на правах рукописи

Озерин Сергей Александрович

Синтез, структура и свойства гибридных нанокомпозитов на основе серебра, сульфида свинца и поли-*n*-ксилилена

02.00.06 - высокомолекулярные соединения

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

COzok

Москва - 2005

Работа выполнена в Институте синтетических полимерных материалов имени Н.С. Ениколопова Российской Академии Наук

Научный руководитель:

Доктор химических наук, профессор Чвалун Сергей Николаевич

Официальные оппоненты:

Доктор физико-математических наук, профессор Родлугин Вячеслав Иванович Доктор химических наук, профессор Помогайло Анатолий Дмитрневич

Ведущая организация:

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

Защита состоится 6 октября 2005 года в 11 часов на заседании диссертационного совета Д 002.085.01 в Институте синтетических полимерных материалов им. Н.С. Ениколопова РАН по адресу: 117393 Москва, ул. Профсоюзная, 70.

С диссертацией можно ознакомиться в библиотеке Института синтетических полимерных материалов имени Н.С. Ениколопова РАН.

Автореферат разослан 5 сентября 2005 г.

Ученый секретарь диссертационного совета Д 002.085.01, кандидат химических наук

Ит Бешенко М.А.

2006-4 15948

2182605

Общая характеристика работы

Актуальность проблемы

Гибридные нанокомпозиты привлекают к себс внимание, прежде всего, из-за свойств неорганических наночастиц, входящих в их состав. Свойства таких наночастиц отличаются как от свойств индивидуального атома или молекулы, так и от блочного материала. Наночастицы характеризуются малыми размерами, сложной внутренней организацией, способностью к очень плотной упаковке, а также очень высоким отношением площади поверхности к объему. Поверхностные атомы вносят большой вклад в термодинамические характеристики твердого тела и для наночастиц в значительной степени определяют структурные переходы и температуру плавления. Однако, важно не только синтезировать наноразмерные частицы, но и стабилизировать их, поэтому одним из перспективных направлений в полимерной науке и материаловедении последних лет является разработка научных принципов получения нового класса материалов – полимерных нанокомпозитов. Такие нанокомпозиты обладают рядом уникальных свойств, обусловленных не только чрезвычайно малыми размерами металлических и полупроводниковых наночастии, но и особенностями строения полимерной матрицы. Одно из таких свойств состоит в том, что полимерная матрица позволяет организовывать наночастицы в надмолекулярные структуры, что значительно усиливает необычные свойства напочастиц.

Дизайн и создание новых гибридных материалов с комплексом определенных фотофизических, магнитных, оптических, сенсорных и других свойств является важнейшей задачей современного материаловедения, ключ к решению которой лежит в установлении фундаментальной зависимости структуры и свойств нанокомпозитов от условий их синтеза. Для установления этой взаимосвязи необходимо комплексное исследование структуры и свойств гибридных нанокомпозитов с диспергированными в полимерную матрицу наночастицами различных металлов и полупроводников. Полученные данные помогут получить представление о мсханизме формирования неорганических наночастиц в полимерной матрице и позволят в дальнейшем синтезировать напокомпозиты с заданными свойствами.

РОС. НАЦИОНАЛЬИ/-БИБЛИОТЕКА В руководстве принимал участие к.х.н. Завьялов Сергей Алексеенич ОЗ 309 65.33

Цель работы

Комплексное исследование структуры и свойств гибридных нанокомпозитов на основе поли-*n*-ксилилена (ППК) и различных металлов и полупроводников, синтезированных методом соосаждения из газовой фазы и полимеризации на поверхности, с целью установления взаимосвязи между условиями синтеза, строением и свойствами нанокомпозиционных материалов.

Научная новизна

Предложены и реализованы новые методы синтеза композитов, содержащих наночастицы серебра и сульфида свинца, с размерами от 4 до 12 нм.

Изучено влияние условий синтеза на структуру нанокомпозитов, а также неорганических компонентов на процесс полимеризации ППК. Предложена модель полимеризации поли-*n*-ксилилена в этих условиях. Установлено, что реакция полимеризации ППК имеет третий порядок по мономеру с энергией активации 54 кДж/моль. Показано, что увеличение содержания неорганических компонентов приводит к полимеризации матрицы при криогенных температурах.

Обнаружено, что нанокомпозиты обладают электрофизическими свойствами, отличающимися от характерных для композиционных материалов с микрочастицами, а также сенсорными свойствами, проявляя высокую чувствительность к присутствию молекул воды. Свойства таких композитов определяются наноразмерным строением введенных частиц.

Практическая значимость

Результаты проведенных исследований позволили предложить модель полимеризации ППК, а также способы контроля строения нанокомпозитов. Изучение взаимосвязи условий синтеза, структуры и свойств металл (полупроводник)/ полимерных нанокомпозитов позволило не только управлять строением и размерами наночастиц, а также влиять на их электрофизические и сенсорные характеристики.

Разработан способ исследования параметров полимеризации пленок ППК, полученных криохимическим синтезом, с помощью дифференциальной сканирующей калориметрии. Показана эффективность использования комплексного мстодологического подхода (дифференциальная сканирующая калориметрия, атомносиловая микроскопия, рентгеноструктурный анализ и другие) при исследовании

кинетики полимеризации металл (полупроводник)/ полимерных нанокомпозитов, а также пленок ППК.

Апробация работы.

