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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность проблемы 

Данная работа посвящена исследованию свойств белков FtsZ трѐх видов 

бактерий — Escherichia coli, Acholeplasma laidlawii и Mycoplasma 

gallisepticum. FtsZ относится к белкам цитоскелета — структурным 

элементам клеток, которые участвуют в осуществлении жизненно важных 

функций, таких как поддержание формы клетки, внутриклеточный 

транспорт, деление и подвижность [1]. FtsZ является жизненно необходимым 

для многих бактерий, поэтому считается одной из перспективных мишеней 

для антибактериальных препаратов будущего. 

В большинстве изученных бактерий белок FtsZ формирует Z-кольцо, которое 

служит каркасом для дивисомы – комплекса белков, обеспечивающих 

деление бактериальной клетки [2]. Несмотря на интенсивное изучение, в 

настоящий момент существует несколько вопросов, касающихся механизмов 

работы данного белка, на которые только предстоит ответить. Даже в таком 

хорошо изученном модельном организме, как E. coli, до сих пор неизвестна 

точная структура Z-кольца: большинство работ свидетельствует в пользу 

слабо упорядоченного массива протофиламентов, из которых состоит Z-

кольцо, в то же время часть работ говорит о том, что протофиламенты в Z-

кольце хорошо упорядочены и формируют замкнутое кольцо или спираль [3]. 

Точная структура Z-кольца имеет принципиальное значение для понимания 

как механизмов цитокинеза в целом, так и роли белка FtsZ в этом процессе. 

Например, продолжительное время обсуждается вопрос, вносит ли 

существенный вклад в цитокинез сократительная сила, которую 

протофиламенты FtsZ могут генерировать в условиях in vitro, или Z-кольцо 

является лишь каркасом для белков, которые отвечают за синтез клеточной 

стенки в области деления [4]. Для ответа на этот вопрос важно понимать, как 

организованы однонитевые филаменты в составе Z-кольца. В данной работе 

была осуществлена субдифракционная визуализация Z-кольца в E. coli при 

помощи методов флуоресцентной микроскопии сверхвысокого разрешения, 

что позволило охарактеризовать структуру Z-кольца с высокой точностью. 

У представителей класса Mollicutes, часто собирательно называемых 

микоплазмами, роль белка FtsZ плохо изучена и может существенным 

образом отличаться от таковой в E. coli [5]. Микоплазмы лишены клеточной 

стенки, с регуляцией синтеза которой связана основная роль белка FtsZ в E. 

coli, кроме того, в редуцированном геноме этих бактерий отсутствует 
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большинство гомологов известных белков деления [6]. Это делает 

представителей класса Mollicutes интересными с точки зрения концепта 

«минимальной» клетки, а именно выявления минимального набора белков, 

обеспечивающих деление клетки. Многие микоплазмы являются важными 

патогенами (например, A. laidlawii является возбудителем фитоплазмозов –

заболеваний растений, а M. gallisepticum — респираторных заболеваний 

птиц), борьба с которыми затруднена, потому что арсенал антибиотиков 

ограничен (например, большая группа антибиотиков, ингибирующих синтез 

клеточной стенки, по понятным причинам не действует на микоплазмы). 

Кроме того, в силу ряда причин микоплазмы демонстрируют довольно 

высокую устойчивость и к другим антибактериальным препаратам. Изучение 

микоплазм может помочь более эффективно бороться с вызываемыми ими 

инфекциями, и потому представляет практический интерес. 

Цели и задачи 

Цель работы — выявление свойств белков FtsZ Escherichia coli, 

Acholeplasma laidlawii и Mycoplasma gallisepticum. 

Для достижения цели работы были поставлены следующие задачи: 

1. Анализ структур, формируемых белком FtsZ в фиксированных и живых 

клетках E. coli, при помощи методов флуоресцентной микроскопии 

сверхвысокого разрешения.  

2. Получение и тестирование поликлональных антител к белкам FtsZ 

бактерий A. laidlawii и M. gallisepticum. 

3. Анализ структур, формируемых белками FtsZ видов A. laidlawii и M. 

gallisepticum в клетках E. coli, A. laidlawii и M. gallisepticum, с 

использованием иммунофлуоресценции.  

4. Получение штамма M. gallisepticum с эндогенно-экспрессируемым 

флуоресцентно-меченым белком FtsZ, визуализация структур, формируемых 

этим белком. 

