответственно. Стрелка указывает на выпадение сигнала на изображении. Цветовая шкала 

соответствует значению SNR 

В §3.4 представлены результаты исследования легких человека методом 19F МРТ 

в поле 0.5 Тл при использовании газа ОФЦБ в качестве контраста. 19F МРТ сканирование 

легких проводилось с использованием ИП FSE для зоны 40×40×24 см3 с разрешением 

1×1×3 см3 при 3D-сканировании. 2D сканирование выполнялось без выбора среза. 

Предполагалось, что время сканирования не будет превышать 20 секунд для 2D 

сканирования и 40 секунд для 3D сканирования.  

Чтобы убедиться, что РЧ облучение безопасно для субъекта, предварительно была 

проведена оценка SAR (specific absorption rate или удельная скорость поглощения) – 

подробный расчет см. в Приложении 3.  Этот показатель используется в МРТ для оценки 

безопасности исследования. В 3D сканировании рассчитанное значение SAR составило 

≈0.57 Вт/кг, а для 2D – 0.35 Вт/кг, что значительно ниже допустимых значений согласно 

любым международным стандартам.  

На рис. 9 (средний ряд) приведены результаты 3D сканирования 19F МРТ легких 

человека. Для их отнесения к анатомическим структурам в самом начале эксперимента 

проводилось посрезовое 2D 1H МРТ сканирование - рис. 9 (верхний ряд).  
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Рис. 9. МРТ изображения легких человека; верхний ряд: 1H МРТ (2D GRE); средний ряд: 19F 

МРТ (3D FSE); нижний ряд: наложение 1Н и 19F образов, полученных при одинаковой 

пространственной локализации; Цветовая шкала соответствует значению SNR 
 

Результаты, полученные на 0.5 Тл томографе, дают основания полагать, что в 

перспективе исследования легких с помощью 19F МРТ могут проводиться и на 

слабопольных магнитах. Выводы к третьей главе представлены в §3.5 

Важное направление применения методов 19F МРТ относится к визуализации 

жидких фторсодержащих соединений в организме и является чрезвычайно 

перспективным для медицинской диагностики локальных воспалительных процессов, 

мониторинга лечения, клеточной терапии. Четвертая глава посвящена использованию 

жидких ПФУ эмульсий в качестве контрастных агентов для 19F МРТ в исследованиях 

малых лабораторных животных. При этом в работе особое внимание уделялось 

препарату Перфторан, поскольку это единственная ПФУ эмульсия, разрешенная к 

клиническому применению в России и ряде других стран [6]. В §4.1 представлена 

обзорная часть по применению ПФУ эмульсий для 19F МРТ. В §4.2 описаны материалы 

и методы, применявшиеся в этой главе. Исследования проводились на 7-Тл МРТ сканере 

(его подробное описание дано в §2.2). В этом случае дополнительная беспроводная 

поверхностная катушка использовалась только в экспериментах по визуализации 

опухолей у мышей. В качестве контрастного агента в 19F МРТ использовались Перфторан 

и эмульсия ПФТБА – их 19F ЯМР спектры показаны на рис. 10.  

В работе проводились in vitro эксперименты по оптимизации процессов 

сканирования, а также in vivo исследования на здоровых крысах и мышах со 

спонтанными опухолями.  
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Рис. 10. ЯМР спектры, химические структуры и некоторые параметры Перфторана (а) и 

эмульсии ПФТБА (б) [A5] 
 

В §4.3 описаны действия по выбору и оптимизация ИП [А6,A7]. Времена 

релаксации жидкостей гораздо больше, чем у газов -  у Перфторана Т1= 923±20 мс, Т2 = 

226±12 мс, а у эмульсии ПФТБА Т1 = 554±18 мс, Т2 = 248±11 мс, потому нет смысла 

использовать сверхбыстрые ИП. В работе оптимизировали ИП FLASH и FSE. Основная 

проблема заключается в сложных спектрах большинства ПФУ, которые содержат много 

линий, распределенных в широком диапазоне химических сдвигов – сотни м.д. (Δ~103-

