На правах рукописи

ASgerbSaki

Абдельбаки Ахмед Салах Махмуд

ДИЗАЙН, СИНТЕЗ И СВОЙСТВА МОНОМЕРОВ СТРУКТУРНО-ПРЕОРГАНИЗОВАННЫХ ПОЛИАМИДНЫХ МИМЕТИКОВ НУКЛЕИНОВЫХ КИСЛОТ

02.00.10 - Биоорганическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Москва – 2019

Работа выполнена на кафедре биотехнологии и промышленной фармации Института тонких химических технологий имени М.В. Ломоносова Федерального государственного бюджетного образовательного учреждения высшего образования «МИРЭА - Российский технологический университет».

Научный руководитель: Кириллова Юлия Геннадьевна

кандидат химических наук, доцент кафедры биотехнологии и промышленной фармации Института тонких химических технологий имени М.В. Ломоносова Федерального государственного бюджетного образовательного учреждения высшего образования «МИРЭА – Российский технологический университет»

Официальные оппоненты: Тевяшова Анна Николаевна

доктор химических наук, ведущий научный сотрудник лаборатории химической трансформации антибиотиков Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе»

Аралов Андрей Владимирович

кандидат химических наук, руководитель группы молекулярных инструментов для исследования живых систем Федерального государственного бюджетного учреждения науки «Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова Российской академии наук».

Ведущая организация: Федеральное государственное бюджетное учреждение науки «Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук».

Защита состоится «23» декабря 2019 г. в_____часов, на заседании диссертационного совета Д 212.131.06 на базе ФГБОУ ВО «МИРЭА – Российский технологический университет» по адресу: 119571, г. Москва, проспект Вернадского, д. 86, аудитория М-119.

авторефератом диссертации интернет-сайте С можно ознакомиться на ВАК PΦ http://vak.minobrnauki.gov.ru/ ФГБОУ BO «МИРЭА И на интернет-сайте Российский технологический университет» www.mirea.ru.

С диссертацией можно ознакомиться В научно-технической библиотеке ФГБОУ «МИРЭА Российский BO _ технологический университет» адресу по 119454, Москва, пр. Вернадского, 78 и на интернет сайте www.mirea.ru.

Автореферат разослан "____ 2019 г.

Ученый секретарь диссертационного совета к. х. н., доц.

Лебедева В.С.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ¹

Актуальность проблемы. Одной из основных задач, стоящих перед современными биохимическими и биомедицинскими технологиями, является поиск молекулярных инструментов для диагностики и лечения генетических заболеваний. связи было В ЭТИМ разработано с несколько классов олигонуклеотидов, которые способны распознавать и связываться с высоким сродством и селективностью к комплементарным последовательностями ДНК (РНК) и стабильны к ферментативному гидролизу протеазами и нуклеазами. Одним из таких многообещающих классов миметков нуклеиновых кислот, разработанных в последние два десятилетия, являются пептидные нуклеиновые кислоты (ПНК).

Пептидно-нуклеиновые кислоты (ПНК) являются аналогами ДНК и РНК, в которых сахаро-фосфатный скелет замещен на *N*-(2-аминоэтил)глициновый (*aeg*) фрагмент, а нуклеиновые гетероциклические основания соединены с ним через ацетильные линкеры, при этом сохраняется расстояние между соседними гетероциклами, что обеспечивает молекулярное узнавание комплементарных мишеней оцДНК и РНК с образованием Уотсон-Криковских связей (*Nielsen P.E. et al, 1991, Science*).

Проведенные исследования показали, что ПНК находят применение в молекулярной биологии и медицине, благодаря своим гибридизационным свойствам и устойчивости. В настоящее время ПНК имеют достаточно широкий спектр практических приложений, в частности они используются как молекулярные инструменты для детектирования и управления структурой и

¹Список используемых сокращений: ACN – ацетонитрил; Ade – аденин; aeg – N-(2аминоэтил)глицин; Ala – аланин; All – аллил; Arg – аргинин; В– гетероциклическое основание; Bn – бензил; Вос – *трет*-бутилоксикарбонил; Cbz – бензилоксикарбонил; *се*-карбоксиэтил; Cyt – цитозин; DBU - диазобицикло[5, 4]үндек-7-ен; DCC – дициклогексилкарбодиимид; DhbtOH – 3-гидроксо-4-оксо-3,4-дигидро-1,2,3-бензотриазин; DIAD – диизопропилазоди-карбоксилат; DIC - N, N'-диизопропилкарбодиимид; DIPEA – диизопропилэтиламин; DMAP – 4-(N,Nдиметиламино)пиридин; DMF – диметилформамид; Fmoc-Cl – 9-Флуоренилметилокси-карбони лхлорид; Glu- глютаминовая кислота; Gly – глицин; Gua- гуанин; HBTU – [гексафторфосфат-О-(бензотриазол-1-ил)-1,1,3,3,-тетраметилурония]; Нех – циклогексильная защитная группа; HMBC – гетероядерная многосвязная корреляция; HOBT – гидроксибензотриазол; MALDI-TOF - матричная лазерная десорбция/ионизация-время полета масс-спектрометрический; МВНА - 4метилбензгидриламиковая смола; Ме-Метил-; Ns-opmo-нитробензолсульфонил-; PyBroP -Бромтрипирролидинофосфоний гексафторфосфат; PPh₃ – трифенилфосфин; RT - комнатная температура; трифторуксусная TEA триэтиламин; TFA кислота; TfOH трифторметансульфокислота; ТНF – тетрагидрофуран; Thy- тимин; TIS – триизопропилсилан; ДНК – дезоксирибонуклеиновая кислота; оцДНК –одноцепочечная ДНК; ПНК – пептиднонуклеиновая кислота; РНК – рибонуклеиновая кислота; ЯМР – ядерный магнитный резонанс.

функциями нуклеиновых кислот, а также регулирования экспрессии генов. ПНК разработки генотерапевтических используют ДЛЯ средств, находят свое применение области материаловедения И нанотехнологии, благодаря В способности к самосборке и молекулярному узнаванию.