5. Идентификация белков-партнеров FtsZ в клетках E. coli, A. laidlawii и M. 

gallisepticum. 

Научная новизна и теоретическая важность 

В данной работе с помощью метода локализационной микроскопии впервые 

выявлено утолщение Z-кольца в ходе его сокращения в E. coli. Этот 
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результат поддерживает гипотезу о том, что Z-кольцо сокращается за счѐт 

перераспределения протофиламентов FtsZ в его составе, а не за счѐт их 

укорочения или исключения из Z-кольца. Оценены размеры кластеров на 

изображениях структур FtsZ в норме и при нарушении деления под 

действием белка SulA. Впервые визуализированы структуры, формируемые 

белками FtsZ в клетках A. laidlawii и M. gallisepticum. Эти структуры 

существенно отличаются от классического Z-кольца, что может говорить о 

вовлечении белков FtsZ в отличные от цитокинеза процессы. Впервые были 

идентифицированы белки - партнеры FtsZ в клетках A. laidlawii и M. 

gallisepticum, среди которых не выявлено гомологов известных белков 

деления. В то же время, было установлено, что FtsZ микоплазм 

взаимодействует с белками, входящими в различные метаболические пути, а 

также с белками, обеспечивающими фолдинг и деградацию полипептидов, 

трансляцию.  

Практическая важность 

В клетках большинства хорошо изученных видов бактерий, включая E. coli, 

FtsZ является жизненно необходимым белком, поэтому он рассматривается 

как перспективная мишень для новых антибактериальных препаратов [7]. В 

настоящее время описано значительное количество антибактериальных 

веществ естественного и искусственного происхождения, ингибирующих 

активность белка FtsZ, причѐм некоторые из этих веществ демонстрируют 

ингибирующие концентрации на уровне хороших антибиотиков. В будущем 

результаты работы могут способствовать созданию новых 

антибактериальных препаратов.  

Основные положения, выносимые на защиту: 

1. Z-кольцо, формируемое белком FtsZ в Escherichia coli, представляет собой 

неоднородную структуру и утолщается в процессе цитокинеза. 

2. Гомологи FtsZ в клетках Acholeplasma laidlawii и Mycoplasma gallisepticum 

не формируют Z-колец и локализуются иначе, чем FtsZ в клетках E. coli.  

3. Гомологи FtsZ в клетках M. gallisepticum и A. laidlawii взаимодействуют с 

наборами белков, состав которых значительно отличается от набора белков-

партнеров FtsZ E. coli. 

Личный вклад автора 
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Автором самостоятельно выполнен основной объем работы. Анализ образцов 

при помощи масс-спектрометрии осуществляла Артамонова Т.О. в НИК 

«Нанобиотехнологии» СПбПУ. Эксперименты с использованием 

электронной микроскопии выполнены Вишняковым И.Е. в Институте 

Цитологии РАН. Иммунизацию животных осуществлял Иванов В.А. в 

Институте Цитологии РАН. 

Апробация работы 

Достоверность результатов работы подтверждается публикациями в 

рецензируемых отечественных и зарубежных журналах. Промежуточные 

результаты работы были доложены на международных и всероссийских 

конференциях. В ходе выполнения работы опубликовано 5 статей в 

рецензируемых научных журналах, 12 тезисов докладов. 

Структура и объѐм работы 

Диссертационная работа состоит из введения, обзора литературы, материалов 

и методов исследования, результатов и их обсуждения, заключения, выводов, 

списка сокращений и условных обозначений, списка литературы и 

благодарностей. Работа изложена на 119 страницах машинописного текста, 

включает 39 рисунков, 7 таблиц. Список цитируемых литературных 

источников включает 142 наименования. 

Финансовая поддержка работы 

Работа выполнена при финансовой поддержке Российского фонда 

фундаментальных исследований (проекты № 15-04-07472, № 18-04-01074), 

Российского научного фонда (проекты № 17-74-20065, № 14-34-00023) и 

государственного задания № 3.8742.2017/8.9. 