Основные результаты работы были представлены на IV Российском (с международным vчастием) симпозиуме "Жидкокристаллические полимеры" (г. Москва, январь 1999 г.), II Всероссийском Каргинском симпозиуме "Химия и физика полимеров в начале XXI века" (г. Москва, май 2000 г.). Международном конгрессе "IUPAC Macro - 2000" (г. Варшава, июль 2000 г.). III Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и для исследования материалов (РСНЭ) (г. Москва, электронов май 2001 г.). Международном конгрессе европейской полимерной федерации (ЕРF) (г. Эйндховен, июль 2001 г.). Международном конгрессе "IUPAC Масто - 2002" (г. Пекин, июль 2002 г.), X Семинаре Азиатско-тихоокеанской академии материалов и III Международной конференции "Материалы Сибири" "Наука и технология наноструктурированных материалов" (г. Новосибирск, июнь 2003 г.). Х Всероссийской конференции "Структура и динамика молекулярных систем" (Яльчик, июль 2003 г.), XVII Менделеевском съезде по общей и прикладной химии (r. Казань, сентябрь 2003 г.), IV Национальной конференции по применению ренттеновского, синхрогропного излучений, нейтронов и электронов для исследования материалов (РСНЭ) (г. Москва, ноябрь 2003 г.), III Всероссийском Каргинском симпозиуме (г. Москва, январь 2004 г.), Международном конгрессе "IUPAC Macro - 2004" (г. Париж, июль 2004 г.), Международном конгрессе европейской полимерной федерации (EPF) (г Москва, июль 2005 г.).

Работа удостоена медали Российской академии наук с премией для молодых ученых за 1999 год.

Публикации

По теме диссертации опубликована 20 печатных работ. Из них три статьи и семнадцать тезисов докладов на научных Национальных и Международных конференциях.

Структура и объем работы

Диссертация состоит из введения, четырех глав, выводов и сниска литературы, занимает <u>127</u> машинописных листов, включает <u>47</u> рисунков и <u>3</u> таблицы. В списке литературы представлены <u>95</u> библиографических ссылок.

Содержание работы

Во <u>веедении</u> дана общая характеристика диссертационной работы, обоснована актуальность темы, практическая значимость и новизна полученных результатов, сформулированы цели и задачи исследования.

Первая глава диссертации посвящена анализу современного состояния проблемы синтеза и исследования металл (полупроводник)/ полимерных нанокомпозитов. В первом разделе описаны свойства наночастиц (НЧ), отличие их от свойств как индивидуального атома или молекулы, так и от свойств блочного материала. Приведена схема превращения одиночного атома в блочный материал. Во втором разделе подробно рассматриваются способы получения металл (полупроводник)/ полимерных нанокомпозитов. Приведены основные методы синтеза НЧ, а также возможные способы их стабилизации в полимерной матрице. Третий раздел посвящен методу совместного осаждения из газовой фазы. Приведены литературные сведения о структуре и свойствах полимерной матрицы - поли-п-ксилилена (ППК), полученной методом пиролитической полимеризации на подложке. Показано, что ППК имеет две кристаллические модификации (α и β). Содержание этих форм в полимере зависит, вопервых, от условий процесса синтеза, во-вторых, от последующей термообработки. Для пленок ППК, синтезируемых при компатной температуре, основной является акристаллическая модификация, а β-форма присутствует в небольшом количестве. Содержание β-формы начинает сильно возрастать в полимерных пленках при температурах синтеза ниже -78°C. При полимеризации на субстратах, охлажденных до температуры жидкого азота (-196 °C), получены пленки, в структуре которых преобладают β-кристаллы. Приведены параметры элементарной ячейки ППК для двух модификаций. Далее в разделе описан разработанный в лаборатории метод совместного осаждения из газовой фазы паров мономера и частиц металла или полупроводника, позволяющий получить композиты с уникальным комплексом свойств. Приготовление металл (полупроводник)/ полимерных композитов происходит по следующей методике: молекулы *п*-циклофана (ПЦФ), проходя через пиролизную зону при Т≈650°С, образуют

активный интермедиат, который адсорбируется на холодную подложку вместе с атомами металла или молекулами полупроводника. Затем проводят реакцию термической или фотополимсризации с образованием поли-*n*-ксилилена или его производных, при этом в полимерной матрице образуются неорганические наночастицы различных размеров в зависимости от химической структуры прекурсора и условий полимеризации. Схема синтеза металл (полупроводник)/ полимерных нанокомпозитов приведена на рис.1.

Рисунок 1. Схема синтеза металл (полупроводник)/ полимерных нанокомпозитов

Такой способ получения нанокомпозитов весьма эффективен и имеет целый ряд преимуществ по сравнению с другими во-первых, это - возможность получения тонких пленок, содержащих НЧ различных металлов и других веществ с достаточно узким распределением этих частиц по размерам, во-вторых, полученные нанокомпозиты характеризуются высокой чистотой, и, наконец, можно легко варьировать содержание различных компонентов. В четвертом разделе приведены модели процесса полимеризации ППК, показано, что основной лимитирующей стадией полимеризации является процесс инициирования реакции. Согласно основной модели для начала реакции полимеризации необходимо взаимодействие, по крайнсй мере, трех молекул мономера.

В конце главы формулируется задача: используя комплексный подход, исследовать структуру и свойства гибридных нанокомпозитов на основе поли-*п*ксилилена (ППК) и различных металлов и полупроводников, синтезированных методом пиролитической полимеризации на поверхности, с целью установления взаимосвязи между условиями синтеза, строением и свойствами нанокомпозиционных материалов.