104 Гц). В связи с этим невозможно возбуждать весь спектр целиком, поскольку на 

изображениях проявляются артефакты химического сдвига. Приходится тогда 

использовать частотно-селективные методы с возбуждением лишь нескольких 

спектральных линий, что нивелирует артефакты, но значительно снижает 

чувствительность. В таком случае основной задачей оптимизации становится поиск 

наиболее оптимальных линий спектра возбуждающего излучения с целью получить 

максимально возможный сигнал на МРТ изображениях. На рис. 10 пунктирной линией 

отмечены пики, которые оказались наиболее эффективными для возбуждения. Стоит 

отметить, что в режиме частотно-селективной методики посрезовое 2D сканирование 

невозможно, так как картина отнесения МРТ сигналов к зонам локализации 

резонирующих спинов оказывается искаженной (Рис. 11). При 3D сканировании такой 

проблемы нет, поскольку срез-селектирующие градиенты не используются.  
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Рис. 11. 19F МРТ изображения ампулы с Перфтораном в поле 7 Тл для 3D (слева) и 2D 

сканирования (справа) в коронарной проекции; в центре: МРТ изображение ампулы в 

аксиальной проекции 
 

Чтобы оценить количество ПФУ эмульсии, накопленной в различных органах или 

тканях, проводилась калибровка 19F сигнала, описанная в §4.4 – [A5]. Отметим, что при 

протонных МРТ измерениях подобные количественные оценки невозможны из-за 

наличия фонового сигнала от анатомических структур. В настоящем исследовании 

использовались 2-мл фантомы, заполненные эмульсией ПФТБА или Перфтораном в 

различной концентрации. Поскольку состав эмульсий известен, то процентное 

содержание эмульсии было пересчитано в количество возбуждаемых ядер фтора в 

единице объема. На рис. 12 показаны калибровочные графики для Перфторана и 

эмульсии ПФТБА. При этом количество возбуждаемых ядер фтора в 1 мл Перфторана и 

эмульсии ПФТБА отличаются – на 1 мл эмульсии ПФТБА приходится 50,8×1020 

возбуждаемых ядер фтора, а на 1 мл Перфторана 6,7×1020. Этот метод позволяет также 

дать оценку чувствительности, определяя минимальное количество возбуждаемых ядер 

фтора, которое должно находиться в визуализируемом вокселе – для 7-Тл МРТ системы 

это ~1018. 

 
Рис. 12. a: графики зависимости SNR на 19F МРТ изображениях от количества возбуждаемых 

ядер фтора в единице объема; б: увеличенный график для Перфторана [A5] 
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Чтобы оценить количество ПФУ эмульсии, накопленной в различных органах или 

тканях, относительно изначально введенной дозы, рассчитываются среднее значение 

SNR области фторного сигнала и объем этой области. Используя соответствующие 

калибровочные графики, можно определить количество введенной эмульсии. 

Известно, что крупно-элементные (>10 нм) эмульсии поглощаются клетками 

ретикулоэндотелиальной системы и разносятся по всему организму. Это делает 

возможным визуализацию воспалительных процессов в организме с помощью 19F МРТ. 

При этом обычно упоминаются только печень и селезенка в качестве визуализируемых 

на 19F МРТ изображениях участков накопления ПФУ эмульсий. Исследованием, 

описанным в § 4.5, удалось показать, что ПФУ эмульсии накапливаются также в тимусе 

и ближайших к нему лимфатических узлах [А5,A6,A8]. Количество ПФУ эмульсии, 

попадающей в тимус напрямую, зависит от способа введения – в случае 

внутрибрюшинной инъекции тимус накапливает больше эмульсии (≈1.5-2% от 

введенной дозы), чем в случае внутривенной инъекции (<1% от дозы) – рис.13. 

 
Рис. 13. а-д, е-к:19F МРТ изображений крыс (центральные срезы), которые были получены 

спустя 3 часа (а,е), на следующий (б,ж), 2-ой (в,з), 6-ой (г,и) и 35-ый (д,к) дни после 

внутрибрюшинного и внутривенного введений, соответственно; л: пример 1H МРТ изображений 

крысы; Пунктирным прямоугольником обозначена область сканирования 19F МРТ изображений; 

Цветовая шкала соответствует значению SNR на 19F МРТ изображениях [A5] 

 
Существуют данные [7,8], что макрофаги способны проникать в тимус после 

нагрузки антигеном на периферии, и что в тимусе присутствуют перитонеальные 

макрофаги. Эти данные объясняют, почему сигнал от тимуса на снимках выше в случае 

внутрибрюшинного введения эмульсии ПФУ по сравнению с внутривенным. Это связано 

с различиями в захвате наночастиц эмульсий макрофагами в зависимости от места 
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введения. В брюшной полости эмульсия поглощается перитонеальными макрофагами 

больше, чем в случае внутривенного введения. 

