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1. General description of work

Relevance of the topic The work of this thesis is based on several almost independent
problems on quantum generalized Heisenberg algebras 1.1, lattice W -algebras 1.2, Bergman’s
centralizer theorem 1.3 and on the algebraic torus actions 1.4, which can be summarized as
follows:

1.1. Quantum generalized Heisenberg algebras. A classical problem in quantum me-
chanics is the harmonic oscillator problem, whose solution relies on the representation theory
of the Weyl algebra A1(C) (defined below), which can be seen as the quotient of the envelop-
ing algebra of the three-dimensional Heisenberg Lie algebra (defined below) by a suitable
central element. Quantum analogues of the oscillator problem, of the Weyl algebra and of
the enveloping algebra of the Heisenberg Lie algebra have been profusely studied (see e.g.
[31]) in the last 30 years and several notions of quantum and deformed Heisenberg algebras
have thence been proposed and studied.

Generalized Heisenberg Algebras (GHA, for short) were introduced in the physics litera-
ture in two different (but maybe with the same source) routes. One has been raised under
the view of the Russian scientists perspective of the physics and mathematics and the other
one from the Brazilian scientists point of view.

All has started from an algebra which is called the q-algebra or the algebra of q-deformed
commutators (or the q-Oscillator algebra), which has been introduced by Ludvig Faddeev,
Kulish and Jimbo independently in a series of articles related to the integrable models on
quantum field theory and quantum spectral transform methods, between 1982-1989. The
q-algebra is generated by operators a, a† and N subject to the relations [a, a†]q = q−N ,
[N, a] = −a and [N, a†] = a†, where [a, a†] = aa† − qa†a and † stands for the Hermitian
conjugate (adjoint or transpose; we work on matrix operator space) and N will be considered
as a self adjoint matrix operator (the diagonal matrix with nii = i for i = 0, 1, . . .) for q a
fixed complex number. This algebra is related to quantum groups, whose properties have
been intensively studied. They are applied in field theory and quantum gauge field theory.

In 1997, Sergey Yurievich Vernov and Melita Nikolaevna Mnatsakanova, have considered
algebras of a more general form than the q-algebra, namely the algebras in which condition
[a, a†]q = q−N is replaced by a†a = φ(N), aa† = φ1(N), where φ(N) and φ1(N) are
functions. They also have investigated the representations of these algebras in the case
where φ and φ1 are nonsingular. [42] (But it is possible to show that actually this algebra
does not have any new thing to say by letting q−N = L and it is just an example of GWAs.
But the most interesting result which people have gotten out of this example is that by
solving these equations we will encounter with a new system of relations which will give us
the q-analogues of the universal enveloping algebra of the 3 dimensional Heisenberg algebra
h1 which is the quotient of the free algebra F

〈
a, a†, L

〉
modulo the two sided ideal I generated

by the elements aa† − qa†a− L,La† − q−1a†L and La− qaL)
Then in 2000 and 2001, in a series of articles, Sergey and Melita, have considered a

class of algebras which they called the generalized Heisenberg algebras. These algebras are
almost the same as the generalized q-algebras studied in [46], with the only difference that
in the generalized Heisenberg algebras (generalized q-algebras) (introduced by Vernov), they
specified and fixed φ1 in terms of φ i.e. they defined φ1(N) := φ(N + 1). In this case, with
a little care, we can see that, these algebras can be seen as the first Weyl algebra (example
(1.3)) if we set φ(N) = N −1. So this was the first appearance of the generalized Heisenberg
algebras similar to their current format introduced in [16].
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From the Brazilian side, in 1991, the first introduced generalization of the Heisenberg
type (Heisenberg-Weyl type) algebras (algebras of the Canonical Commutation Relations
(CCR)), has been introduced in a preprint in physics literature “Logistic algebras” (Which
has not published officially, but it exists in the Internet in the archive of the Cern documents),
where Rego-Monteiro, has tried to generalize the known algebraic structures appeared in the
solution of the physical systems. He called them Logistic algebras, because of the logistic
map used in his definition (In dynamical systems, the non invertible map f(x) = rx(1 − x),
for r ∈ R; is commonly called the ”Logistic map”. Now if we consider an another dynamical
system xn+1 = g(xn) for an n-dimensional vector space xn, which is an invertible map if we
look at it as a differential operator and if we compose these two maps, then we will get the
logistic map xn+1 = rxn(1− xn), which has been considered by Rego-Monteiro for to define
his algebras. And it is good to know that this map has been pointed out by Robert May
(1976), as a simple idealized ecological model in the yearly variations in the population of
an insect species).