1

Вторая глава – экспериментально-методическая. В ней дано краткое описание образцов и экспериментальных методов, использованных в работе.

Методом осаждения атомов металла или полупроводника и паров *n*-ксилилена из газовой фазы, полученных в результате пиролиза ПЦФ, с последующей полимеризацией в твердой фазе были получены серии образцов с двумя различными неорганическими компонентами: металл (серебро) и полупроводник (сульфид свинца). Схема установки для синтеза нанокомпозитов представлена на рис.2. Установка состоит из зон сублимации и пиролиза, реактора полимеризации, ловушки, охлаждаемой жидким азотом, танталовой лодочки для плавления металлов и электроразрядного вакуумного насоса. Для удобства разборки установки в реактор полимеризации вмонтирован металлический фланец. Для измерения сопротивления образцов и температуры подложки использовали четыре молибденовых контакта, два из которых подсоединены к кварцевой подложке, а два других к медь-константановой термопаре.

Определенное количество ПЩФ помещали в стеклянную ампулу и размещали внутри кварцевой трубки в средней части зоны сублимации.

Установку вакуумировали до остаточного давления ~10⁻⁵-10⁻⁶ мм. рт. ст. Пары ПЩФ из зоны сублимации попадали в зону пиролиза, где они превращались в пары дифункционального реакционноспособного интермедианта (*n*-ксилилена), который адсорбировался на твердой подложке в реакторе полимеризации при температуре жидкого азота (-196°С). Сублимацию ПЩФ проводили при 100°С, температура пиролиза равнялась ~650°С. Полимеризация сорбированого *n*-ксилилена проходила при последующем нагревании соконденсата. В качестве подложек служили стеклянные иластины для дальнейших структурных исследований нанокомпозитов, пиролитический графит для атомно-силовых экспериментов, кварцевые пластины с платиновыми электродами для проведения электрофизических измерений.

Рисунок 2. Схема установки для получения наполненных полимерных пленок. 1 - кварцевая пиролизная трубка; 2 - стеклянная лодочка с ПЦФ; 3 - реактор полимеризации; 4 - металлический фланец; 5 - кварцевая подложка; 6 - отвод к вакуумному насосу; 7 - танталовая лодочка; 8 - неорганическая навеска; 9 молибденовые контакты.

Неорганический материал помещали в танталовую лодочку (7). Поток атомов создавали путем нагрева неорганической навески до температуры плавления (соответс гвующие температуры плавления: T_{пл}(Ag)=960°C, T_{пл}(PbS)=1114°C) под действием электрического тока. Меняя величину тока варьировали концентрацию атомов в потоке, а, следовательно, и процентное содержание неорганического компонента в композите.

Для измерения методом ДСК теплофизических параметров реакции полимеризации (диапазон температур, в котором протекает полимеризация, тепловой эффект полимеризации, кинетика полимеризации) установка была усовершенствована. Кипетические исследования проводили на приборе DSC-7 фирмы "Perkin-Elmer". Осаждение проводили на полированную медную подложку размером, сопадающим с

измерительной ячейкой прибора. Поддерживая температуру подложки равной температуре жидкого азота, в реактор напускали охлажденный инертный газ (азот высокой степени очистки). Затем пленку на подложке переносили в ячейку калориметра, охлажденную до этой же температуры.

Используя изоконверсионный метод анализа кривых ДСК, были получены количественные характеристики процесса полимеризации. Кривая ДСК содержит информацию о кинетике полимеризации, так как тепловой поток – dQ/dt, нормированный на общую теплоту полимеризации Q_{полн}, связан со скоростью копверсии мономера - da/dt, которая зависит от температуры процесса T и энергии активации E_a.

$$\frac{d\alpha}{dt} = \frac{dQ}{dt} \cdot \frac{1}{Q_{naau}} = k(t) \cdot f(\alpha) = A \cdot \exp\left(\frac{-E_a}{RT}\right) \cdot f(\alpha)$$

$$f(\alpha) = (1 - \alpha)^n$$
(1)

Указанная зависимость (1) позволяет рассчитать значение энергии активации и определить порядок (n) реакции.

Толщина пленок измерена при помощи микрометрической измерительной головки МИГ-1. В процессе напыления нанокомпозитов толщину контролировали по изменению интерференционной картины на поверхности стекла. Процентное содержание сульфида свинца определяли по величине макроскопической плотности полупроводниковых напокомпозитов, которую определяли флотационным методом. Для измерения процентного содержания серебра в полученных нанокомпозитах использовали метод атомно-абсорбционной спектроскопии. Принцип этого метода заключается в измерении коэффициента поглощения в центре линии атома. Для этого необходимо просвечивать поглощающий слой паров монохроматическим лучом света с длиной волны, соответствующей центру линии поглощения. Величина коэффициента поглощения является мерой концентрации атомов исследуемого компонента. В работе был использован атомно-абсорбционный спектрометр "Perkin-Elmer" модель 503.