Таким образом, было показано, что тимус можно визуализировать методом 19F 

МРТ при использовании жидких ПФУ в качестве контрастных агентов. Такая методика 

представляет собой не просто способ визуализации определенных органов, это, прежде 

всего, оценка состояния иммунной системы, поскольку распределение эмульсии в 

организме напрямую зависит от активности и количества макрофагальных клеток.  

В §4.6 проводилось исследование возможности использования Перфторана для 

визуализации воспалительных процессов. Несмотря на его низкую 19F МРТ 

чувствительность была показана возможность визуализации опухолевых процессов в 

организме мышей. На рис. 14 представлены МРТ изображения, полученные на 

следующий день после внутривенного введения 0.25 мл Перфторана. Область опухоли 

подсвечивается на фторе не полностью, а только по периферии. Это связано со строением 

самой опухоли, которая имеет довольно большую область некроза, поэтому не 

полностью снабжается кровью.  

 
Рис. 14.  19F (нижний ряд), 1H (средний ряд) и 19F+1H (верхний ряд) МРТ изображения мыши, 

полученные на следующий день после внутривенного введения Перфторана в дозе 0.25 мл 
 

Таким образом, в четвертой главе, представлен разработанный в диссертации 

частотно-селективный метод визуализации Перфторана и показана перспективность его 

использования для визуализации воспалительных процессов, тимуса, а также оценки 

состояний иммунной системы. Выводы к четвертой главе приводятся в §4.7. 

Пятая глава посвящена использованию фторуглеродных соединений в качестве 



20  

контраста для 19F МРТ в клинических исследованиях ЖКТ человека на 0.5Тл МР 

томографе [A6,A8,А9]. В §5.1 содержится обзорная часть к главе. Представлены 

существующие методы диагностики ЖКТ и наработки в области МРТ. В §5.2 изложены 

материалы и методы, используемые в этой главе. Исследования проводились на 0.5-Тл 

МРТ системе (подробнее см. §3.2). Использовались чистые ПФУ – ПФД (основная 

составляющая Перфторана) и ПФТБА. Их спектры в поле 0.5 Тл представлены на рис. 

15. В работе проводились in vitro эксперименты по оптимизации сканирования, а также 

in vivo исследования ЖКТ двух добровольцев (мужского пола весом 105 и 60 кг).  

 

Рис. 15. 19F ЯМР спектры Перфторана, ПФД и ПФТБА 

В §5.3 описана процедура оптимизации параметров ИП. Плюсом перехода к 

слабопольным исследованиям является сужение полосы частот. Это позволяет 

возбуждать в полосе частот 0.5-Тл томографа большее число спектральных линий МРТ 

сигнала, чем в случае 7-Тл сканнера. На рис. 15 красной пунктирной линией показаны 

полосы возбуждения (ширина этой зоны ~0.7 кГц). В случае ПФД это соответствует 

возбуждению 16 ядер фтора (8 CF2 групп) от транс-ПФД (~50% от всего ПФД). В случае 

же ПФТБА в возбуждении участвуют 15 ядер фтора (3 CF3 и 3 CF2 группы). Учитывая их 

плотность и молекулярную массу (см. §4.2) количество возбуждаемых ядер фтора на 

единицу объема у ПФТБА оказывается всего в ~1.35 раз больше, чем у ПФД (в поле 7 Тл 

эта разница составляет ~ 5.4 раза, поскольку возбуждается только 4 ядра фтора от транс-

ПФД). Сканирование проводилось в коронарной проекции по методике 3D GRE для зоны 

размерами 30×30×35 см3 с разрешением 0.23×0.23×2.2 см3, время сканирования капсулы 

с ПФД составило 20 мин. Благодаря более сильному сигналу ЯМР от капсулы с ПФТБА 

время сканирования удалось сократить до 5 минут. С помощью аналогичной ИП 

получались 1H МР-изображения при времени сканирования 2 мин. 