In 2001, an alternative strategy to construct a solvable model working with selfadjoint
Hamiltonians has been proposed by Evaldo Curado and Rego-Monteiro in a series of articles
(as a generalization of logistic algebras) on what has been called generalized Heisenberg
algebras (GHA), see [16] and the references therein. This strategy is mainly based on the
existence of suitable intertwining and commutation relations, and on the existence of a certain
function related to them. For instance we can see in q-algebra and in the deformed Heisenberg
algebra introduced in [46][42], that the deformations of the canonical (anti-)commutation
relations have proved to be quite useful for deducing eigenvalues and eigenvectors of certain
Hamiltonians appearing in the literature devoted to non-Hermitian quantum mechanics. And
as an application of the GHA’s in the quantum field theory (QFT) is the idea of making the
new generalized QFT (a new generalized solvable quantum model) by using these algebras,
by replacing the characteristic function f(h) in the relations (1.1) with f(h) = th2 + qh+ s.
(We note that for t = 0 we will get the linear case f(h) = qh + s, which will give us the
q-deformed Weyl algebra, discussed in the example (1.7))(see [16])

From the algebraic point of view, GHA have been studied mostly in [39], [38] and [35].
We start by recalling their definition and then enumerate some of the results which have
been obtained thus far.

Let f ∈ C[h] be a fixed polynomial over C. The generalized Heisenberg algebra H(f) is
the unital associative C-algebra with generators x, y, h satisfying the relations:

(1.1) hx = xf(h), yh = f(h)y, yx− xy = f(h) − h.

In [39], the authors obtained the following results:

(i) Computation of the center Z(H(f)) of H(f) and of a basis for H(f) ([39, Theorem
4, Lemma 1]).

(ii) Isomorphism problem: necessary and sufficient conditions for H(f) and H(g) to be
isomorphic ([39, Theorem 5]).

(iii) Determination of all finite-dimensional simple H(f)-modules ([39, Theorem 12]).

Later, in [35], the following results were established:

(i) Necessary and sufficient conditions for H(f) to be Noetherian ([35, Proposition 2.1]).
(ii) Necessary and sufficient conditions for H(f) to be isomorphic to a generalized down-

up algebra (see [13]) ([35, Corollary 2.1]).
(iii) Determination of all locally nilpotent and all locally finite derivations of H(f), in

case deg (f) > 1 ([35, Theorem 4.1, Corollary 4.1]).
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(iv) Computation of the automorphism group of H(f), in case deg (f) > 1 ([35, Theorem
5.1]).

Above, the emphasis on the case deg (f) > 1 is justified by the fact that otherwise H(f)
is isomorphic to a generalized down-up algebra and the latter algebras have been intensively
studied since their initial introduction in [5] and generalization in [13]. In fact, this is one of
the motivations for our proposed study: it has been revealed through a plenitude of research
papers that the (generalized) down-up algebras form a very interesting class of algebras
where, on the one hand, many properties can be tested and intuition can be developed more
easily at the concrete level which they provide, and on the other hand, this class of algebras
contains fundamental objects of algebraic interest, both at the classical and the quantum
level. Striking examples are the enveloping algebra of the 3-dimensional complex simple Lie
algebra sl2 and of the 3-dimensional Heisenberg Lie algebra.

The class of GHA, although intersecting the class of generalized down-up algebras, con-
tains also a wide range of algebras not in the latter class (this occurs precisely when
deg (f) > 1) and by [35], when a GHA is not a generalized down-up algebra, then it is not
even a Noetherian ring, although it is a domain. So GHA include both the more tractable
features of generalized down-up algebras and the less chartered features of non-Noetherian
domains.

In summary, the Weyl algebra, which has been discussed in example (1.3), is the special
case of the defining relations given by (1.1), where instead of taking the relations given by
f(h), we consider the one for f(h) = h− 1.

Another well-developed and well-studied class of algebras related to GHA is that of Gener-
alized Weyl Algebras (GWA, for short), introduced by Bavula over a series of papers (see e.g.
[3]). Let A be an algebra (over the field F), σ an algebra automorphism of A and z ∈ Z(A) a
central element of A. Then the GWA B := A(σ, z) is the unital associative algebra generated
by A and elements x, y, subject to the relations:

(1.2) xa = σ(a)x, ay = yσ(a), yx = z, xy = σ(z), ∀a ∈ A.

Examples of GWA are the Weyl algebra A1(F), the quantum plane Fq[x, y], the quantum
Weyl algebra Aq1(F), the enveloping algebra of the 3-dimensional Heisenberg Lie algebra and
its quantum analogue (all defined next). Other examples which we will not define but are
nevertheless very important are the Noetherian (generalized) down-up algebras mentioned
above (see [13]), the enveloping algebra of the 3-dimensional complex simple Lie algebra
sl2, its primitive infinite-dimensional quotients and the quantum analogues of these, and the
Smith algebras (see e.g. [4] for more details).

Example 1.3 (The first Weyl algebra). The Weyl algebra A1(F) is the unital associative
algebra generated over F by elements u, v, subject only to the relation vu − uv = 1. This
algebra, along with its higher degree analogues An(F) := A1(F)⊗n, are of paramount impor-
tance in representation theory as they control the representations of the finite-dimensional
complex nilpotent Lie algebras.