Рентгенографические исследования в больших углах проводили на дифрактометрах D8Advance Bruker (монохроматор - изогнутый монокристалл германия, линия CuKα₁, λ=1.5408 Å) и ДРОН-3 (монохроматор - изогнутый монокристалл кварца, линия CuKα₁, λ=1.5408 Å). Фоторентгенограммы в больших углах получали на плоскокассетной камере на установке УРС-2. Из полуширины рефлексов определяли средний размер кристаллита с помощью уравнения Шеррера, а

из Фурье-анализа профиля пика рассчитывали кривые распределения кристаллитов по размерам. Измерения малоуглового рентгеновского рассеяния гибридных нанокомпозитов проводили с помощью прибора КРМ-1 с щелевой схемой коллимации первичного пучка (СuKα-излучение, Ni фильтр, сцинтилляционный детектор). В качестве координаты рассеяния использовали значение модуля вектора рассеяния s = $4\pi \sin\theta / \lambda$, где θ - угол дифракции, $\lambda = 1.54$ Å - длина волны используемого излучения. Интенсивность малоуглового рассеяния измеряли в диапазоне от $s = 0.007 \text{ дo } 0.426 \text{ Å}^{-1}$. Предварительную обработку данных (просмотр, нормализация, учет буферного рассеяния) выполняли с помощью программы PRIMUS. В качестве кривой буферного рассеяния использовали кривую рассеяния чистого полимера ППК. Внесение поправки на коллимационные искажения, а также расчет функции парных корреляций расстояний в частице p(R) (для монодисперсной системы) или функции распределения по размерам частиц D(R) (для полидисперсных систем) проводили с помощью программного комплекса GNOM. Для восстановления формы рассеивающей частицы (структуры низкого разрешения) использовали возможности программы DAMMIN.

Поверхности тонких пленок (толщина 100нм - 1мкм) исследовали на сканирующем микроскопе Nanoscope IIIa MultiMode™ при комнатной температуре. Все измерения проводили в осцилляционном режиме^{*}.

<u>Третья глава</u> посвящена изучению структуры и свойств гибридных нанокомпозитов, содержащих в качестве неорганического компонента серебро, а также исследованию влияния его присутствия на процесс полимеризации ППК. Выбор серебра обусловлен тем, что этот металл стоек к окислению и слабо взаимодействует с полимерной матрицей.

Структурные исследования методом большеуглового рентгеновского рассеяния показали наличие наночастиц серебра в матрице ППК. Средний эффективный размер кристаллита, рассчитанный из кристаллографического рефлекса 111 составляет 120 Å как для образца с содержанием серебра ниже порога перколяции, так и с концентрацией серебра превышающей этот порог. Но в образце с более высокой концентрацией Ag таких НЧ больше, что проявляется в увеличении интенсивности соответствующего кристаллического рефлекса. Использование полимерной матрицы на основе хлор-замещенного ППК приводит к уменьшению размера НЧ серебра до 50 Å.

[•] Измерения АСМ и анализ данных проводил доктор С Н. Магонов (Digital Instruments/ Veeco Metrology Group, США).

Для исследования влияния совместного осаждения серебра и мономера на процесс полимеризации ППК был синтезирован ряд нанокомпозитов с различной концентрацией серебра Исследование поверхности этих нанокомпозитов показало, что при концентрации Ад значительно ниже порога перколяции поверхность пленки однородная, незначительное увеличение содержания неорганического компонента не приводит к заметному изменению морфологии поверхности И только вблизи порога перколяции наблюдается появление образований, отличающихся по своей структуре от основной части полимерной матрицы Выше порога перколяции таких образований становится намного больше (о структуре и причине появления таких образований будет сказано чуть ниже) Исследования морфологии поверхности гибридных нанокомпозитов метод АСМ показывают, что в образце с содержанием серебра ниже порога перколяции наблюдаются сферолитные образования размером 1-2 мкм, а основная часть полимерной матрицы имеет ламеллярную структуру На рис 3 приведены фазовоконтрастные изображения нанокомпозитов, полученные методом ACM

а)
 Б)
 Рисунок 3. Фазовоконтрастные изображения АСМ поверхности Ад/ШК нанокомпозита размером 500х500 нм с содержанием серебра ниже (а) и вблизи порога перколяции (б)

На рис 3а видны наночастицы серебра, декорированные полимерной матрицей, а также полимерные ламели толциной 120 Å, что находится в хорошем соответствии с

данными рентгеновского рассеяния. При незначительном увеличении концентрации серебра сферолиты исчезают, но ламеллярный тип строения полимерной матрицы сохраняется. Вблизи порога перколяции ламели не наблюдались, а серебряные наночастицы, расположеные на поверхности полимерной матрицы, имеют четкую огранку и размер 80 - 140 Å (рис.36).

4

При содержании серебра выше порога перколяции НЧ Ад покрыты слоем ППК, а на поверхности нанокомпози за наблюдаются слоевые образования высотой до 0,4 мкм. Дополнительные исследования показали, что эти образования - олигомеры ППК, кристалличность которых выше, чем у полимерной матрицы. Наличие олигомеров ППК может быть объяснено тем, что при высокой концентрации серебро влияет на процесс полимеризации ППК, и поли-*n*-ксилилен в основном полимеризуется даже при температуре жидкого азота из-за воздействия горячих атомов Ag. Сделанное предположение подтверждается методом ДСК. На рис.4а приведены термограммы первого нагрева конденсатов ПК и Ag.

Рисунок 4. Термограммы первого нагрева (а) ПК (1 – скорость нагрева 20 град/мин, 2 – 40 град/мин) и Ад/ПК нанокомпозитов (концентрация серебра возрастает в ряду 3 – 5); (б) зависимость степени конверсии мономера от температуры (1 – ПК, скорость нагрева 5 град/мин, 2 – ПК, 20 град/мин, 3 – Ад/ПК, 20 град/мин).