В §5.4 описаны результаты исследования ЖКТ в поле 0.5 Тл. Сначала было 
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проведено МРТ исследование с капсулой, содержащей ПФД, которую принял 

доброволец №1. Первое МРТ изображение было получено спустя 20 мин после 

перорального приема капсулы. Капсула к этому моменту уже находилась у входа в 

двенадцатиперстную кишку. В течение часа после приема капсула растворилась, и 

дальнейшее ее отслеживание в организме добровольца проводили методами локальной 

ЯМР спектроскопии. При этом сигнал регистрировался в основном от верхней части 

ЖКТ. Хотя ПФУ сильно липофобны и гидрофобны, нельзя исключить вероятность того, 

что небольшое количество всасывается через стенки кишечника, попадает в кровь и 

локализуется в печени/селезенке. Спустя 7 дней спектр ПФД практически не 

регистрировался в теле добровольца, что соответствовало времени выведения ПФД. 

После этого проводились исследования с добровольцем №2, который принял 

нерастворимую капсулу с ПФТБА. Первое МРТ исследование было проведено через 4 

минуты после приема капсулы – рис. 16б. В данный момент капсула располагалась у 

входа в двенадцатиперстную кишку. На рис. 16 приведены полученные изображения 

капсулы. Через 7 часов после приема капсулы, ее сигнал регистрировался области тонкой 

кишки.  

 
Рис. 16. Совместные 19F+1H МРТ изображения добровольца №2 после приема капсулы с 

ПФТБА; а: изображение, полученное путем наложения отдельных 19F МРТ изображений, 

полученных в разное время после приема капсулы (б,в) 
 

Подобное исследование ЖКТ является полезным и эффективным при анализе 

проходимости и моторики кишечника [9]. Стоит отметить, что перспективным для 
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исследования ЖКТ может быть также использование не капсул, заполненных ПФУ, а 

смоченной перфторуглеродами пищи, как это делается в случае применения бариевой 

каши при исследовании кишечного тракта с помощью КТ. В итоге можно утверждать, 

что полученные здесь результаты успешно демонстрируют перспективность применения 

19F МРТ для исследований ЖКТ в слабых магнитных полях. Выводы по пятой главе 

приводятся в §5.5. 

В Заключении описана перспективность разработанных в работе методов для 

медицинской диагностики.  

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 

1. Показана эффективность использования газа ОФЦБ для 19F МРТ легких в поле 7 

Тл. Проведено сравнение его эффективности как контрастного препарата с 

использовавшимся ранее газом гексафторида серы и показано, что он обеспечивает 

усиление сигнала в 4.5 раза. Это позволило получить 3D изображения дыхательной 

системы (включая трахею и бронхи), предоставляющие информацию о вентилируемости 

различных отделов легких. Методика прошла успешные испытания при диагностике 

фиброза легких и ЛГ у крыс.  

2. Разработаны методы оценки оксигенации и газообмена в легких при 

использовании газа ОФЦБ в качестве контраста для 19F МРТ. Методика оксиметрии 

основана на первоначальном построении карт Т1 и апробирована на здоровых крысах и 

крысах с ЛГ. Метод оценки газообмена основан на способности газа ОФЦБ проникать в 

мембрану альвеол, причем химический сдвиг растворенной в мембране фазы ОФЦБ, как 

показано в диссертационной работе, отличается на ~4 м.д. от химического сдвига его 

газовой фазы. Селективный спектральный анализ этих фазовых компонент показал, что 

характерные времена выведения газовой и растворенной фазы ОФЦБ из организма 

составляют примерно 2 и 90 мин, соответственно. 

3.  Продемонстрирована возможность визуализации легких человека на слабопольном 

(0.5 Тл) клиническом МРТ оборудовании при использовании газа ОФЦБ в качестве 

контраста, что особенно актуально при работе с магнитами открытого типа и 

переносными системами. Показано, что за счет длительного времени продольной 

релаксации ОФЦБ можно применять менее чувствительные к неоднородностям 

постоянного поля ИП на основе спинового эхо. 
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4.   Разработан метод 19F МРТ визуализации тимуса. Показано, что жидкие ПФУ 

эмульсии накапливаются в тимусе в объеме, достаточном для визуализации. При этом 

количество ПФУ, попавшего в тимус, зависит от способа введения препарата и 

максимально при внутрибрюшинной инъекции. Также показано, что препарат 

Перфторан может успешно применяться в качестве контрастного агента в 19F МРТ при 

доклинических исследованиях малых лабораторных животных в высоких магнитных 

полях (7 Тл) при визуализации опухолевых процессов. 

5.    Продемонстрирована возможность исследования проходимости и моторики ЖКТ с 

помощью 19F МРТ на слабопольной (0.5 Тл) клинической системе при наблюдении за 

перемещением по ЖКТ капсул, заполненных ПФУ и предназначенных для перорального 

приема.   
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