Let A = F[h] be a polynomial algebra in the variable h. Consider its automorphism σ
defined by σ(h) = h − 1 and the element z = h. Then the GWA A(σ, z) is isomorphic
to A1(F). Indeed, let F⟨U, V ⟩ be the free algebra on the generators U, V . By its universal
property, there is a uniquely defined (unital) algebra homomorphism

(1.4) F⟨U, V ⟩ −→ F[h](σ, h), U → x, V → y.

The image of V U − UV − 1 under this map is yx − xy − 1 = h − σ(h) − 1 = 0, so the
above map induces an algebra homomorphism defined on the quotient of F⟨U, V ⟩ by its
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two-sided ideal (V U − UV − 1), which is precisely A1(F), by definition. We call this new
map ϕ : A1(F) −→ F[h](σ, h) and denote the cosets of U and V in the factor algebra
A1(F) = F⟨U, V ⟩/(V U − UV − 1) by u and v, respectively. This map ϕ is clearly surjective,
as the image contains the generators x = ϕ(u), y = ϕ(v) and h = ϕ(vu). At this point,
further knowledge on the structures of A1(F) and F[h](σ, h) (namely, suitable bases) would
be needed to conclude that ϕ is injective. This can be avoided by defining a new algebra
homomorphism ψ : F[h](σ, h) −→ A1(F) with the property that ψ ◦ ϕ acts as the identity on
the generators u, v of A1(F). This can be done in a similar fashion: define a map

(1.5) F⟨X,Y,H⟩ −→ A1(F), X → u, Y → v, H → vu

and show that the elements corresponding to the defining relations (1.2) of F[h](σ, h) are in
the kernel. For example, for the relation xa = σ(a)x for all a ∈ F[h], it is enough to take
a = h and consider the image of the element XH − (H − 1)X, which is u(vu)− (vu− 1)u =
u(vu) − (uv)u = 0, as desired. Similarly we conclude that this map factors through the
desired map ψ, proving the isomorphism.

Example 1.6 (Quantum plane). The quantum plane (Also known as the Manin’s quantum
plane) is the quotient of the free algebra F ⟨x, y⟩ modulo the two sided ideal generated by
the element xy − qyx, for q ̸= 0, 1, root of unity.

It is a GWA in the following way. Suppose we are given Fq[x, y]. We want to find the
GWA A(σ, z) subject to the relations xy = σ(z), yx = z, xa = σ(a)x, and ya = yσ(a) for
z ∈ Z(A) and for all a ∈ A, isomorphic to Fq[x, y].

For to do this, we need to find an automorphism σ and z ∈ Z(A) and a suitable base ring
A, such that the condition xy − qyx = 0 satisfies.

We note that the only thing we know is xy − qyx = 0. By using the relation yx = z,
we get qyx = qz. Now by subtracting both sides of the qyx = qz of xy = σ(z), we get
0 = xy − qyx = σ(z) − qz, which means that σ(z) = qz for any z ∈ Z(A) and this equation
can be the only condition which we can have for σ. We can see this by comparing the
relation xy = qyx in Fq[x, y] with the relations xa = σ(a)x and ay = yσ(a) of the proposed
GWA A(σ, z) for any a ∈ A. Now if for a ∈ A we have a = z ∈ Z(A), then we get that
xz = qzx and yz = qzy, which are redundant and we can get them out of the relations
xy = qz and yx = z of the GWA A(qz, z). Now if a ̸= z or not equal to any combination of
z, then the relation which we have found for σ will not be the only relation which we need
to define σ, which is a contradiction with our early result that it is enough for to define our
automorphism. So by choosing z = a for any a ∈ A, the only choice for A becomes A = F[z]
and the correspondence x↔ x, y ↔ y and yx↔ z, will give us the desired isomorphism, in
a similar way as in the example (1.3).

Here we also could use the similar way as in the example 1.7. But I just wanted to find
it directly for to see how can it be done for a simple example. One can follow (1.7).

Example 1.7 (Quantum Weyl algebra). The quantum Weyl algebra A
q
1(F) where q ∈ F\{0}

is the algebra with generators x, y and defining relation xy − qyx = 1.
It is a GWA in the following way. Let A = F[t], let σ : A → A be the automorphism

defined by σ(f(t)) = f(qt + 1) for any f(t) ∈ A, and let z be the polynomial p(t) = t ∈ A.
Let B = A(σ, z) be the corresponding GWA. Then relations (∗) in the example 1.6 imply
that yx = t and xy = qt+ 1 so that xy − qyx = 1 holds.

From xt = x(yx) = (xy)x = (qt + 1)x follows that xtk = (qt + 1)kx for any k ∈ Z≥0

and thus, by linearity, xf(t) = f(qt + 1)x for any polynomial f(t) ∈ A. Analogously
f(t)y = yf(qt + 1) for any f(t) ∈ A. This shows that relations xa = σ(a)x and ay = yσ(a)
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are redundant and that B generated by x, y with the single relation xy − qyx = 1. Thus B
is isomorphic to the quantum Weyl algebra A

q
1(F).

If we take q = 1, we get the example (1.3).