Однако, несмотря на многие привлекательные особенности, ПНК имеют недостатки по сравнению с другими аналогами олигонуклеотидов. Из-за незаряженного скелета ПНК ограниченно растворяются в воде. Кроме того, они имеют тенденцию к агрегации и осаждению на поверхности других макромолекул неспецифическим образом. Несмотря на отсутствие отрицательного заряда, ПНК не способны преодолевать клеточную и ядерную мембраны, что ограничивает их использование в качестве антиген- и антисенс-агентов в генной терапии. Для разрешения этих недостатков в последние 15 лет было получено большое количество модифицированных по псевдопептидному скелету и нуклеиновому основанию ПНК. При этом было показано, что конфигурация хиральных центров аминокислотных остатков, используемых для синтеза хиральных мономеров и олигомеров ПНК, определяет их свойства (Corradini R. et al, 2000, Eur. J. Org. *Chem.*). Также убедительно продемонстрировано, что ациклические ПНК с различными радикалами в γ-положении псевдопептидного фрагмента и с (S)конфигурацией хирального центра имеют преорганизованную правозакрученную вторичную структуру и проявляют эффективные гибридизационные свойства в аффинности определениях И селективности к комплементарным последовательностям нуклеиновых кислот (Ly D.H., et al 2006, Bioorg. Med. Chem. Lett.).

Стратегия синтеза как *aeg*-, так и хиральных у-ПНК представляет собой последовательное получение структурных компонентов - псевдопептидов, мономеров и олигомеров. Основные пути синтеза этих производных, также как и карбоксиметилированных промежуточных гетероциклических синтонов И защищенных нуклеиновых оснований известны, однако зачастую построены на многостадийных схемах получения с использованием дорогостоящих реагентов и сложных условий реакций. Кроме того, при синтезе модифицированных аналогов ПНК необходимо осуществлять все превращения при получении псевдопептидов, мономеров и олигомеров методами, не вызывающими рацемизации хиральных центров. Таким образом, остается актуальным поиск эффективных синтетических путей получения псевдопептидов, мономеров и олигомеров хиральных ПНК, модифицированных нуклеиновых оснований. Также до сих пор вотребована

оптимизация синтеза структурных компонент *aeg*-ПНК, которые с одной стороны служат олигомерами сравнения при изучении свойств модифицированных ПНК и, с другой стороны, могут быть включены в состав олигомеров смешанного строения (миксмеров).

Цель настоящего исследования заключалась в разработке эффективных способов получения компонентов ахиральных и хиральных мономеров для последующего синтеза преорганизованных олигомеров ПНК по Вос-протоколу.

Основные задачи работы состояли в:

- Оптимизации и препаративном синтез бензилоксикарбонил-защищенных карбоксиметилированных пуриновых оснований и использовании их в последующем синтезе *aeg*- и γ-(S)-метил-мономеров на основе L-Ala, предназначенных для олигомеризации по Вос-протоколу.
- Разработке, оптимизации и препаративном синтезе конденсацией по Мицунобу *aeg-*, γ-(S)-метил-, γ-(S)-бензилкарбоксиэтил, γ-(S)циклогексилкарбоксиэтил- и α-(R), γ-(S)-диметил-псевдопептидов-ПНК, с N-концевой *трет*-бутилоксикарбонильной защитной группой.
- Получении *aeg-*, *γ-(S)-метил-*, *γ-(S)-бензилкарбоксиэтил-*, *γ-(S)циклогексилкарбоксиэтил-мономеров-ПНК* с терминальной *N-*Восзащиенной аминогруппой, в количествах, достаточных для последующего твердофазного синтеза олигомеров ПНК.
- 4. Разработке твердофазного синтеза по Вос-протоколу анионного олигомера ПНК с включением α-(*R*), γ-(*S*)-диметил-псевдопептида субмономерным способом.

Научная новизна работы.

В ходе работы впервые:

- методами 1D и 2D ЯМР-спектроскопии показано, что при алкилировании N²-Cbz-O⁶-Bn-гуанина γ-(S)-метил-бромацетамидным псевдопептидом получается исключительно N⁷-продукт алкилирования;
- конденсацией по Мицунобу получен α-(R)-γ-(S)-дизамещенный псевдопептид ПНК на основе L-Ala и D-Ala с согласованной стереохимией заместителей для последующего превращения в субмономер и использования последнего в твердофазном синтезе;
- конденсацией по Мицунобу получен более устойчивый к циклизации псевдопептид GluΨGly, содержащий циклогексильную защитную группу

в боковом радикале, ключевой интермедиат в синтезе γ-карбоксиэтил ПНК по Вос-протоколу;

 показана принципиальная возможность получения анионного олигомера γ-карбоксиэтил ПНК с включением α-(R)-γ-(S)-дизамещенных мономеров.

Практическая ценность работы.

Существенным образом оптимизирован способ получения пуриновых *aeg-*, и γ-(S)-метил мономеров ПНК. Предложены синтетические пути препаративного получения бензилоксикарбонил-защищенных карбоксиметилированных оснований из доступных исходных соединений и реагентов. пуриновых Разработан препаративного получения *N*-третбутил-ү-циклогексилспособ глутаминовой кислоты из L-глутаминовой кислоты. Показано, что в случае *aeg-*, и γ-(S)-метил- мономеров ПНК для синтеза пиримидиновых производных следует использовать алкилирование тимина и *N*⁴-бензилоксикарбонил-защищенного цитозина бромацетамидным производным соответствующего псевдопептида. В случае же пуриновых мономеров рациональный способ синтеза заключается в бензилоксикарбонил-защищенных конденсации карбоксиметилированных пуриновых оснований с *aeg*-, или *γ*-(*S*)-метил-псевдопептидом.

Основные положения, выносимые на защиту.

- 1. Общий способ получения конденсацией по Мицунобу *aeg-*, γ-(S)-метил-, α-(R)-γ-(S)-диметил- и γ-(S)-(3-циклогексил)-карбоксиэтил- псевдопептидов.
- Общий способ получения *aeg-*, и γ-(S)-метил-пуриновых мономеров ПНК через ацилирование соответствующих псевдопептидов бензилоксикарбонил-защищенными карбоксиметилированными производными аденина и гуанина.
- Общий способ получения *aeg-*, и γ-(S)-метил-пиримидиновых мономеров ПНК через алкилирование тимина и N⁴-бензилоксикарбонил-защищенного цитозина бромацетамидным производным соответствующего псевдопептида.
- 4. Результаты твердофазного синтеза олигомера H-γ-(S)-се-Cyt-α-(R)-γ-(S)dimet-Thy-γ-(S)-се-Thy-Ade-Gly-OH с включением α-(R)-γ-(S)-диметилмономера субмономерным способом.

Публикации.

По материалам диссертационной опубликовано 9 печатных работ, в том числе 2 статьи в зарубежных журналах (Scopus), 1 статья в научных журналах, рекомендованных ВАК, 6 тезисов докладов на Всероссийских и международных конференциях.

Апробация работы.