 

МАТЕРИАЛЫ И МЕТОДЫ 

Подготовка образцов для иммунофлуоресцентной микроскопии 

Клетки E. coli штаммов Dh5α, Top10 или Rosetta культивировали в среде LB 

в термошейкере при температуре 37°C с добавлением необходимых 

антибиотиков. Непосредственно перед экспериментом ночную культуру 

инокулировали в свежую среду LB, после чего культивировали до 

оптической плотности OD600 = 0,5. Фиксацию, пермеабилизацию и 

иммунофлуоресцентное мечение клеток, а также другие этапы подготовки 
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образцов осуществляли, как описано ранее [8]. Для большей стабильности 

флуоресцентного мечения производили постфиксацию образцов посредством 

добавления 2% об. раствора формальдегида в PBS на 20 мин при комнатной 

температуре. Для визуализации мембраны добавляли раствор зародышевого 

агглютинина пшеницы, конъюгированного с красителем Alexa 488, в 

концентрации 10 мкг/мл в PBS на 10 мин. Для визуализации ДНК — 

красители YOYO-1 и TOTO-3 (концентрация каждого 100 нМ), аналогично 

предыдущему предложению. 

Клетки M. gallisepticum штаммов S6 или A5969 и A. laidlawii штамма PG-8a 

культивировали при температуре 37°C без аэрации в среде Mycoplasma broth 

base (Oxoid, UK) (или аналогичной среде, собранной самостоятельно из 

составных компонентов), с добавлением 10% об. лошадиной сыворотки, 5% 

об. дрожжевого диализата, 1% вес/об. глюкозы, 100 мкг/мл ампициллина, 

1:1000 фенолового красного в качестве индикатора. Культивацию 

осуществляли до середины экспоненциальной фазы, что определяли по 

изменению цвета индикатора вследствие закисления среды. Фиксацию 

клеток осуществляли в среде добавлением формальдегида до конечной 

концентрации 2% об., глутаральдегида – 0,1% вес/об. на 1 ч при комнатной 

температуре. Затем клетки однократно промывали PBS, после чего для их 

закрепления в промываемых камерах, подготовленных так же, как в случае 

фиксированных клеток E. coli, проводили центрифугирование камер, 

наполненных суспензией клеток микоплазм, при 1000 g в течение 5 мин, в 

результате клетки оседали и закреплялись на поверхности покровного стекла. 

Для пермеабилизации в промываемую камеру помещали 0,1% об. раствор 

Triton X-100 в PBS на 5 мин. Для блокирования неспецифического 

связывания антител клетки инкубировали в 3% об. растворе обезжиренного 

сухого молока в PBS с добавлением 5% об. лошадиной сыворотки для 

блокирования иммуноглобулин-связывающих белков в течение 1 ч при 

комнатной температуре. Первичные антитела добавляли в разведении 1:100 в 

растворе молока на ночь при 4°C. Промывку, инкубирование со вторичными 

антителами и окрашивание ДНК осуществляли так же, как в случае 

фиксированных клеток E. coli. Для окрашивания мембраны клетки 

инкубировали с раствором красителя CellMask green (Life Technologies) в 

концентрации от 100 до 1000 нМ в PBS в течение 10 мин. 

Получение и очистка антител 

Для получения поликлональных антител использовали рекомбинантные 

белки FtsZ M. gallisepticum и A. laidlawii, аффинно очищенные после их 
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экспрессии в клетках E. coli. Очищенный белок использовали для 

иммунизации кроликов. Иммунизацию осуществлял В.А. Иванов в ИНЦ РАН 

по методике, разработанной в Институте цитологии РАН [9] в 3 стадии, в 

каждой из которых было использовано от 100 до 500 мкг белка. Для 

выделения иммуноглобулинов, узнающих целевой белок, использовали 

аффинную очистку за соответствующий белок. Для этого около 1 мг 

рекомбинантного белка ковалентно пришивали к циан-бром-активированной 

сефарозе (GE Healthcare) в соответствии с инструкцией производителя, после 

чего смолу с целевым антигеном в течение ночи инкубировали с сывороткой 

при 4°С, а затем промывали буфером PBS (3 раза по 10 мл). Антитела 

элюировали при помощи раствора глицина (100 мМ, pH=2.8), после чего в 

элюат немедленно добавляли Tris-HCl (pH=8.0) и KCl до конечной 

концентрации каждого 150 мМ. Для выделения иммуноглобулинов из 

нормальной сыворотки использовали их очистку с использованием белок-А 

сефарозы (GE Healthcare) в соответствии с инструкцией изготовителя. 

Антитела концентрировали методом диафильтрации и хранили с 

добавлением 50% об. глицерина и 0,02% вес/об. азида натрия при -20°С. 