Example 1.8 (enveloping algebra of the 3-dimensional Heisenberg Lie algebra). The first
Heisenberg algebra h1 is an associative Lie algebra of dimension 3 that is algebraically gener-
ated by the generators X,Y and H which are subject to the Lie bracket relations [X,Y ] = H
and [X,H] = 0 = [Y,H]. Hence H is a central element. And its universal enveloping algebra
U(h1) is the quotient of the free algebra F ⟨X,Y,H⟩ modulo the two sided ideal I generated
by elements XY − Y X −H, XH −HX and Y H −HY .

It is a GWA in the following way. Let A = F[h, z] be the commutative polynomial ring in
two variables, and let σ : A→ A be the automorphism defined by σ(z) = z−h and σ(h) = h.
Now let A(σ, z) be the corresponding GWA. The relations yx = z and xy = σ(z) of (1.2)
and our definition of σ imply that yx = z and xy = z − h. So yx− xy = h.

Also relations xa = σ(a)x and ay = yσ(a) of (1.2) for every a ∈ A = F[h, z] will imply
that xh = σ(h)x = hx, hy = yσ(h) = yh and xz = σ(z)x = zx− hx, yz = σ(z)y = zy − hy.

We claim that the later relations coming from z are redundant, and we can get them from
the relation yx − xy = h. For to see this, let us multiply both sides of yx − xy = h with x
from the right side. So we have yxx − xyx = hx = zx − xz and in a similar way we can
get hy = zy − yz. So the correspondence X ↔ x, Y ↔ y, and H ↔ h, will give us the
isomorphism U(h1) ∼= F[h, z](σ, z), in a similar way as in the example (1.3).

Example 1.9 (quantum Heisenberg algebra). The quantum Heisenberg algebra Hq, is the
free algebra generated by X,Y and H subject to the relations XH = q2HX, Y H = q−2HY
and XY − q−2Y X = q−1H, for q ∈ F s.t. q4 ̸= 1. Hence Hq will be the quotint of the
free algebra F ⟨X,Y,H⟩ modulo the two sided ideal I generated by elements XH − q2HX,
Y H − q−2HY and XY − q−2Y X − q−1H.

It is a GWA in the following way. Take θ = XY −q2Y X. Then by some calculation we can
see that Xθ = q−2θX, Y θ = q2θY and Hθ = θH. Now let us set C = Hθ. Then we see that
HC = CH, XC = CX and Y C = CY by knowing that XH = q2HX, and Y H = q−2HY.
This means that C ∈ Z(Hq). Now by knowing this, let us set z = θ−q−1H ∈ Z(F[H, θ]) and
let us define automorphism σ : F [H, θ] → F [H, θ] such that it sends H 7→ q2H and θ 7→ q−2θ
by getting used of the relations XH = q2HX and Y H = q−2HY. And then it become easy
to check that Hq ≃ F[H, θ](σ, z) by correspondence X ↔ X, Y ↔ Y and θ − q−1H ↔ Y X
in a similar way as in the example (1.3).

There are many other important examples of GWA’s. But we cannot include them here
due to the limitations in the number of pages.

The above examples show that GWA include a variety of important examples in mathe-
matics and theoretical physics. Let us look at a particular motivating example of interest.

Example 1.10 (towards weak GWA). Let A = F[h, ω] be a polynomial ring in two (com-
muting) variables and fix a polynomial f(h) ∈ F(h) of degree 1. Take z = h+ω and σ to be
the automorphism of A determined by σ(h) = f(h) and σ(ω) = ω (σ is bijective precisely
by the assumption that deg f = 1). Then the GWA A(σ, z) is the F-algebra generated by
elements h, ω, x, y, subject to the relations (1.2), which can be written as follows, after a
slight simplification:

(1.11) xh = f(h)x, hy = yf(h), yx = h+ ω, xy = f(h) + ω, [x, ω] = 0 = [y, ω],

where [a, b] = ab− ba is the commutator. From (1.11), we notice that the central generator
ω is unnecessary as we deduce that xy−f(h) = ω = yx−h. Moreover, the resulting relation
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xy − f(h) = yx − h is consistent with the relations [x, ω] = 0 = [y, ω] and thus we deduce
that the GWA A(σ, z) is the F-algebra generated by elements h, x, y, subject to the relations:

(1.12) xh = f(h)x, hy = yf(h), xy − yx = f(h) − h.

Comparing the above with the defining relations (1.1) for the GHA H(f), we see that these
are the same, except that the roles of x and y are switched. This shows that H(f) is a GWA
in case deg f = 1.

In the above example, the restriction that deg f = 1 was necessary only to guarantee that
σ is bijective. If one abandons such a restriction in the definition of a GWA, then we obtain
what has been called in [38] a weak generalized Weyl algebra (wGWA, for short). Concretely,
given an algebra A, z ∈ Z(A) and an endomorphism σ of A, the wGWA B := A(σ, z) is the
unital associative algebra generated by A and elements x, y, subject to the GWA relations
(1.2) above. In particular, taking an arbitrary polynomial f(h) ∈ F[h] in the example above
shows that all GHA are wGWA. However, the weaker condition that σ is not necessarily
bijective carries nontrivial implications: for a Noetherian domain A and 0 ̸= z ∈ Z(A), the
wGWA A(σ, z) may no longer be a domain or even Noetherian, as is shown in [35, Proposition
2.1]. Therefore, the further study of GHA will also produce a better understanding of wGWA
in general.