Результаты работы были представлены и обсуждены на: Х Всероссийской с международным участием Конгресс молодых ученых-биологов (Казан, 2017); XIV международной научно-практической конференции (Москва, 2017); Молодых ученых «Химия и химическая технология в XXI веке» (Томск, 2017); IX научной ученых «Ломоносов-2018»"Инновации конференции молодых В химии: достижения и перспективы (Москва, 2018); XX международной научно-«Химия, конференции Физика, биология, практической математика: Теоретические и прикладные исследования» (Москва, 2019); Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2019» (Москва, 2019).

Личный вклад автора.

Соискатель принимал активное участие при постановке цели исследования и разработке теоретических и экспериментальных подходов для решения поставленных задач. Автор лично выполнил весь объем синтетической части работы, обрабатывал экспериментальные данные и интерпретировал полученные результаты. Также соискатель принимал участие в подготовке публикаций по выполненной исследовательской работе.

Структура диссертации и объем работы

Диссертация изложена на 113 страницах машинописного текста и состоит из введения, обзора литературы, посвященного свойствам различных модификаций полиамидных миметиков нуклеиновых кислот, их применению в различных областях молекулярной биологии, диагностике и медицине, обсуждения результатов, экспериментальной части, выводов и списка литературы, включающего 130 источника. Диссертация иллюстрирована 31 рисунками и содержит 20 схем и 17 таблиц.

РЕЗУЛЬТАТЫ РАБОТЫ И ИХ ОБСУЖДЕНИЕ

Для расширения спектра применения *aeg*-ПНК был создан ряд их модификаций. Функциональные группы в псевдопептидном скелете *aeg*-ПНК, содержащие различный заряд и полярность способны изменять растворимость и проникновение в клетку модифицированных ПНК по сравнению с *aeg*-ПНК (*Puc.* 1 δ). Кроме того, ациклические модификации ПНК (*Puc.* 1 ϵ , ϵ) могут быть преорганизованы в правозакрученную спираль в случаях α -(*R*)- или γ -(*S*)-конфигурации хирального центра в псевдопептидном фрагменте (*Puc.* 1 ϵ , ϵ).

Рисунок 1. Химическая структура ДНК(РНК) (а), *aeg*-ПНК (б), α-, γ-, и α-,γ-ПНК (в-д соответственно). R – боковой остаток, B – нуклеиновое основание.

Предыдущие исследования показывают, что при одинаковых боковых радикалах в α- или γ-положениях скелета для эффективного молекулярного узнавания комплементарных мишеней больше подходит *γ*-(*S*)-конфигурация (Corradini et al, 2011, Curr. Top. Med. Chem.). Также известны работы по синтезу и исследованию свойств α -*R*- γ -*S*-дизамещенных ациклических ПНК (*Puc. 1d*), в которых конфигурация хиральных центров «однонаправлена», что усиливает преорганизацию (Corradini et al, 2011, Curr. Top. Med. Chem.). При этом было показано, что ПНК содержащие в середине цепи один хиральный мономер с центрами с согласованной конфигурацией двумя стереогенными очень эффективны при распознавании одноточечных мутаций (Calabretta, et al, 2009, Mol. BioSyst.). Олигомеры ПНК могут быть построены как из хиральных мономеров, так и представлять собой миксмеры (олигомеры смешанного типа), с чередованием *aeg*- и функциональных у-(S)-мономеров, либо с чередованием у-(S)-метил-мономеров ПНК на основе L-Ala и других, более сложных γ -(S)мономеров. Таким образом, для дизайна различных миксмеров ПНК необходим набор *aeg*- и *γ*-(*S*)-мономеров, также как и промежуточных структурных компонентов мономеров – псевдопептидов, гетероциклических синтонов и защищенных нуклеиновых оснований. В настоящей работе представлены синтезы ряда структурных компонентов и мономеров ПНК, на основе которых могут быть получены у-(S)-олигомеры и миксмеры ПНК, в том числе содержащие отрицательный заряд в боковом радикале. Введение отрицательного заряда

направлено на улучшение растворимости и снижение самоагрегации олигомеров ПНК, а также на возможность образования их комплексов с катионными трансфектантами.

1. Синтез пуриновых γ-(S)-*met*-мономеров через алкилирование защищенных гетероциклов.

Ранее мы осуществили синтез ряда α - и γ -мономеров на основе L-Glu (Деженков и др, 2015, Изв. РАН; Dezhenkov et al 2015, Mendeleev. Comm.) и L-Ala (Льянов и др, 2011, Вестник МИТХТ) для последующей олигомеризации по Воспротоколу. Для синтеза мономеров на основе L-Glu была выбрана стратегия алкилирования тимина (1) и защищенных гетероциклических оснований Cyt^{Cbz} (2), Ade^{Cbz} (3), Gua^{OBnCbz} (4), (*Puc. 2*), которые получали известными методами.

Рисунок 2. Использованные в работе защищенные гетероциклические основания и тимин.

Алкилирование гетероциклов (1-4)проводили соответствующими бромацетамидным производными - (5), на основе L-Glu или (6) на основе L-Ala (Схема 1). Бромацетамиды, в свою очередь, легко получали из соответствующих вторичных аминов 7, 9. Однако, исходный псевдопептид 7 склонен к образованию циклического производного (8) (Boyarskaya et al, 2005, Tetrahedron Lett.). Поэтому рациональный подход к синтезу мономеров на основе L-Glu заключался в быстром превращении в псевдопептида (7) в бромацетамид (5), который далее выступал в качестве универсального предшественника для синтеза мономера любого типа. При этом, данные 1D и 2D-ЯМР-спектроскопии, в частности N^{1} -НМВС-спектров подтвердили региоселективность алкилирования по положению пиримидиновых оснований и N⁹-положению пуриновых оснований. При применении этого же способа для получения *у*-(*S*)-*met*-мономеров на основе L-Ala в случае пиримидиновых оснований алкилирование бромацетамидом (6) N¹-положению проходило региоселективно ПО пиримидинового также *γ*-(*S*)-*met*-ΠΗΚ гетероцикла. Однако, при синтезе пуриновых мономеров результаты алкилирования не были однозначными. Так, в случае алкилирования Ade^{Cbz} (3) мы наблюдали образование до 40% побочного N⁷-региоизомера (15), что значительно затруднило хроматографическую очистку целевого вещества. В случае же реакции Gua^{OBnCbz} (4) с бромацетамидом (6) удалось выделить исключительно продукт N^7 - алкилирования (16), что было подтверждено данными НМВС-ЯМР-спектров (Рис.3).

Схема 1

Рисунок 3. Фрагменты HMBC-спектров продуктов синтеза пуриновых γ -(S)-met алкилированием бромацетамидным производным (6) аденина 3 (а) и гуанина 4 (б).