На всех кривых присутствует экзотермический пик, который соответствует полимеризации ПК. Из данных ДСК можно сделать вывод, что температурный

диапазон реакции полимеризации зависит от скорости нагрева, так, например, при скорости 20 град/мин полимеризация начинается при -130°С, достигает максимальной скорости при -90°С и заканчивается при -50°С. Увеличение скорости нагрева приволит к смещению пика полимеризации в сторону высоких температур. Тепловой эффект реакции при скорости нагрева 5, 20 и 40 град/мин равен 96, 162 и 121 кДж/моль, соответственно Небольшое количество серебра в соконденсате не влияет на положение пика, но уменьшает тепловой эффект реакции Дальнейшее увеличение концентрации серебра в нанокомпозите приводит к появлению второго экзотермического пика с минимумом при -70°С. Для образца с содержанием серебра выше порога перколяции первый пик исчезает, и наблюдается только пик при -71°С, его тепловой эффект значительно меньше, чем в случае полимеризации чистого ППК и составляет 6 кДж/моль. Это объясняется тем, что *n*-ксилилен частично заполимеризовался еще при температуре жидкого азота из-за влияния горячих атомов серебра, о чем косвенно свидетельствуют олигомеры ППК, образующиеся на поверхности нанокомпозита.

٠,

Рассчитанные методом изоконверсионного анализа величины теплоты, энергии активации приведены в таблице 1.

Таблица 1. Теплота, максимальная скорость реакции, энергия активации и порядок реакции полимеризации ПК

Обрязец (скорость нагрева, °С/мин)	Но, кДж/моль	T _{max} ,°C	Е _з , кДж/моль	n
ППК (5)	96	-94	82	3
ППК (20)	162	-91	39	3
ППК (40)	121	-80	56	3
Ag/ IIIIK	69	-91	55	3
Аg/ ППК [*]	6	-71	252	2

* концентрация серебра выше порога перколяции

Из приведенных значений E_a и п следует, что основной стадией является реакция инициирования, которая имеет третий порядок по мономеру, и энергия активации которой составляет приблизительно 55 кДж/моль. Эта величина находится в хорошем соответствии с моделью полимеризации ППК, предложенной Б.Вундерлихом. При

небольшом содержании атомов серебра механизм реакции не меняется. При превышении концентрации серебра перколяционного порога энергия активация резко увеличивается, а порядок реакции становится равным 2.

i

١

ŕ

В зависимости от объемного содержания Ад в нанокомпозитах, последние проявляют различное электрофизическое поведение. Так, при увеличении температуры сопротивление образца, содержащего 2 об.% серебра (ниже порога перколяции), уменьшается, что свидетельствует о туннельном механизме проводимости, а сопротивление образца с 7 об.% серебра (выше порога перколяции) монотонно возрастает, что соответствует металлическому механизму, однако величина температурного коэффициента сопротивления 2,3.10⁻³ К⁻¹ заметно отличается от коэффициента для металлического серебра, равного при комнатной температуре 3.6.10⁻³ К⁻¹. Наблюдаемую разницу можно объяснить небольшими размерами частиц, составляющих непрерывную металлическую фазу, в результате чего в фононном спектре серебра могут отсутствовать длинноволновые колебания, ответственные за температурную зависимость удельного сопротивления металлов. Кажущаяся величина энергии активации переноса заряда, рассчитанная из температурной зависимости сопротивления нанокомпозита с низким содержанием Ag, составляет 0,24 эВ Необходимо отметить, что величина активационного барьера зависит от концентрации наночастиц и может изменяться в широком диапазоне.

Нанокомпозит, содержащий 2 об.% серебра, проявляет сенсорные свойства, а именно высокую чувствительность к изменению относительной влажности. При увеличении относительной влажности воздуха с 75 до 100% сопротивление нанокомпозита уменьшается более чем на порядок. Время отклика не превыпает минуты. Кроме того, важной особенностью наблюдаемого сенсорного эффекта является его обратимость, при возвращении системы в исходное состояние сопротивление ее возвращается к начальному значению за 20 - 30 с. Быстрота отклика, его обратимость и возможность работать при комнатной температуре выгодно отличают данный нанокомпозитный сенсор от классических полупроводниковых сенсоров. Было высказано предположение, что высокая чувствительность Ад/ППК нанокомпозита связана с изменением работы выхода наночастицы серебра при адсорбции на ней молекулы воды и с одновременным изменением фрактальных характеристик "перколяционного" кластера наночастиц

<u>Четвертая глава</u> посвящена изучению структуры гибридных нанокомпозитов, содержащих полупроводниковый материал – сульфид свинца. Выбор PbS обусловлен тем, что в блочном состояния этот полупроводник обладает достаточно узкой шириной запрещенной зоны 0,32 эВ, и, изменяя размер НЧ, можно регулировать ее в широком диапазоне, что делает сульфид свинца перспективным материалом для применения в различных электроннооптических приборах. Как следует из полученных нами результатов УФ-спектроскопии, образец с 4,7 об.% сульфида свинца характеризуется шириной запрещенной зоны 1,58 эВ; что соответствует размеру НЧ 40 Å.

Структуру полученных образцов изучали методом рентгеновской дифракции под большими и малыми углами. Большеугловые дифрактограммы нанокомпозитов с различным содержанием PbS, представлены на рис.5

Рисунок 5. Дифрактограммы нанокомпозитов PbS/ ППК с различным содержанием неорганического компонента (в об.%): 1 – 4,7, 2 – 8,5.