As of the present, two of the most successful achievements in the classification of all
simple representations of noncommutative infinite-dimensional associative algebras are still
the works of Block [12] and Bavula [2], where the simple modules for the Weyl algebra
A1(F), the enveloping algebras of sl2 and of the 3-dimensional Heisenberg Lie algebra, the
quantum plane and the quantum Weyl algebra are classified, in a certain sense. The latter
are all examples of GWA, as argued before. The classification of the simple modules for
GHA would be a very nice extension of the theory beyond the scope of GWA.

Because of the difficulty of classifying all simple representations, especially of infinite-
dimensional associative algebras, many studies have focused on specific types of representa-
tions. Examples (we shall not define the terminology here) are finite-dimensional modules,
highest weight modules, weight modules with finite-dimensional weight spaces, Whittaker
modules, Gelfand-Zetlin modules, and more. Recently, some authors have also studied tor-
sion free actions on a certain subalgebra (typically a commutative polynomial subalgebra; in
the case of semisimple Lie algebras, the enveloping algebra of the Cartan subalgebra is usu-
ally chosen) and the results obtained are interesting and seem appropriate for generalization
(see e.g. [40]).

Another important direction in representation theory is the classification of primitive
ideals (i.e., annihilators of simple representations). This idea has successfully been put
forward by Dixmier, in light of the fact that in general it is considered a wild problem to
classify the simple representations themselves. In contrast, the classification of primitive
ideals of enveloping algebras of Lie algebras has motivated a lot of interesting connections
in mathematics, two of the best such examples being the Dixmier map and the so-called
Dixmier-Moeglin equivalence. Both of these techniques have proven to be extremely useful
also in the study of primitive ideals of quantum algebras (see [28].

1.1.1. Goals and objectives of the work toward qGHAs. Our work aims to generalize
this to a larger class of algebras which we call quantum generalized Heisenberg algebras.
These depend on an arbitrary base field F, a quantum parameter q ∈ F∗ and two polynomials
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f and g. Our main motivation for introducing a generalization of this class, besides providing
a broader framework for the investigation of the underlying physical systems, comes from the
observation in [35] that the classes of generalized Heisenberg algebras and of (generalized)
down-up algebras intersect (see the seminal paper [5] on down-up algebras and also [13]),
although neither one contains the other. In spite of the name, the class of generalized
Heisenberg algebras does not include the enveloping algebra of the Heisenberg Lie algebra
nor its quantum deformations introduced in [31], nor the enveloping algebra of sl2. These
and many other like algebras are now included in the class of qGHAs. The other interesting
feature of our study comes from the fact that quantum generalized Heisenberg algebras
are generically non-Noetherian and we believe that there are yet not enough studies into the
representation theory of non-noetherian algebras which are somehow related to deformations
of enveloping algebras of Lie algebras, as is the case with quantum generalized Heisenberg
algebras.

Definition 1.13. Let F be an arbitrary field. Then for any fixed f, g ∈ F[h] and q ∈ F∗, the
quantum generalized Heisenberg algebra (qGHA, for short) Hq(f, g) is the unital associative
algebra over F generated by x, y, and h subject to the defining relations

(1.14) hx = xf(h), yh = f(h)y, yx− qxy = g(h).

Consider the 3-dimensional Lie algebra sl2, with basis elements x, y, h and Lie bracket
given by [x, h] = 2x, [h, y] = 2y and [y, x] = h. We can view its enveloping algebra as qGHA
H1(h − 2, h). In the representation theory of sl2, x and y are often represented as raising
and lowering operators on a finite or countable vector space. For example, in [?] and [?]
the existence of such operators on the vector space whose distinguished basis is a suitably
defined poset is used to solve important combinatorial problems.

Take V = F[t±1], the Laurent polynomial algebra, and suppose that x and y act on V as
raising and lowering operators, respectively, so that h acts diagonally. We can assume that,
relative to the basis

{
tk
}
k∈Z, we have

(1.15) xtk = tk+1, ytk = µ(k)tk−1 and htk = λ(k)tk, for all k ∈ Z,

where λ, µ : Z −→ F. Then, the sl2 relations impose the conditions

µ(k + 1) = µ(k) + λ(k) and λ(k + 1) = λ(k) − 2,

so λ(k + 1) is affine on λ(k) and µ(k + 1) is linear on µ(k) and λ(k).
The 3-dimensional Heisenberg Lie algebra has basis x, y, h and Lie brackets [h, x] = [h, y] =

0 and [y, x] = h. Its enveloping algebra can be seen as the qGHA H1(h, h). Then, the
Heisenberg relations imposed on (1.15) give