Таким образом, региоселективность алкилирования защищенных пуриновых оснований зависит от объёма алкилирующего фрагмента, тогда как в случае пиримидиновых оснований этот фактор не играет решающей роли. В отличие от неустойчивого γ -(S)-псевдопептида (8) на основе L-Glu, γ -(S)-метилпсевдопептид (9) не подвержен циклизации. Следовательно, в этом случае для мономеров возможна реализация альтернативного синтеза пути через конденсацию вторичного амина (9) с защищенными карбоксиметилированными

производными аденина (10) и гуанина (11). Кроме того, актуальной остается задача поиска псевдопептидных производных на основе глутаминовой кислоты менее подверженных к побочному процессу образования - δ-лактама (8).

2. Синтез защищенных карбоксиметилированных нуклеиновых оснований.

Для получения Cbz-защищенных карбоксиметилированных пуриновых оснований в качестве алкилирующих агентов обычно используют эфиры хлор(бром)уксусной кислоты. Этими производными алкилируют либо защищенный гетероцикл, либо защитные группы в гетероцикл вводят после алкилирования незащищенного пуринового основания. При любой стратегии синтеза возможно образование как целевого N⁹-региоизомера, так и побочного N⁷-продукта, от которого можно избавиться хроматографическими методами или перекристаллизацией. Заключительная стадия синтеза состоит в удалении Сконцевой защитной группы.

В случае алкилирования незащищенного аденина эфирами бромуксусной кислоты преимущественно образуется N⁹-региоизомер с приемлемыми (<70 %) выходами. Однако для последующего введения Cbz-защитной группы на экзоциклическую аминогруппу используют сложные системы реагентов, которые существенно усложняют и удорожают синтез целевого Cbz-N⁶-аденин-9-илуксусной кислоты (общие выходы ~25-45%).

Альтернативная группа методов заключается в алкилировании защищенных производных N⁶-аденина метиловым эфиром бромуксусной кислоты, при этом, как правило, получают смесь N⁹/N⁷-региоизомеров, из которой перекристаллизацией или хроматографией выделяют N⁹-региоизомер (общие выходы ~22-30%).

Осуществленный нами синтез Cbz-N⁶-аденин-9-ил-уксусной кислоты (10) был основан на последнем методе (Схема 2). Алкилирование Cbz-аденина (3) проводили эфирами бромуксусной кислоты (17, 18, 19). Соответствующие продукты N⁷ (20, 21, 22) и N⁹ (23, 24, 25) алкилирования в каждом случае разделяли перекристаллизацией. При этом мы ожидали, что при использовании

субстратов со стерически более объемными группами (17, 18) соотношение N⁹/N⁷региоизомеров будет существенно выше в сторону образования желаемого N⁹продукта. Однако, во всех трех случаях алкилирования соотношение N⁹/N⁷ региоизомеров сильно не отличалось и составляло около 6:4, а выходы на стадии алкилирования (после перекристаллизации и выделения индивидуальных N⁹региоизомеров) были сравнимыми, и составляли около 50%. Заключительная стадия синтеза кислоты (10) состояла в трансформации сложноэфирной группы в свободную карбоксильную. Бензиловый (23) и этиловый эфиры (25) омыляли в водно-органическом растворе щёлочи, а *трет*-бутиловый эфир (24) обрабатывали трифторуксусной кислотой в хлористом метилене. При этом, в последнем случае для удаления *трет*-бутильной группы требуются концентрированные (>60%) растворы ТФУ, что приводит к частичному удалению Cbz-группы, снижению общего выхода и сложностям выделения кислоты (10). Гидролиз как бензилового (23), так и этилового (25) эфиров проходил с количественным выходом, поэтому для препаративного получения Cbz-N⁶-аденин-9-ил-уксусной кислоты (10) использовали этиловый эфир бромуксусной кислоты (19), как более дешевый и доступный реагент. Общий выход Cbz-N⁶-аденин-9-ил-уксусной кислоты (10) из аденина (**3**) составил ~22%.

Синтезы гуаниновых карбоксиметилированных оснований, представляют собой многостадийные процессы, причем исходным соединением, как правило, выступает 2-амино-6-хлорпурин (13). Также, как и в случае получения адениновых производных требуемый N⁹-региоизомер легко получается при алкилировании незащищенного 2-амино-6-хлорпурина бромуксусной кислотой, однако последующее введение защиты на экзоциклическую амино-группу представляет значительную проблему. Анализ представленных в литературе в различное время синтетических процедур получения защищенных гуаниновых карбоксиметилированных оснований (перечислить) привел нас к использованию метода, опубликованного в 2013 году. Привлекательность этой пятистадийной схемы заключалась в том, что она не требовала сложных реагентов и методов (Схема 3), и, по данным авторов, была достаточно эффективной, общий выход составлял 53%. Однако при воспроизведении методик превращения хлорпурина (13) в желаемую кислоту (11) на некоторых стадиях у нас возникли сложности. Первые два превращения - введение Вос-защитной группы в N⁹-положение пуринового цикла с последующей перегруппировкой в N²-экзоциклическое положение проходили с сопоставимыми выходами, представленными ранее в литературе, для загрузки до 10 г хлорпурина. Однако, последующие стадии

алкилирования и введения Cbz-защитной группы в N^2 -экзоциклическое положение потребовали оптимизации экспериментальных методик, в особенности при увеличении загрузок исходных веществ. Так, при алкилировании N^2 -Восамино-6-хлорпурина (27) *трет*-бутиловым эфиром бромуксусной кислоты (18) суммарный выход N^9 -моно- (29) и N^2 , N^9 -дизамещенного (28) продуктов составил ~80%, соотношение продуктов (29) и (28) было ~1:1, вместо заявленного 15:1.

Схема 3.

Выход целевого эфира (29) после колоночной хроматографии не превышал 40%. При воспроизведении этой методики при различных загрузках N²-Восхлорпурина (27) выход продукта моно-алкилирования (29) не увеличивался (*Таблица 1*).