На дифрактограмме (1) можно наблюдать четыре широких пика, соответствующих кристаллической решетке PbS с межплоскостными расстояниями 3,42 Å, 2,96 Å, 2,09 Å и 1,79 Å, а также слабый рефлекс с межплоскостным расстоянием 1,71 Å, удовлетворительно индексируемые в рамках элементарной ячейки PbS (кубическая решетка, a=5,91 Å) как 111, 200, 220, 311 и 222 соответственно, и рефлекс с межплоскостным расстоянием 4,48 Å, соответствующий наиболее интенсивному рефлексу 400 β-формы ППК. Из рисунка видно, что при увеличении содержания сульфида свинца рефлекс β-формы исчезает, а вместо него появляется рефлекс характерный для α-формы ППК. Это связано с тем, что в этом случае температура подложки увеличивается за счет воздействия горячих молекул сульфида свинца, и ППК кристаллизуется в высокотемпературной α-форме. Средний эффективный размер кристаллита PbS, рассчитанный из полущирины изолированного рефлекса 220, равен приблизительно 45 Å. Наличие кристаллического рефлекса ППК свидетельствует о том, что матрица является частично кристаллической, и поперечный размер ламелей ППК достигает 250 Å при концентрации PbS 4,7 об.%.

Для изучения организации наночастиц в полимерной матрице на более высоком иерархическом уровне необходимо было проведение исследований методом рентгеновской дифракции в малых углах.

На рис.6 представлены кривые малоуглового ренттеновского рассеяния исследуемых образцов.

Рисунок 6. Кривые малоуглового рентгеновского рассеяния образцов с различным содержанием сульфида свинца (1 – 4,7 об.%, 2 – 6,2 об.%, 3 – 10,9 об.%). Пунктирная прямая линия демонстрирует асимптотику хвостовой части кривых.

Значительный динамический диапазон изменения интенсивности рассеяния, характерный для всех изученных систем, свидетельствует об их гетерогенном строении

и значительном фазовом контрасте (разности плотностей двух компонентов). Видно, что увеличение содержания неорганического компонента PbS в композите сопровождается немонотонным характером изменения вида и формы кривых рассеяния.

~

Для образца с 4,7 об.% PbS рассеяние носит преимущественно диффузный характер, с незначительным по интенсивности интерференционным максимумом в области $s_{max} \approx 0,023$ Å⁻¹. По мере увеличения содержания PbS интерференционный максимум становится более выраженным, а его положение смещается к $s_{max} \approx 0,047$ Å⁻¹. При дальнейшем увеличении содержания PbS (10,9 об.%) характер рассеяния вновь становится преимущественно диффузным.

Принимая во внимание, что для изучаемых объектов органическая полимерная матрица является доминирующим по объемному содержанию компонентом, наблюдаемый вид малоугловых кривых рассеяния для исследуемых двухкомпонентных органо-неорганических систем можно интерпретировать следующим образом.

В образне с наименьшим содержанием сульфида свинца система рассеивающих частиц представляет собой, в основной массе, высокодисперсную систему индивидуальных частиц PbS, случайным образом распределенных в полимерной матрице и не взаимодействующих (неинтерферирующих) между собой. Помимо этого. в рассеивающей системе этого нанокомпозита можно дополнительно выделить интерференционную составляющую, которая обусловлена рассеянием на системе частиц PbS, образующих взаимно упорядоченную структуру со средним расстоянием между рассеивающим частицами (большим периодом) *d* ≈ 290 Å.

В образце с 6,2 об.% PbS также присутствуют две системы частиц, причем в этом случае большой период для системы частиц с взаимным пространственным унорядочением составляет величину $d \approx 120$ Å. Найденные значения параметра разупорядочения $\Delta/d \approx 0,2$ являются характерными для упорядоченной системы рассеивающих частиц, находящихся в "конденсированном жидкоподобном" состоянии, в котором наблюдается только так называемый "ближний" порядок. В этой терминологии вторая система невзаимодействующих (неинтерферирующих) частиц соответствует "газовому" характеру упорядочения, в котором отсутствует даже "ближний" порядок.

Асимптотика спада кривой рассеяния при больших значениях $I(s) \sim s^{\alpha}$ позволяет охарактеризовать рассеивающие частицы с точки зрения их компактности

(фрактальности). Найденные для всех образцов из рис.6 значения $\alpha = -4,8$ соответствуют рассеянию на компактных частицах с нерезкой границей, которое описывается в терминах переходного слоя (существование градиента плотности вблизи границы частицы). Фрактальная размерность наночастиц не зависит от концентрации PbS, что говорит об одинаковом вкладе топологии напочастиц в формирование угловой зависимости интенсивности рассеяния, несмотря на изменение функции распределения по размерам наночастиц.

Методом Фурье - анализа профиля рефлекса 220 были рассчитаны функции распределения кристаллитов по размерам (рис.7а).

Рисунок 7. Распределения кристаллитов PbS по размерам (a) (1 – 4,7, 2 – 10,9, 3 – 8,5, 4 – 6,2 об.%) и объемные распределения частиц (б) PbS, расчитанные в предположении системы полидисперсных частиц (1 – 4,7, 2 – 10,9).

Как видно из этого рисунка распределения кристаллитов не очень широкие от 20 до 150 Å с максимумом порядка 40 Å, основная часть кристаллитов PbS имеет размер меньше, чем 100 Å.