µ(k + 1) = µ(k) + λ(k) and λ(k + 1) = λ(k),

so λ is constant and µ(k + 1) is affine on µ(k).
Another related example is given by the algebras similar to the enveloping algebra of sl2

introduced by Smith in [?]. These are precisely the qGHA of the form H1(h − 1, g), for
g ∈ F[h]. The corresponding conditions imposed on (1.15) by the Smith algebra relations
are

µ(k + 1) = µ(k) + g(λ(k)) and λ(k + 1) = λ(k) − 1,

so λ(k + 1) is affine on λ(k) but now µ(k + 1) − µ(k) is polynomial on λ(k).
As a final example, if we take a generalized Heisenberg algebra, i.e. a qGHA of the form

H1(f, f − h), then the corresponding conditions imposed on (1.15) are

µ(k + 1) − µ(k) = λ(k + 1) − λ(k) and λ(k + 1) = f(λ(k)),
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so λ and µ differ by a constant and λ(k + 1) is polynomial in λ(k).
With the more general relations allowed for by our definition of a qGHA, we can include

all of the above cases and, more generally, in Hq(f, g) we have

µ(k + 1) = qµ(k) + g(λ(k)) and λ(k + 1) = f(λ(k)),

so that λ(k + 1) is polynomial in λ(k) and µ(k + 1) is affine in µ(k) and polynomial in
λ(k). Representations of the qGHA Hq(f, g) will thus classify the creation and annihilation
operators as in (1.15), under the latter assumptions.

In the papers [36] and [37], we have found some results concerning the classification of
all simple finite dimensional Hq(f, g)-modules, determining automorphism groups of the
Hq(f, g) when deg f > 1 and we also solved the isomorphism problem for this class of
algebras and we have determined when a quantum generalized Heisenberg algebra is Noe-
therian and many other ring-theoretical properties like Gelfand-Kirillov dimension and being
domain. But the class of quantum generalized Heisenberg algebras seems very interesting
and worth studying further, such as computing their global dimensions (compare [13]) and
determining those quantum generalized Heisenberg algebras all of whose finite-dimensional
representations are completely reducible (compare [?]). Studying simple weight modules for
Hq(f, g) and determining the primitive ideals of Hq(f, g) (compare [?] and [?]). Investigating
Hochschild (co)homology of Hq(f, g) (compare [15]). Investigating when Hq(f, g) has a Hopf
algebra structure can be very interesting as in [?] the authors embed a certain type of down-
up algebra A into a skew group algebra A ∗G, where G is a subgroup of the automorphism
group of A, and then construct a Hopf algebra structure on A ∗ G. As an example, when
the defining parameters of A are such that A is isomorphic to the enveloping algebra of the
Heisenberg Lie algebra, then the group G is trivial and the Hopf structure obtained agrees
with the usual one on an enveloping algebra. And in a very different direction, in [?] the
authors classify the down-up algebras which have a Hopf algebra structure and we also have
done the same for some subclasses of the class of quantum generalized Heisenberg algebras
and what remains is to compute the tensor product modules of the simple modules of these
algebras.

One can also pursue a more geometric standpoint, by looking at Poisson algebras which
can be associated with generalized Heisenberg algebras via the semiclassical limit process
(see [28]). The study of these Poisson algebras could be relevant to the original setting
where generalized Heisenberg algebras were defined, motivated by questions in mathematical
physics. Moreover, it would be interesting to study possible correspondences between the
properties of the latter Poisson algebras and the properties of qGHA, especially concerning
representations, primitive ideals, symplectic cores (see [28]) as well as Hochschild and Poisson
cohomology. In light of [41], it is expected that these should be related.

On the other hand, going back to the Physics literature on generalized Heisenberg algebras,
where these appeared to be defined over rings more general than the polynomial ring F[h], it
would also be of interest to consider quantum generalized Heisenberg algebras defined over a
Laurent polynomial ring F[h±1], a power series ring F[[h]] or the rational function field F(h).

1.1.2. Goals and objectives of the work toward GHAs. The plan is to initiate a thor-
ough study of GHA from several points of view which we will summarize below. Whenever
feasible, we will try to formulate the results in the broader context of wGWA, compare them
with known results on GWA and on generalized down-up algebras.
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To facilitate clarity, we will subdivide our exposition into our areas of interest. It should
be understood that we are just now delving into this subject, so these serve as guidelines
only for our research and the concrete accomplishments in our thesis will naturally depend
on our progress along each of these subjects and on the positive results that we get along
the way.

1.1.3. Representation theory. Representation theory is of great importance in almost all
areas of pure and applied mathematics, and in theoretical physics. In spite of this, it is
generally considered a hopeless problem to classify all simple representations for a given
infinite-dimensional algebra, except under suitably special conditions.

As has been indicated above, all finite-dimensional simple H(f)-modules have been clas-
sified in [39] and in [38] the authors consider the problem of classifying the simple weight
modules over weak generalized Weyl algebras over a polynomial ring in just one variable.
Although the latter does not directly cover GHA, partial results about infinite-dimensional
simple weight modules for GHA have been obtained in [38].