Таблица 1. Выходы эфира (16), загрузки, условия реакции и обработки при алкилирования N²-Вос-защищенного производного (27) третбутиловым эфиром бромуксусной кислоты (18)

Соотношение реагентов, экв.			Условия		Загрузки (27) и выход (29), %			
(27)	K ₂ CO ₃	(18)	реакции	обработки	0,4 г	1 г	1,3 г	2 г
1	2	1	3 ч, RT	удаление DMF при нагревании	40	40	40	-
1	1	1	0°С, 0,5 ч	удаление DMF при нагревании	25	-	-	-
1	0,95	0,95	0°С, 2 ч	экстракция при RT	-	62	-	-
1	0,95	0,95	0°С, 1,5 ч	экстракция при 0°С	-	76	-	80

Для того чтобы в алкилировании не была задействована N²-Восаминогруппа, мы изменили соотношении эквивалентов исходного вещества, основания и алкилирующего агента. Снижение температуры реакции, сокращение времени реакции и загрузка равного числа эквивалентов исходного хлорпурина (27), поташа и *трет*-бутилового эфира бромуксусной кислоты привели к снижению выхода, однако соотношение продуктов алкилирования изменилось в сторону образования монозамещенного производного (**29**). Использование небольшого избытка исходного Вос-производного (**27**) по отношению к основанию и алкилирующему агенту, увеличение времени реакции до 2-х часов и проведение реакции при 0°C привело к увеличению выхода эфира (**29**) в 1,5 раза. Далее, исключив упаривание DMF и проводя разложение водой реакционной массы и последующую экстракцию на холоду, выход монозамещенного производного (**29**) удалось повысить в 2 раза, при этом образование побочного N^2 , N^9 -дизамещенного производного (**28**) практически не наблюдалось.

Также нам потребовалось оптимизировать и стадию введения Cbz-защитной группы. При воспроизведении оригинальной методики с сохранением соотношения реагентов и времени, но при увеличенной загрузке с ~200 мг до 1,25 г эфира (**29**), выход реакции составил только 40%, вместо заявленного 90%. Мы установили, что если и гидрид натрия, и CbzCl добавлять к реакционной массе при температуре не выше 0°C, выход Cbz-производного (**30**) может быть существенно увеличен. Так при использовании этих условий и загрузке в 3,2 г исходного эфира (**29**) выход составил 94%. При этом время реакции составило 16 ч.

Заключительная стадия заключалась в замене 6-хлор-группы на 6оксогруппу, с одновременным удалением N^2 -Вос-защитной группы и гидролизом *трет*-бутилового эфира 80% муравьиной кислотой при нагревании. Таким образом, при нашем воспроизведении методик синтеза, выход N^2 -Cbzзащищенного карбоксиметилированного гуанина (11) не превышал 20%, тогда как в ходе оптимизации стадий алкилирования и введения Cbz-защитной группы нам удалось повысить суммарный выход по схеме 3 до 55% при существенном увеличении загрузок исходных веществ, по сравнению с опубликованными ранее.

Синтез гуанин-фиксирующего карбоксиметилированного основания (Gclamp).

Одно из интереснейших свойств γ -(S)-олигомеров заключается в их способности к встраиванию в дуплекс ДНК:ДНК с вытеснением одной цепи с образованием дуплекса ПНК:ДНК. Было показано, что дополнительную устойчивость такого дуплекса можно достичь увеличением длины ПНК (*Ly D. H. et al, 2009, J. Am. Chem. Soc.*), введением в олигомер ПНК остатка акридина (*Ly D. H. et al, 2007, J. Am. Chem. Soc.*) или модифицированных цитозиновых гетероциклов (*Ly D. H. et al, 2008, Chem. Bio. Chem.*), способных к образованию пяти водородных связей с комплементарным гуаниновым остатком (*Puc. 4*).

Рисунок 4. Водородные связи в (А) С-G и (Б) модифицированной С(Х)-G парах оснований.

В контексте был синтез G-фиксирующего ЭТОМ нами проведен карбокмсиметилированного основания (31) (Схема 4), чтобы ввести это основание в модифицированные у-ПНК. Синтез феноксазинового производного (**31**) был осуществлен нами по схеме 4 из 5-бромурацила (32) по известному методу с оптимизацией отдельных стадий. Исходный 5-бромурация (32) алкилировали далее С⁴-положение трансформировали третбутилбромацетатом (18) и В триазольное производное (33).

Последующее взаимодействие эфира (**33**) с 2-аминорезорцином (**34**) в присутствии DBU давала ключевое промежуточное соединение (**35**). Дальнейшую циклизацию проводили в этаноле в присутствии 15 эквивалентов триэтиламина с образованием феноксазинового третбутилового эфира (**36**).

Наконец, гуанидиновый фрагмент был введен в молекулу феноксазина (**36**) алкилированием по Мицунобу с N,N'-ди-Cbz-N"-(2-гидроксиэтил)гуанидином (**37**), при этом использовали PPh₃ вместо полимерсвязанного реагента, выход эфира (**31**) составил 39% после колоночной хроматографии. Синтез N,N'-ди-Cbz-N"-(2-гидроксиэтил)гуанидина (**37**) осуществляли известным методом из тиомочевины (**38**) по схеме 5.

В ходе оптимизации синтеза феноксазинового эфира (**31**) мы пробовали изменить порядок двух последних превращений, то есть циклизация следовала за алкилированием. Однако, конденсация по Мицунобу в этом случае проходила с выходом лишь 20%, при этом было зафиксировано образование побочных продуктов диалкилирования, что и привело к существенному снижению общего выхода целевых соединений. Дальнейшие превращения эфира (**31**) не проводили. Таким образом, была оптимизирована схема получения *трет*-бутилового эфира феноксазинового карбоксиметилированного основания - ключевого интермедиата в синтезе гуанин-фиксирующих (G-clamp) мономеров ПНК.

3. Синтез *aeg-*, γ-(S)-метил-, α-(R)-γ-(S)-диметил-, γ-(S)-бензилкарбоксиэтил-, γ-(S)-(3-циклогексил)-карбоксиэтил-) псевдопептидов.

Ключевыми интермедиатами при синтезе как *aeg*-, так и γ -(S)-хиральных мономеров ПНК являются, псевдопептиды с восстановленной пептидной связью ψ(CH₂NH). Ясно, что для воспроизведения эффективного результатов связывания (в с комплементарными мишенями нуклеиновых кислот определениях аффинности и селективности) важна высокая энантиомерная чистота исходных псевдопептидных фрагментов, полученных на ИХ основе мономеров И олигомеров. Кроме того необходимо использовать синтетические методы, обеспечивающие отсутствие рацемизации в процессах их получения. Недавно показано, что для построения исходного *N*-Вос-защищенного псевдопептидного фрагмента для у-ПНК при выборе между восстановительным *N*-алкилированием и конденсацией по Мицунобу предпочтение следует отдавать последнему, поскольку в этом случае получаются энантиомерно чистые производные (Ly D. H. et al, 2015, Tetrahedron).

Для синтеза псевдопептидных интермедиатов *aeg*- и γ -(*S*)-мономеров различного строения известными методами были синтезированы кислотные (**39**, **40**, **41**) и спиртовые компоненты (**42**, **43**) – исходные субстраты в конденсации по Мицунобу (Схема 6).