Полученные сыворотки тестировали при помощи иммуноблотинга с 

использованием клеточных экстрактов соответствующих микоплазм. 

Флуоресцентная микроскопия сверхвысокого разрешения 

Для визуализации структур, формируемых белками FtsZ бактерий E. coli, A. 

laidlawii и M. gallisepticum, в данной работе были успешно использованы 

методы флуоресцентной микроскопии сверхвысокого разрешения (главным 

образом локализационная микроскопия [10]). В промываемые камеры с 

образцами клеток E. coli, M. gallisepticum или A. laidlawii вносили раствор, 

предложенный в работе [11]. После этого образцы заклеивали герметиком и 

помещали в микроскоп, укомплектованный необходимым для осуществления 

локализационной микроскопии оборудованием, как описано ранее [12]. Для 

возбуждения флуоресценции красителей Alexa 647 и TOTO-3 в режиме 

локализационной микроскопии использовали диодный лазер с длиной волны 

640 нм, создающий в плоскости образца пятно с плотностью мощности около 

1 кВт/см
2
. В режиме локализационной микроскопии снимали от 1000 до 

20000 последовательных кадров с изображениями одиночных молекул 

красителя, которые затем обрабатывали при помощи плагина ThunderSTORM 

[13] для программного пакета ImageJ [14]. Размер пикселя на 

реконструированных изображениях составлял 21.6 нм. При реконструкции 

изображений использовали следующие параметры фильтрации: 
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Intensity>1000, Uncertainty<10 (Alexa 647, Alexa 555); Intensity>100, 

Uncertainty<20 (Alexa 488, TOTO-3). 

Измерение кластеров FtsZ 

Кластерами FtsZ [15-17] считали пятна на субдифракционном изображении, 

более чем в 2 раза превышающие размер пикселя в реконструированном 

изображении. Для оценки размеров кластеров использовали измерение 

профиля интенсивности изображения (вдоль линии толщиной 2 пикселя) 

вдоль длинной оси кластера (длина кластера), а также перпендикулярно ей 

(толщина кластера). Профиль интенсивности аппроксимировали гауссианом, 

после чего полную ширину на половине высоты (FWHM) считали 

результатом измерения. Для аппроксимации гауссианом использовали 

плагин для ImageJ FMHM_Line.ijm, написанный Soon Yew John. Для каждой 

клетки осуществляли не менее 5 измерений наиболее выраженных кластеров. 

Иммуноэлектронная микроскопия 

В дополнение к флуоресцентной визуализации белков FtsZ в клетках A. 

laidlawii и M. gallisepticum, в работе был использован метод 

иммуноэлектронной микроскопии, что позволило более надежно 

интерпретировать данные, полученные двумя независимыми методами. 

Электронную микроскопию на микроскопе Libra 120 (Carl Zeiss) в ИНЦ РАН 

выполнял Вишняков И.Е. по протоколу, описанному в статье [18]. 

Исследование межбелковых взаимодействий 

Для анализа межбелковых взаимодействий в данной работе были 

использованы методы ко-иммунопреципитации и со-осаждения.  

Для ко-иммунопреципитации смолу, конъюгированную с белком А (Protein A 

Sepharose 4 Fast Flow, GE), сшивали с тремя типами антител (отдельно): с 

поликлональными кроличьими антителами к белку FtsZ A. laidlawii (AL 

FtsZ); или с поликлональными кроличьими антителами к белку FtsZ 

M. gallisepticum (MG FtsZ); или с иммуноглобулинами нормальной 

сыворотки кролика (в качестве отрицательного контроля). Сшивание антител 

со смолой выполняли по протоколу, описанному ранее в работе [19], с 

незначительными изменениями. Процесс иммунопреципитации 

осуществляли следующим образом. Выращенные клетки E. coli дважды 

промывали PBS с добавлением 0,3 М сахарозы, лизировали в буфере PBS с 

добавлением 1 мг/мл лизоцима (Sigma-Aldrich, UK) и 1 мМ PMSF и 

обрабатывали ультразвуком (соникатор Sartorius LABSONIC P, параметры: 
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cycle = 0.25, amplitude = 25%). В случае клеток M. gallisepticum и A. laidlawii 