Распределение наночастиц по размерам для нанокомпозита, содержащего 4,7 об.% PbS, аппроксимируется логарифмически нормальным распределением:

$$f(d) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(\ln d - \ln d_0\right)^2}{2\sigma^2}\right)$$
(2)

где d₀ и σ – медиана и дисперсия распределения. Для других концентраций PbS распределение по размерам является бимодальным и каждая мода аппроксимируется нормальным распределением. Особенно ярко бимодальность распределения выражена в образце с концентрацией PbS 10,9 об.% Если распределение кристаллитов по размерам удовлетворяет логарифмически нормальному распределению, то полупроводниковые наночастицы образуются за счет Броуновской коагуляции на стадии "жидкого композита". В случае же нормального распределения формирование происходит за счет диффузии частиц в процессе полимеризации и кристаллизации полимерной матрицы.

Распределение наночастиц по размерам (рис.76), рассчитанное из малоуглового рентгеновского рассеяния нанокомпозитом, содержащим 4,7 об.% PbS, также характеризуется логарифмически нормальным распределением. Полученные данные хорошо совпадают с характеристиками распределения по размерам для данной концентрации PbS, рассчитанными по рентгеновскому рассеянию в больших углах. Распределение по размерам для нанокомпозита, содержащего 10,9 об.%, является бимолальным и описывается нормальным законом, как и в случае распределения по размерам, рассчитанного из широкоуглового рассеяния. Медиана первой и второй моды, дисперсия, площади под кривой каждой моды слегка отличаются от распределения, рассчитанного по большеугловому рассеянию. Это может быть связано с эффектом межчастичной интерференции малоуглового рентгеновского рассеяния при высокой концентрацией PbS. Кроме того, возможно, что мелкие частицы, наблюдаемые на кривой распределения частиц по размерам (рис.76) в образце с 10,9 об.% PbS не являются кристаллическими и не дают вклада в кривые распределения кристаллитов по размерам, определяемые методом рентгеновской дифракции в больших углах (рис.7а).

Выводы

1 Методом совместного осаждения из газовой фазы активного мономера и серебра или сульфида свинца и последующим твердофазным синтезом получены нанокомпозиты на основе поли-*n*-ксилилена с регулируемой концентрацией наночастиц.

2. Структурные исследования полученных нанокомпозитов методом рентгеновской дифракции показали наличие частиц серебра размером 10-12 нм, локализованных в межкристаллитных областях полимерной матрицы. Размер частиц PbS составлял 4 нм, в хорошем соответствии с квантоворазмерным эффектом, проявляющемся в увеличении ширины запрещенной зоны до 1,58 эВ. Частицы характеризуются узким распределением по размерам, до 90 % их имеют размер менее 10 нм.

٤

- Показано, что полимеризация поли-*n*-ксилилена протекает в интервале температур от -115 до -60°C с теплотой, достигающей 162 кДж/мол, имеет третий порядок по мономеру и энергию активации 55 кДж/мол.
- 4. Установлено, что совместное осаждение на подложку мономера и неорганического компонента влияет на структуру и свойства полимерной матрицы. При увеличении концентрации металла или полупроводника *n*-ксилилен полимеризуется в высокотемпературной α-форме, при этом температура полимеризации увеличивается на 10°С, а теплота реакции существенно уменьшается.
- 5. Нанокомпозиты с содержанием частиц серебра вблизи порога перколяции проявляют сенсорные свойства на пары воды: при изменении относительной влажности от 75 до 100% сопротивление пленок менее, чем за минуту обратимо уменьшается на порядок.

Основные положения и результаты диссертации опубликованы в работах:

1. Nikolaeva E.V., Ozerin S.A., Grigoriev A.E., Grigoriev E.I., Chvalun S.N., Gerasimov G.N. and Trakhtenberg L.I., "Formation, structure and photoelectrical properties of poly-pxylylene-PbS semiconductor nanocomposite films"// Mater. Sci. Eng. 1999, C 8-9, p.217-223.

2. Озерин С.А., Завьялов С.А., Чвалун С.Н. "Синтез, структура и свойства металлополимерных нанокомпозитов на основе серебра и поли-*n*-ксилилена"// Высокомолек. Соед. 2001, Сер. А, Т.43, №11, С.1993-2000.

3 Князева А.А., Озерин С.А., Григорьев Е.И., Чвалун С.Н., Завьялов С.А., Кардаш Е.И., "Получение тонкопленочных покрытий на основе поли-*п*-ксилилена в потоке инертного газа"// Высокомолек. Соед. 2005, Т.47, №7, С.1225-1230.

4. Озерин С.А., Николасва Е.В., Григорьев А.Е., Завьялов С.А., Чвалун С.Н., Трахтенберг Л И., Герасимов Г Н., "Синтез, структура и электрические свойства поли*n*-ксилиленовых пленок с металлическими наночастицами", Четвертый Российский симпозиум (с международным участием) "Жидкокристаллические полимеры", Москва, 24 – 28 января 1999, тезисы докладов, С.114. 5. Озерин С.А., Завьялов С.А., Чвалун С.Н. "Металл/ полимерные нанокомпозиты на основе поли-*n*-ксилилена – перспективные сенсорные материалы", Второй Всероссийский Каргинский симпозиум (с международным участием) "Химия и физика полимеров в начале XXI века", Черноголовка, 29-31 мая 2000г., Тезисы докладов, Ч.2, С.3-58.

6 Chvalun S.N., Kardash I Ye., Pebalk A.V., Gerasimov G.N., Zavyalov S.A., Ozerin S.A., Blackwell J., "Nanostructured polymer and composite materials synthesized by VDP-process. Structure and electrophysical properties", 38th Macromolecular IUPAC Symposium, Warsaw, Poland, 9 – 14 July 2000, Book of abstracts, P.1121.