Схема 6.

Кислотная компонента (39), была получена из D-Ala (44), а компоненты (40) и (41) - из глицина (45). Спирт 42 синтезировали в три стадии из L-Ala (46), а спирт

(43) также в три стадии из L-Glu (47). Для синтеза *aeg*-мономеров в качестве спиртовой компоненты использовали коммерчески доступный *N*-Вос-аминоэтанол (48).

Синтез еще одной спиртовой компоненты (49) был осуществлен для получения мономеров на основе L-Glu. Как было упомянуто ранее, основная проблема синтеза у-(S)-карбоксиэтил мономеров и олигомеров ПНК на основе L-Glu связан с быстрой циклизацией ключевого псевдопептида (7) в δ-лактама (8) (Схема 1, стр. 10). При этом в качестве защиты боковой карбоксильной функции использовали бензильную, которая, по-видимому, и обусловливает побочный процесс циклизации. В то же время известно, что в пептидном синтезе используется циклогексильная защитная группа для подавления многих нежелательных процессов, она полностью совместима с известным Воспротоколом, то есть устойчива при действии TFA, но удаляется в сильнокислых трифторметансульфокислоту. действием растворов, содержащих условиях Изначально предполагалось получать спиртовую компоненту (49) в 4 стадии, исходя из у-бензил-*N*-Вос-глутаминовой кислоты (43) (Схема 7). Получение силилового эфира (50) проходило с весьма средним выходом, а последующую стадию ацилирования провести не удалось.

Схема 7

В альтернативном способе получения спиртового производного (**49**) (Схема 7) была использована известная последовательность реакций, когда исходя из глутаминовой кислоты (**47**) в две стадии получали циклическое производное (**51**), которым селективно ацилировали циклогексиловый спирт. Последующая трансформация защитных групп эфира (**52**) приводила к дизащищенной L-глутаминовой кислоте (**53**) в три стадии. Далее было получено спиртовое производное (**49**) с выходом 80%.

Схема 8

Следующий этап синтеза (Схема 9, Табл. 2) заключался в получении в стандартных условиях набора псевдопептидов (7, 9, 59-61) конденсацией по

Мицунобу кислотных (**39-41**) и спиртовых компонент (**42**, **43**, **48**, **49**), с последующим тиолизом без выделения промежуточных полностью защищенных псевдопептидов (**54-58**). При этом, по ранее разработанному методу (Деженков 2013), очистку вторичных аминов (**7**, **9**, **59**, **60** и **61**) проводили экстракцией, состоящей в обработке органического слоя диэтилового эфира 20% раствором лимонной кислоты (pH 4). Затем объединенные водные фракции нейтрализовали карбонатом калия до pH 7 и экстрагировали псевдопептиды (**7**, **9**, **59**, **60** и **61**) хлористым метиленом. В этом случае практически все гидрофобные органические примеси остаются в эфирном экстракте, а неорганические соли – в воде. Заметим, что в таких случаях конденсации по Мицунобу «кислотные» компоненты следует брать в недостатке (0,83 экв.), так как ее не должно оставаться в смеси, образующейся после реакции. Кроме того, для успешного проведения тиолиза необходимо полностью очистить реакционную массу после конденсации от трифенилфосфиноксида.

Схема 9

Таблица 2. Исходные (39, 40, 41, 42, 43, 48, 49), промежуточные (54-58) и целевые (7, 9, 59, 60, 61) продукты в синтезе псевдопептидов.

N⁰	Спиртовая компонента	Кислотная компонента	Продукт конденсации по Мицунобу	Псевдопептид	Σ выход на 2 стадии
1	восни (48)	Ns 0 HN (41)	BocHN (54)	BocHN (59)	73%
2	Восня (42)	NS O HN (41)	BocHN NS O (55)		58%
3	BocHN O BnO (43)	Ns 0 HN 0 (40)	BnOOC Ns O BocHN N O 56	BnOOC BocHN (7)	40%
4	BocHN OH O O O ^c Hex (49)	Ns 0 HN 0 (40)	HexcOOC NS O BocHN (57)	HexcOOC BocHN (60)	69%
5	BocHN (42)	NS O HN O (39)			48%

Общие выходы псевдопептидов (7, 9, 59 и 61) в этом двухстадийном превращении оказались в пределах ожидаемых и совпали с выходами, представленными ранее в литературе (Фалькевич, 2001, Боярская 2005, Льянов 2011, Деженков 2013). Однако в случае псевдопептида (60) выход был существенно выше, по сравнению с аналогом (7). При проведении сравнительного тиолиза (~0,2 г, 2 ч) на двух субстратах: псевдопептиде с циклогексильной защитной группой (57) и псевдопептиде с бензильной защитной группой (56) (Схема 10) мы установили, что бензильное производное (7) действительно склонно к циклизации. В случае же псевдопептидного фрагмента (60) с циклогексильной защитной группой побочный процесс циклизации, если и идет, то значительно медленнее по сравнению с аналогом (7).

Схема 10

Псевдопептиды (**59**, **9** и **7**) были использованы далее для синтеза *aeg*-, γ -(*S*)метил- и γ -(*S*)-карбоксиэтил-мономеров ПНК, соответственно. В свою очередь, на основе дизамещенного псевдопептида (**61**) был получен α -*R*- γ -*S*-диметилсубмономер ПНК, содержащий ортогональную Fmoc-защитную группу.

4. Синтез aeg- и ү-(S)- мономеров ПНК.

4.1. Синтез мономеров ПНК через алкилирование нуклеиновых гетероциклических соединений.

Пиримидиновые *aeg*- (70, 71), γ -(*S*)-метил- (72, 73) и γ -(*S*)-карбоксиэтилмономеры (74, 75) ПНК были получены через алкилирование тимина (1) и Сbzцитозина (2) соответствующими бромацетамидными производными (5, 6, 62, Схема 11, Табл. 3). Той же стратегией был получен адениновый γ -(*S*)карбоксиэтил мономер (76).

59) Ацилирование псевдопептидов (7, 9, проводили действием бромацетилбромида в хлористом метилене в присутствии триэтиламина. Строгий температурный контроль реакционной массы (5-15°С) обеспечил достаточно высокие выходы бромацетамидных производных (5, 6, 62). Тимин (1), Cbz-(2) $(\mathbf{3})$ **ШИТОЗИН** И Cbz-аденин алкилировали соответствующими бромацетамидными производными (5, 6, 62) в DMF в присутствии оснований. В случае тиминовых производных (63, 65, 67) использовали поташ, а в случае цитозиновых производных (64, 66, 68) – гидрид натрия. Заключительная стдия

удаления *С*-концевой защитной группы представляла собой в случае метилового эфира щелочной гидролиз в водно-органической среде, а в случае аллилового эфира – катализ палладиевым комплексом в присутствии морфолина. В целом, суммарные выходы целевых мономеров (**70-76**) допускают их получение в препаративных количествах (1-3 г), достаточных для последующего твердофазного синтеза олигомеров ПНК различного строения.