лизоцим не добавляли, а лизис осуществляли только с использованием 

ультразвука. После центрифугирования (15 000 g, 10 мин, 4°С) для удаления 

клеточных остатков и неразрушенных клеток осветленный лизат разбавляли 

содержащим детергент буфером NET I [50 мМ Tris-HCl, рН 7,0, 150 мМ 

NaCl, 0,1% об. неионного детергента Nonidet P-40, 1 мМ ЭДТА] и 

фильтровали через фильтр 0,22 мкм. Чтобы максимально удалить 

лошадиную сыворотку, присутствующую в образцах, был включен этап 

предварительной очистки. Для этого в фильтрованный лизат добавляли 200 

мкл суспензии белок-G-сефарозы (Protein G Sepharose 4 Fast Flow, GE 

Helthcare) и инкубировали в течение 2 ч при 4°С с осторожным 

перемешиванием. После центрифугирования супернатант добавляли к смоле 

с белок-А-сефарозой с пришитыми антителами. После 4-часовой инкубации 

при 4°С смолу три раза промывали буфером NET I, дважды буфером NET II 

(буфер NET I с 500 мМ NaCl) и один раз буфером IP [10 мм Tris / HCl, pH 7,5, 

0,1% об. Nonidet P-40]. Связанные с антителами белки элюировали со смолы 

буфером IE (100 мМ глицин, pH 2,4), элюаты концентрировали методом 

диафильтрации и анализировали при помощи электрофореза в 

денатурирующих условиях с последующим масс-спектрометрическим 

анализом выделенных белков, как описано в работе [20]. Некоторые 

эксперименты проводили с дополнительной стадией сшивания белковых 

комплексов перед разрушением клеток путем добавления парафармальдегида 

до конечной концентрации 0,4% вес/об. на 1 ч.  

Анализ белок-белковых взаимодействий по методу со-осаждения проводили 

с использованием белков FtsZ с N-концевым стреп-тагом и стрептактин-

сефарозы (IBA). Для гетерологической экспрессии белков FtsZ микоплазм в 

клетках E. coli использовали те же генетические конструкции, что и в случае 

очистки белка (см. ниже). Клетки E. coli выращивали в течение ночи при 

37°С в жидкой среде LB (100 мкг/мл ампициллина и 25 мкг/мл 

хлорамфеникола), затем переносили в свежую среду и культивировали до 

OD600 ~ 0,1, после чего добавляли L-арабинозу до конечной концентрации 25 

мМ и продолжали культивирование в течение примерно 2 ч. Затем клетки 

переносили в буфер Tris-HCl (50 мМ pH = 8,0), содержащий 500 мМ NaCl, 5 

мМ MgCl2, 1 мг/мл лизоцима, 1 мМ полиметилсульфонилфторида и 

разрушали ультразвуком. Затем проводили очистку за стреп-таг. Клеточный 

лизат наносили на колонку со стрептактин-сефарозой с использованием 

хроматографа Acta FPLC (GE). Конечные элюаты, содержащие FtsZ и белки, 
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со-осажденные с ними, анализировали, как в случае ко-

иммунопреципитации. 

Для сравнения с белками-партнерами FtsZ E. coli использовали базу данных 

STRING [21]. 

Оценка концентрации белков FtsZ в клетках микоплазм. 

Для измерения концентрации белков FtsZ в клетках M. gallisepticum и 

A. laidlawii использовали метод полуколичественного иммуноблотинга. 

Количество клеток в среде определяли под микроскопом подсчѐтом в 

фиксированном объѐме. Лизат от известного количества клеток наносили на 

одну из дорожек геля, на другие дорожки наносили увеличивающиеся 

количества очищенного рекомбинантного белка FtsZ в диапазоне от 0,1 до 

100 нг белка. Перенос белков на нитроцеллюлозную мембрану осуществляли 

по стандартному протоколу. В качестве первичных антител использовали 

антитела к белкам FtsZ микоплазм, полученные в данной работе, в 

разведении 1:1000, в качестве вторичных — антитела к иммуноглобулинам 

кролика, конъюгированные с пероксидазой хрена. Хемилюминисценцию 

наблюдали в растворе, полученном из набора SuperSignal West Pico 

Chemiluminescent Substrate. Измеряли полную интенсивность 

хемилюминисценции от 1 полосы, соответствующей белку интереса, при 

этом условия съемки подбирали таким образом, чтобы не допускать 

насыщения матрицы гель-документирующей системы по интенсивности. 

Оценку объѐма клеток осуществляли, анализируя изображения, полученные 

методом электронной микроскопии.  