Given the already mentioned prominence of representation theory, and the specific open
problem raised in [39] (and still left open in [38]) of determining other, if not all, classes of
simple representations of H(f), our first and foremost topic of interest will be to address this
open problem. We will mostly try two routes:

(i) Examine the arguments in [12] and [2] and see if we can adapt their methods to the
case of GHA.

(ii) Study particular classes of representations of H(f), starting with an attempt to arrive
at a good definition of Whittaker modules and of torsion free module structures on
suitable commutative subalgebras of H(f). The latter will involve studying the
methods employed in [40] and also the references to other types of representations
included in this paper.

1.1.4. GHA over fields of positive characteristic and extension to f ∈ F[[h]]. Many properties
of an algebra tend to depend on the characteristic of the base field. Typically, but not
exclusively, when the ground field has positive characteristic, the center of the algebra is
usually bigger (in some sense) than the center of the same algebra over a field of characteristic
0. In fact, it is common for an algebra over a field of prime characteristic to satisfy a
polynomial identity, as is the case of the Weyl algebra A1(F), which is simple with trivial
center when char(F) = 0 but becomes a free module of finite rank over its center (a polynomial
algebra in two variables) when char(F) = p > 0. This has strong implications on the structure
and representation theory of the Weyl algebra.

In the specific example of GHA, these have always been considered over the field C of
complex numbers. It is likely that most known results about these algebras still hold over
a (possibly algebraically closed) field of characteristic 0, but we expect to obtain different
results in case the base field has positive characteristic. The analogous question for down-up
algebras has been taken up in [30].

Another direction would be to go back to the original definition from the physics literature
[16] where f(h) was taken to be an analytic function. Algebraically, this corresponds to taking
f ∈ F[[h]], where F[[h]] is the ring of formal power series in h. This approach could lead to
interesting variations of the theory, as the group of units in F[[h]] is much larger than that
of F[h].

1.1.5. Endomorphisms of GHA. One of the longest-standing open conjectures in algebra is
the Dixmier conjecture which asks if every endomorphism of the Weyl algebra A1(F), where
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F is a field of characteristic 0, or more generally of the n-th Weyl algebra An(F) = A1(F)⊗n

is an automorphism. This problem remains open even for A1(F) and in general Tsuchimoto
and, independently, Belov-Kanel and Kontsevich, proved that the Dixmier conjecture is
stably equivalent to the Jacobian conjecture from the field of algebraic geometry.

It is natural to ask similar questions regarding other algebras. Note that in characteristic 0
the Weyl algebras An(F) are simple, so any endomorphism of the Weyl algebra is necessarily
injective. Thus, a natural generalization of this question for other families of non-simple
algebras is to ask whether all monomorphisms are automorphisms. This type of question
has been answered for several classes of algebras, some of which are GWA and some not, but
to our knowledge it hasn’t been investigated for GHA. Given the relevance of the Dixmier
conjecture, this could be an interesting problem to study within the class of GHA.

1.1.6. The semiclassical limit and a Poisson algebra analogue of GHA. In what follows we
will continue to use the commutator notation [a, b] = ab − ba. A Poisson algebra P is a
commutative (associative) algebra equipped with a bilinear product { , } such that (P, { , })
is a Lie algebra and the map {a,−} : P × P −→ P is a derivation of P with respect to its
associative product, for all a ∈ P .

We start out by briefly recalling the semiclassical limit process. Further details can be
found in [28]. Let A be an algebra and R ⊆ Z(A) be a central subalgebra. Assume further
that ra = 0 for r ∈ R and a ∈ A implies that either r = 0 or a = 0. Choose 0 ̸= ℏ ∈ R which
is not a unit in A. Since ℏ is a central non-unit, ℏA is a proper ideal of A. We will use any
of the notations a, a+ ℏA or the more suggestive a|ℏ=0 to denote the image of a ∈ A under
the canonical map onto A = A/ℏA.

Assume that A as above is commutative. Then we can define a Poisson bracket on A by
setting

(1.16)
{
a, b

}
= ℏ−1[a, b] = (ℏ−1[a, b])

∣∣
ℏ=0

, ∀a, b ∈ A,

where ℏ−1[a, b] just denotes the unique element γ(a, b) ∈ A such that [a, b] = ℏγ(a, b) ∈ ℏA
(the existence of such an element follows from the commutativity of A and the uniqueness
from the fact that ℏ ̸= 0 is not a zero divisor in A). Indeed, it is straightforward to check
that (1.16) is independent of the choice of representatives a, b ∈ A and defines an R-bilinear
Poisson bracket on A. Endowed with this bracket, the Poisson algebra A is called the
semiclassical limit of A and, in turn, A is called a quantization of A.