Таблица 3. Выходы продуктов и промежуточных соединений, синтезированных по схеме 11.

Исходный псевдопептид	Бромац- етамид (выход, %)	Нуклеин- овое основани е	Полностью защищенны й мономер, (выход, %)	Условия удаления С- концевой защитной группы	Целевой моно- мер, (выход, %)	Σ (выход, %)
H O	62 (78%)	Thy (1)	63 (89) K ₂ CO ₃	NaOH	70 (86)	59.7
BocHN ² S9		Cyt^{Coz} (2)	64 (67) NaH	NaOH	71 (94)	49.0
	6 (87%)	Thy (1)	65 (88) K ₂ CO ₃	NaOH	72 (82)	62.7
BocHN O		Cyt ^{Cbz} (2)	66 (87) NaH	NaOH	73 (81)	61.3
BnOOC H O	5 (78%)	Thy (1)	67 (86) K ₂ CO ₃	$[Pd(PPh_3)_4]^0$,	74 (95)	63.7
BocHN OAII		Cvt ^{Cbz} (2)	68 (62) NaH	морфолин [Pd(PPh ₃) ₄] ⁰ .	75 (89)	43.0
				морфолин	- ()	
		$\operatorname{Ade}^{\operatorname{Cbz}}(3)$	69 (68) K ₂ CO ₃	[Pd(PPh ₃) ₄] ⁰ , морфолин	76 (98)	51.9

4.2. Синтез защищенных пуриновых мономеров

Далее были получены пуриновые *aeg-* и *γ-(S)-метил*-мономеры ПНК (Схема 12). Конденсацию карбоксиметилированных производных (**10**) и (**11**) проводили карбодиимидным методом, с предактивацией НОВТ. Избыток соединений (**10**) и (**11**) относительно псевдопептидов (**9**) и (**59**) составлял 1,3 эквивалента. Конденсации карбоксиметилированных оснований (**10**) и (**11**) с вторичными аминами (**9**) и (**59**) проходили со средними выходами (46-68%), что соответствует эффективности синтезов пуриновых мономеров (38-85%), описанных ранее для различных типов псевдопептидов, предназначенных для олигомеризации по Вос-

протоколу. При этом в качестве конденсирующих агентов использовали PyBroP/DIEA или DCC с дорогостоящей нуклеофильной добавкой DhbtOH. Таким образом, в нашем случае при использовании стандартного метода DCC/HOBT были достигнуты приемлемые выходы полностью защищенных мономеров (77, 78, 14, 79), без использования дорогостоящих реагентов.

Схема 12

Целевые мономеры (80-83) получали аналогично получению пиримидиновых мономеров (70-73) действием раствора гидроксида натрия в водно-органической среде, с хорошими выходами, 66-94%. Таким образом, пуриновые *aeg-* и γ -(*S*)-*метил*-мономеры ПНК были получены в препаративных количествах с существенным упрощением синтетических превращений с помощью доступных реагентов.

5. Синтез α -(*R*), γ -(*S*)-диметил-субмономера и синтез олигомеров введения в γ -(*S*)-карбоксиэтил-олигомеры твердофазным синтезом по Вос-протоколу.

Ранее было показано, что ациклические хиральные α-производные склонны к рацемизации в процессах олигомеризации (*Corradini, et al, 1999, Tetrahedron: Asymmetry*), поскольку содержат ацильный заместитель при амино-группе в α-положении. Для решения этой проблемы был предложен субмономерный подход (*Corradini, et al, 1999, Tetrahedron: Asymmetry*), когда к растущей цепи ПНК присоединяют промежуточные предшественники мономеров без нуклеиновых оснований (Схема 13), содержащих ортогональную защитную группу уретанового типа на вторичном амине.

Для субмономерного подхода описаны как Вос-, так и Fmoc-протоколы. Также эта стратегия используется для получения ПНК, содержащих (α , γ)дизамещенные мономеры. Таким образом были получены как α -ПНК, так и α -(R)- γ -(S)-ПНК с включением аминобутильных и гуанидинопропильных остатков.

Схема 13

Синтез субмономера со стереогенными центрами в α -(*R*)- и γ -(*S*)-положениях был осуществлен по Схеме 14. Поскольку обоснование такой структуры вытекает из субмономерной стратегии на основе Вос-, где ортогональная Fmoc-группа помещается на вторичный амин и впоследствии замещается во время твердофазного синтеза ПНК через карбоксиметил-производным нуклеинового основания.

Схема 14

Fmoc-группу вводили в псевдопептид (61) реакцией с Fmoc-хлоридом, с получением *N*-Fmoc-защищенного псевдопептидного производного (84). Использование Fmoc-сукцинимидилкарбоната было неудовлетворительным с точки зрения выхода. Целевой субмономер (85) был получен с высоким выходом после удаления аллилового эфира с помощью палладиевого комплекса - тетракис(трифенилфосфин)палладия [Pd(PPh₃)₄] в присутствии *N*-этиланилина. Общий выход субмономера (85) в расчете на исходный D-Ala 44 (Схема 6A, стр.17) составил 17,6%, что немного больше, чем выход для опубликованного ранее гуанидинопропильного субмономера на основе D-Arg и L-Arg (13,3%).

Далее субмономер (85) использовали в твердофазном синтезе. Олигомер Н- $[\gamma - (S) - ce - Cyt] - [\alpha - (R) - Me - \gamma - (S) - Me - Thy] - [\gamma - (S) - ce - ThyAde] - Gly-OH$ (86) (*Puc.*) 5) синтезировали на смоле МВНА по Вос-протоколу с небольшими модификациями и мониторинге с помощью теста Кайзера. После второго шага олигомеризации была проведена конденсация субмономера (85) в стандартных условиях активации (HBTU, DIPEA, 10 минут). После обработки носителя пипередином, была проведена конденсация с 6-ти кратным избытком тиминил-уксусной кислоты, HBTU, DIPEA, 10 минут. После удаления Вос-защитной группы проводили конденсацию с тиминовым мономером (74) на основе L-Glu. Далее отщепление олигомера (86) с носителя действием проводили смеси TFA/TfOH/TIS (8:1:1 об.) и анализировали реакционную массу MALDI-TOF-масс

спектрометрией. Данные MALDI-TOF-масс спектра указывают, что преимущественно образуется тетрамер (**86a**), в котором в третьем звене отсутствует карбоксиметилированное основание, а также тример (**866**) и его производные, в которых также отсутствует тиминсодержащий фрагмент.