 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Структуры, формируемые FtsZ в клетках E. coli 

В данной работе метод флуоресцентной локализационной микроскопии 

позволил визуализировать структуры, формируемые белком FtsZ в клетках E. 

coli, с разрешением около 20 нм (см. Рисунок 1). Высокое разрешение метода 

позволило показать, что Z-кольцо представляет собой неоднородную 

структуру, наблюдаемую в виде кластеров. Хорошо известно, что методы 

иммунофлуоресцентного мечения и локализационной микроскопии могут 

вносить искусственную зернистость в получаемые изображения [22]. 

Поэтому только на основании полученных изображений нельзя с 

уверенностью говорить о том, что наблюдаемые кластеры действительно 
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являются полимерами или группами полимеров белка FtsZ. Тем не менее, 

использование различных методов флуоресцентного мечения, в том числе 

эндогенно-экспрессируемого флуоресцентно-меченого белка FtsZ вместо 

иммунофлуоресценции, подтвердило высокую неоднородность Z-кольца 

[23], что хорошо согласуется с литературными данными [24-26]. На 

основании вышесказанного, с высокой долей вероятности можно сделать 

вывод о том, что кластеры, наблюдаемые на полученных нами изображениях, 

не являются артефактом, привнесенным методами визуализации. Напротив, 

по-видимому, эти кластеры отражают реальные структуры (полимеры или, 

скорее, группы полимеров), формируемые белком FtsZ в бактериальной 

клетке. На основании полученных изображений нам удалось оценить 

размеры кластеров FtsZ E. coli: средняя длина кластеров составила 108±41 

(среднее значение ± среднеквадратическое отклонение) нм, а средняя 

толщина — 63±12 нм. Кроме того, было показано, что Z-кольцо утолщается в 

процессе цитокинеза (см. Рисунок 2) [27]. 

 

Рисунок 1. Изображения структур, формируемых белком FtsZ в клетках 

E. coli, полученные при помощи локализационной микроскопии и 

иммунофлуоресценции (зелѐный цвет, краситель Alexa 647) с 

дополнительной дифракционно-ограниченной визуализацией ДНК 

(фиолетовый, краситель YOYO-1) 
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Рисунок 2. Зависимость толщины (w) Z-кольца от его диаметра (D) на 

основании анализа изображений, полученных в режиме локализационной 

микроскопии. Черные круги – экспериментальные точки, красная линия – 

линейная аппроксимация экспериментальных данных. Каждая 

экспериментальная точка соответствует результату измерения диаметра и 

средней толщины Z-кольца в одной из клеток. Над графиком приведены 

результаты линейной регрессии: зависимость w (D), коэффициент 

корреляции R, а также p-значение, характеризующее уровень значимости 

наблюдаемого эффекта 

При SOS-ответе — стрессовом состоянии бактериальной клетки, 

возникающем при повреждении ДНК — происходит блокирование деления 

за счѐт накопления в клетке белка SulA — ингибитора белка FtsZ [28]. В 

настоящее время считается, что SulA блокирует деление за счѐт связывания с 

мономерами FtsZ, что снижает эффективную концентрацию последнего в 

клетке ниже критического значения, что в свою очередь приводит к разборке 

полимеров [29]. Результаты нашей работы позволяют предположить, что при 

блокировании деления вследствие накопления в клетках белка SulA не 

происходит полной разборки структур FtsZ. Анализ субдифракционных 

изображений показал, что средние размеры кластеров белка FtsZ при 

блокировании деления практически не отличаются от таковых в случае 

нормального деления (см. Рисунок 3). Данное наблюдение противоречит 
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указанному выше механизму блокирования деления и согласуется с 

полученными нами ранее данными о том, что при SOS-ответе FtsZ 

формирует выраженные упорядоченные структуры, в частности, 

спиралевидные [12]. По-видимому, полимеризация FtsZ является 

необходимым, но не достаточным условием для образования Z-колец. Так 

как данные об указанном выше механизме блокирования деления белком 

SulA получены в основном в условиях in vitro, представляется необходимым 

в будущем дополнительно проверить применимость этого механизма для 

ситуации in vivo, для чего важно, в частности, измерить концентрацию белка 

SulA в клетках в состоянии SOS-ответа.  