7. Ozerin S.A., Zavyalov S.A., Chvalun S.N., "Metal (semiconductor)/ poly-p-xylylene nanocomposites as perspective sensoric materials", 38th Macromolecular IUPAC Symposium, Warsaw, Poland, 9 – 14 July 2000, Book of abstracts, P.1122.

8. Озерин С.А., Хныков А.Ю., Завьялов С.А., Чвалун С.Н. "Синтез, структура и свойства металл (полупроводник)/ полимерных нанокомпозитов на основе полииксилилена", III Национальная конференция по применению Рентгеновского, Синхротронного излучений, Нейтронов и Электронов для исследования материалов, Москва, 21-25 мая 2001 г., Тезисы докладов, С.255.

9. Ozerin S A., Khnykov A.Yu., Zavyalov S.A., Chvalun S.N., "Structure and properties of metal/ poly-p-xylylene nanocomposite films", European Polymer Federation Congress, Eindhoven, July 15-20, 2001, PL 7-15.

10. Ozerin S.A., Zavyalov S.A., Chvalun S.N., "Transport phenomenon in thin films nanocomposites in the vicinity of the percolation threshold", 39th International Symposium on Macromolecules "IUPAC World Polymer Congress 2002", Beijing, July 7-12, 2002, Book of Abstracts part 2, P.667.

11. Ozerin S.A., Zavyalov S.A., Grigoriev E.I., Chvalun S.N., "Synthesis, structure and properties of metal (semiconductor)/poly-p-xylylene nanocomposite films" X APAM Topical Seminar and III Conference "Materials of Siberia" "Nanoscience and Technology", Novosibirsk, Russia, 2 – 6 June 2003, Book of abstracts, P.376-377.

12. Озерин С.А., Завьялов С.А., Григорьев Е.И., Чвалун С.Н., "Металл (полупроводник)/ полимерные напокомпозиты на основе поли-*п*-ксилилена и его производных. Синтез, структура и свойства", Х-ая Всероссийская конференция "Структура и динамика молекулярных систем", Яльчик, 1-5 июля 2003 г., сборник тезисов, С.219.

13. Озерин С.А., Григорьев Е.И., Завьялов С.А., Чвалун С.Н., "Структура и свойства нанокомпозитов на основе поли-*n*-ксилилена, синтезированных методом газофазной полимеризации на поверхности", XVII Менделеевский съезд по общей и прикладной химии, Казань, 21 – 26 сентября 2003 г, тезисы докладов, Т.3, С. 321.

14. Озерин С.А., Бузин А.И., Бартоломе Д.С., Пебалк А.В., Маилян К.А., Григорьев Е.И., Завьялов С.А., Чвалун С.Н., "Структура и рельеф поверхности тонких пленок функциональных производных полипараксилилена", IV Национальная конференция по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (РСНЭ), Москва, 17-22 ноября 2003 г., тезясы докладов, С.261.

15. Озерин С.А., Бартоломе Д.С., Бузин А.И., Пебалк А.В., Маилян К.А., Григорьев Е.И., Завьялов С.А., Кардаш И.Е., Чвалун С.Н., "VDP-синтез наноструктурированных полимерных и гибридных материалов", III Всероссийский Каргинский симпозиум, Москва, 27 января-1 февраля 2004 г, тезисы докладов, Т.1, С 202.

16. Ozenn S A., Zavyalov S.A., Grigoriev E.I., Chvalun S.N., "Nanostructured polymeric and hybrid materials synthesized by VDP method" by 40th Macromolecular IUPAC Symposium, Paris, 4-9 July, 2004, P.2110.

The second s

?

h

ł

Ť

7

1

1

t

-

1

ý

۱.,

17. Озерин С.А., Григорьев Е.И., Чвалун С.Н., "Механизм формирования нанокомпозитов PbS – поли-*п*-ксилилен", XVI Симпозиум "Современная химическая физика", Туапсе, 20 сентября – 1 октября 2004 г., тезисы докладов, С.247.

18. Григорьев Е.И., Озерин С.А., Завьялов С.А., Чвалун С.Н., "Твердотельная полимеризация *n*-ксилилен – металл соконденсата", XVI Симпозиум "Современная химическая физика", Туапсе, 20 сентября – 1 октября 2004 г., тезисы докладов, С.125.

19. Chvalun S.N., Grigoriev E.I., Kardash I.Ye., Mailyan K.A., Ozerin S.A., Pebalk A.V., Zavyalov S.A. "Vapor deposition polymerization – the way to preparation of functional polymeric films and specific metal/polymer nanocomposites: synthesis, structure, properties and applications" European Polymer Federation Congress, Moscow, June 27- July 1, 2005, Ref. 3461.

20 Chvalun S.N.. Ozerin S.A., Zavyalov S.A., Grigoriev E.I. "Kinetics of solid-state polymerization of p-xylylene by DSC" European Polymer Federation Congress, Moscow, June 27- July 1, 2005, Ref. 3470.

#1580[†]

РНБ Русский фонд

¢,

۱ ۶

<u>2006-4</u> 15948

Принято к исполнению 01/09/2005 Исполнено 05/09/2005 Заказ № 1003 Тираж 100 экз

ООО «11-й ФОРМАТ» ИНН 7726330900 Москва, Варшавское ш, 36 (095) 975-78-56 (095) 747-64-70 www.autoreferat ru