Таким образом, конденсация субмономера (85) и последующее удаление Fmoc-защитной группы проходят, по всей видимости, хорошо, тогда как присоединения тиминилуксусной кислоты в стандартных условиях активации не происходит. Это может быть связано с низкой реакционной способностью вторичной аминогруппы встроенного в олигомерную цепь субмономера, обусловленную главным образом, стерическими затруднениями. В предыдущих работах конденсации с карбоксиметилированными гетероцикличесими DCC/DHBtOH DIC/DhBTOH. проводили активацией или основаниями Следовательно, могут синтетические затруднения быть ЭТИ решены использованием больших избытков карбоксиметилированного гетероцикла с активацией менее затрудненными акивирующими агентами и при мониторинге другими тестами.

[M+H]+([M]) 1377,69 (1376,56)

Рисунок 5. Предполагаемые структуры продуктов, соответствующие основным пикам в MALDI-TOF масс-спектре.

Выводы:

 Проведена оптимизация синтеза и получены в препаративных количествах бензилоксикарбонил-защищенные карбоксиметилированные пуриновые основания. Предложен и осуществлен синтез *aeg-* и γ-(S)-метил-пуриновых мономеров ПНК через конденсацию соответствующих псевдопептидных предшественников с защищенными карбоксиметилированными пуриновыми основаниями с использованием

- Осуществлен синтез *aeg-*, и γ-(S)-метил-пиримидиновых мономеров ПНК через алкилирование тимина и N⁴-бензилоксикарбонил-защищенного цитозина бромацетамидными производными соответствующих псевдопептидов. Также получены γ-(S)-карбоксиэтил-мономеры ПНК через алкилирование тимина, Cbz-цитозина и Cbz-аденина бромацетамидным производным на основе L-Glu.
- Впервые синтезирован α-(*R*)-γ-(*S*)-дизамещенный псевдопептид ПНК на основе L-Ala и D-Ala конденсацией по Мицунобу. Проведен синтез α-(*R*)γ-(*S*)-дизамещенного субмономера ПНК с ортогональными защитами: Восгруппа на первичной аминогруппе и Fmoc-группа – на вторичной.
- 4. Разработан способ препаративного получения дизащищенного производного - *N-mpem*-бутил-γ-циклогексил-глутаминовой кислоты. На основе этого производного получен более устойчивый к циклизации псевдопептид GluΨGly, содержащий циклогексильную защитную группу в боковом радикале, ключевой интермедиат в синтезе мономеров γкарбоксиэтил ПНК по Вос-протоколу.
- Показана принципиальная возможность получения анионного олигомера γкарбоксиэтил ПНК с включением α-(R)-γ-(S)-дизамещенных мономеров с использованием субмономерного твердофазного синтеза.

Основные результаты диссертации изложены в следующих публикациях:

- <u>Abdelbaky A.S.</u>, Prokhorov I.A., Smirnov I.P., Koroleva K.M., Shvets V.I., Kirillova Y.G. Synthesis of α-(*R*)-/γ-(*S*)-dimethyl substituted peptide nucleic acid submonomer using Mitsunobu reaction // Letters in organic chemistry. – 2019. – V. 16. – P. 437-446.
- <u>Abdelbaky A.S.</u>, Shvets V.I. A convenient method for the synthesis of *N*, *N*'-diprotected-(2-hydroxyethyl)-guanidine // Bioscience Research. 2018. V. 15. P. 3498-3503.

- Прохоров И.А., Мелкумова А.А., <u>Абдельбаки А.С.М.</u>, Есипова О.В., Кириллова Ю.Г. Выбор защитных групп при оптимизации синтеза мономеров γ-ПНК на основе L-глутаминовой кислоты // Тонкие химические технологии. – 2018. – Т. 13. – № 5. – С. 14-22.
- <u>Abdelbaky A.S.</u>, Shvets V.I., Kirillova Y.G. Synthesis of peptide nucleic acid monomers containing the pyrimidine nucleobases // Тезисы докладов международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2019». - Москва. – 2019. – С. 705.
- <u>Абдельбаки А.С.</u>, Кириллова Ю.Г. Синтез ахиральных и хиральных пептидно-нуклеиновые кислоты (ПНК), тиминсодержащих мономеров, полученных из L-аланина и глицина // Тезисы докладов IX научной конференции молодых ученых "Инновации в химии: достижения и перспективы «Ломоносов-2018». - Москва. – 2018. – С503.
- 6. <u>Abdelbaky A.S.</u>, Prokhorov I.A., Shvets V.I., Kirillova Y.G. Solid-phase synthesis of chiral peptide nucleic acid (PNA) by a submonomeric strategy // Тезисы докладов XX международной научно-практической конференции «Химия, физика, биология, математика: теоретические и прикладные исследования». № 2(12). М., Изд. «Интернаука», 2019. С. 86-90.
- <u>Абдельбаки А.С.</u>, Прохоров И.А., Щвец В.И., Кириллова Ю.Г. Синтез тимин содержащие мономера ПНК на основе глицина // Тезисы докладов молодых ученых «Химия и химическая технология в XXI веке. - Томск. – 2017. – С. 169-170.
- <u>Абдельбаки А.С.</u>, Прохоров И.А., Щвец В.И., Кириллова Ю.Г. Синтез γмономера пептидной нуклеиновой кислоты на основе L-аланина и глицина // Тезисы докладов XIV международной научно-практической конференции. - Москва. – 2017. – С. 9-10.
- <u>Абдельбаки А.С.</u>, Прохоров И.А., Щвец В.И., Кириллова Ю.Г. Синтез нового мономера хиральной пептидной нуклеиновой кислоты (ПНК) по реакции Мицунобу // Тезисы докладов Х Всероссийский с международным участием Конгресс молодых ученых-биологов. - Казань. – 2017. – С. 299-300.

Абдельбаки Ахмед Салах Махмуд

Дизайн, синтез и свойства мономеров структурно преорганизованных полиамидных миметиков нуклеиновых кислот

Подписано в печать _____ Формат 60×90/16. Бумага писчая. Печать трафаретная.

Уч. изд. листов 1.

Тираж 100 экз.

Заказ №_____

Типография ООО «Генезис» 8 (495) 246-12-21

119571, г. Москва, пр-т Вернадского, 86.