 

Рисунок 3. Размеры кластеров FtsZ при нормальном делении клеток E. 

coli и при нарушении деления в результате накопления белка SulA. «- SulA» – 

в условиях нормального деления, «+ SulA» – в результате экспрессии белка-

ингибитора SulA. Представлены диаграммы «ящик с усами». На диаграммах 

верхняя и нижняя границы прямоугольника («ящика») соответствуют 

перцентилям 25% и 75%, концы отрезков, выходящих из прямоугольника 

(«усы») — перцентилям 5% и 75%. Внутри прямоугольника кружок 

обозначает среднее значение, горизонтальная черта — медиану. Крестиками 

обозначены экстремальные значения 

Структуры, формируемые FtsZ в клетках A. laidlawii и M. gallisepticum 

Согласно полученным нами данным, поведение белков FtsZ в клетках двух 

видов микоплазм — A. laidlawii и M. gallisepticum — значительно отличается 

от поведения FtsZ в бактериях, демонстрирующих «классическое» деление с 

формированием Z-кольца. FtsZ в клетках микоплазм не формирует Z-кольца 

(см. Рисунок 4). Результаты, полученные другим методом – 

иммуноэлектронной микроскопией – подтверждают это (см. Рисунок 5). На 
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обоих рисунках приведена только часть характерных вариантов локализации 

FtsZ, что не отражает частоту встречаемости различных вариантов. Лишь в 

отдельных клетках A. laidlawii и M. gallisepticum наблюдается локализация 

FtsZ посередине клеток, а в подавляющем большинстве клеток – отсутствие 

выраженной локализации. В большинстве случаев FtsZ распределен по 

клетке неравномерно, в виде кластеров. 

Были проанализированы размеры кластеров на изображениях структур, 

формируемых белками FtsZ в клетках A. laidlawii и M. gallisepticum. 

Сравнение этих размеров с таковыми в случае FtsZ E. coli показало их 

сходство (см. Рисунок 6), что может говорить о формировании белком FtsZ 

полимерных структур в клетках микоплазм, аналогичных FtsZ E. coli, хотя в 

будущем требуется независимое подтверждение с проведением 

соответствующих экспериментов в условиях in vitro. 

 

Рисунок 4. Изображения структур, формируемых белком FtsZ в клетках 

A. laidlawii (слева) и M. gallisepticum (справа), полученные методом 

локализационной микроскопии в сочетании с иммунофлуоресценцией. 

Приведены изображения клеток с локализацией FtsZ посередине клетки 

(сверху), а также с другими паттернами локализации белка FtsZ (внизу). ЛМ 
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FtsZ — изображение FtsZ, полученное методом локализационной 

микроскопии; ПС — изображение в проходящем свете. Жѐлтыми 

пунктирными линиями отмечены приблизительные границы клеток. Шкала 

соответствует 1 мкм 

 

 

Рисунок 5. Изображения клеток A. laidlawii (слева) и M. gallisepticum 

(справа), полученные методом иммуно-электронной микроскопии с 

использованием антител к белкам FtsZ микоплазм. Стрелками отмечены 

клетки с локализацией белка FtsZ в области перетяжки. Шкала – 500 нм 

 

Рисунок 6. Сравнение размеров кластеров FtsZ, наблюдаемых в клетках 

бактерий E. coli, A. laidlawii и M. gallisepticum. EC - E. coli, AL - A. laidlawii, 

MG - M. gallisepticum 

Оценка концентрации FtsZ в клетках A. laidlawii и M. gallisepticum 
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Оценка концентрации FtsZ (см. Рисунок 7) показала, что в клетках A. 

laidlawii находится примерно 600 молекул FtsZ на клетку (средняя 

концентрация 12 мкМ), а в клетках M. gallisepticum — примерно 100 молекул 

FtsZ (средняя концентрация 3 мкМ). Оба значения хорошо соотносятся с 

измеренной концентрацией FtsZ в клетках E. coli (3-10 мкМ). Так как 

критические концентрации для обоих белков неизвестны, то можно сравнить 

полученные значения только с критической концентрацией для FtsZ E. coli 

(1-2 мкМ). Полученный результат поддерживает предположение о том, что 

эти белки полимеризуются в клетках микоплазм, в случае если их 

критическая концентрация сравнима с указанным выше значением. 

 

Рисунок 7. Оценка концентрации белка FtsZ в клетках видов A. laidlawii 

и M. gallisepticum с помощью полуколичественного иммуноблотинга. М – 

маркер молекулярного веса (PageRuler Plus). Слева направо – клеточный 

лизат от известного количества клеток и возрастающие количества 

очищенного белка FtsZ 

Межбелковые взаимодействия с участием FtsZ в клетках A. laidlawii и 

M. gallisepticum 

В работе были также идентифицированы белки-партнеры белков FtsZ 

A. laidlawii и M. gallisepticum. Среди них были обнаружены белки, 

вовлеченные в метаболические пути, опосредующие трансляцию, фолдинг и 

деградацию белков, однако показать взаимодействие FtsZ микоплазм с 

предполагаемыми белками деления не удалось (Таблицы 1–3). Гомологов 

белков деления среди партнеров FtsZ обнаружено не было, что, впрочем, не 
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исключает того, что взаимодействие с такими белками всѐ же может 

существовать. Набор выявленных белков-партнеров FtsZ микоплазм 

существенно отличается от известного по литературным данным набора 

партнеров FtsZ E. coli. Только один белок является партнером всех трѐх 

белков – фактор элонгации EFTu. 

Таблица 1. Белки A. laidlawii, взаимодействующие с белком FtsZ A. 

laidlawii по данным со-осаждения за стреп-таг. MW — молекулярная масса 

Название MW, Да Идентификатор 

Bifunctional acetaldehyde-CoA/alcohol 

dehydrogenase  

95048 WP_012242134.1 

Molecular chaperone DnaK 65643 WP_012242499.1 

Dihydrolipoyllysine acetyltransferase 57225 WP_012243236.1 

 

Таблица 2. Белки A. laidlawii, взаимодействующие с белком FtsZ A. 

laidlawii по данным ко-иммунопреципитации. MW — молекулярная масса 

Название MW, 

Да 

Идентификатор 

Hsp20/alpha crystallin family protein, IbpA 
16054 WP_012242373.1 

Formate C-acetyltransferase  84730 WP_012242002.1 

Elongation factor Tu  42860 WP_012242145.1 

Elongation factor G  76350 WP_012242144.1 

XRE family transcriptional regulator  23390 WP_012242530.1 

Molecular chaperone DnaK  65690 WP_012242499.1 

Endopeptidase La  86710 WP_012242485.1 

Phytoene desaturase  56910 WP_012243338.1 

ABC transporter ATP-binding protein  25210 WP_012243340.1 
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Таблица 3. Белки M. gallisepticum, взаимодействующие с белком FtsZ 

M. gallisepticum по данным ко-иммунопреципитации. MW — молекулярная 

масса 

Название MW, Да Идентификатор 

Lipoprotein A  

81912  WP_011883657.1

  

Elongation factor Tu  43130 WP_014885939.1 

ATP synthase B/B' CF(0)  52090 WP_023893658.1 

DNA-directed RNA polymerase subunit beta'  145080 WP_011884029.1 

ABC-type oligopeptide transport solute binding 

protein OppA  

118770 WP_011884746.1 

 

  



20 

 

ВЫВОДЫ 

1. Z-кольцо Escherichia coli представляет собой неоднородную структуру, 

наблюдаемую в виде кластеров белка FtsZ, средняя длина и толщина которых 

составляют 108±41 и 63±12 нм соответственно. Z-кольцо E. coli утолщается в 

ходе его сокращения в процессе цитокинеза, при этом средняя длина 

кластера FtsZ увеличивается.  

2. При нарушении деления в результате экспрессии белка-ингибитора SulA E. 

coli не происходит значительного уменьшения размеров кластеров FtsZ.  

 3. В клетках A. laidlawii и M. gallisepticum белок FtsZ не формирует 

классическое Z-кольцо. В некоторых клетках FtsZ локализуется посередине 

клетки, тогда как в других клетках наблюдается относительно равномерное 

распределение FtsZ по клетке. 

4. Кластеры FtsZ, наблюдаемые в клетках Acholeplasma laidlawii и 

Mycoplasma gallisepticum, имеют размеры, сопоставимые с размерами 

кластеров FtsZ E. coli.  

5. Концентрация FtsZ в клетках A. laidlawii и M. gallisepticum сравнима с 

таковой в клетках E. coli. 

6. Белки FtsZ M. gallisepticum и A. laidlawii взаимодействуют с белками, 

участвующими в клеточном метаболизме, фолдинге и деградации белков, но 

взаимодействие FtsZ микоплазм с гомологами известных белков деления 

выявить не удалось. 
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