Example 1.17. Consider the quantum plane over F[[ℏ]] as the F[[ℏ]]-algebra A generated
by x and y, subject to the relation yx = qxy, where q = eℏ :=

∑
k≥0

ℏk

k! = 1 + ℏ
∑
k≥1

ℏk−1

k! .
Then [y, x] = (q − 1)xy ∈ ℏA, so A = A/ℏA ∼= F[x, y] is the commutative polynomial ring
in two variables (which we still denote by x and y) and it becomes a Poisson algebra under
the semiclassical limit process described above. The Poisson bracket is given by {y, x} = xy,

and for all f, g ∈ A we have {f, g} =
n∑

i,j=1

∂f
∂x

∂g
∂y{x, y} =

∑
1≤j<i≤n

(∂f∂x
∂g
∂y − ∂f

∂y
∂g
∂x ){x, y}.

We can construct a GHA replacing the field F with F[[ℏ]] and, under certain restrictions,
obtain a Poisson algebra as a semiclassical limit. This can lead to an abstract definition of a
Poisson GHA which relates to a GHA in a similar way that Poisson polynomial rings relate
to Ore extensions and that the Poisson generalized Weyl algebra defined in [14] relates to
the corresponding quantum generalized Weyl algebra (see [14] for details). The relevance
of this is that often the Poisson semiclassical limit carries important information about its
quantizations, as is illustrated in [28]. This is especially relevant at the level of representation
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theory and in the classification of primitive ideals, and we can do no better than to cite from
[28, p. 167]:

If A is a generic quantized coordinate ring of an affine algebraic variety V
over an algebraically closed field of characteristic zero, and if V is given
the Poisson structure arising from an appropriate semiclassical limit, then
the spaces of primitive ideals in A and symplectic cores in V , with their
respective Zariski topologies, are homeomorphic.

The quoted text above is a conjecture which has motivated a lot of recent research (see
e.g. [27]) and we are interested in exploring this route for GHA.

1.1.7. Hochschild (respectively Poisson) cohomology of GHA (and their Poisson algebra ana-
logues). The Hochschild cohomology of an associative algebra A is a useful and important
invariant, although it is generally difficult to compute. In [15] the authors computed the
Hochschild homology and cohomology of a certain class of down-up algebras. Given the
already mentioned relation between GHA and down-up algebras, we consider it to be an
interesting problem to tackle the Hochschild cohomology of GHA. In order to approach this
problem, we need to investigate the methods used in [15] and also methods used elsewhere
(by A. Solotar et al.) for the computation of Hochschild cohomology of certain classes of
GWA over a polynomial ring in one variable.

Our interest in this problem stems from the following:
(a) The first Hochschild cohomology group is the Lie algebra of outer derivations and

[35] offers a classification of the locally-finite derivations of a GHA. Thus, it would
be a natural step to continue the work in [35] and determine this Lie algebra fully.

(b) The second Hochschild cohomology group controls the infinitesimal deformations of
the underlying algebra, a problem which fits in naturally with our research.

(c) In general, the Hochschild cohomology of an algebra has a rich additional structure
given by the cup product and the Gerstenhaber bracket, making it into a Gersten-
haber algebra (loosely speaking, this is a kind of graded Poisson structure relative
to the cup product and the Gerstenhaber bracket). This structure is generally very
difficult to compute in concrete examples, since it is defined in terms of the bar res-
olution of the algebra, which is not practical as a computational method. However,
very recent methods have emerged to help compute this structure in terms of an arbi-
trary resolution. Testing these methods on the class of GHA could reveal interesting
results towards both the understanding of GHA and the methods themselves.

In connection with the Poisson semiclassical limit of a GHA, as explained in 1.1.6, it
could also be interesting to compare the results on Hochschild cohomology of GHA with the
Poisson cohomology of the associated semiclassical limit, in the spirit of [41].

Author’s works on the topic of qGHAs:
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1.2. Lattice W-algebras. In 1985 first example of W3 algebras has been introduced by
Alexander Zamolodchikov in the investigasion for the possibility of existence of new addi-
tional infinite symmetries in the context of two-dimensional Conformal Field Theory [47],
and as the possible extention of Virasoro algebra. Vladimir Fateev and Zamolodchikov [22]
found the bosonic representation for W3 algebras and noted some connection with sl3 Lie
algebra. In a series of articles [23, 24, 25], Fateev and Lukyanov have shown that there exist
W -algebras associated to every simple Lie algebra and found the bosonic representation of
generatores in W -algebras. They discovered that free bosonic representation of W -algebras
is given by quantum Miura transformation, classical analoge of which was well-known in the
theory of integrable non-linear evalution of Korteweg-de Vries type [20]. In the spirit of work
[19], Virasoro algebra should commute (in the Feigin-Fuchs representation) with screening
operators. As the matter of fact this property was given in the works [47, 25, 7] as the main
mathematical background of such a definition of W -algebras was developed in the works
[7, 26, 8] where it was shown that W -algebras are the result of quantum Drinfeld-Sokolov
reduction of K-M. algebras. As in [11] have been shown that screening operators satisfy to
the quantum Serre relation, i.e. they constitute the nilpotent part of quantum groups. So
mathematically speaking we have

(1.18) W ≃ InvUq(n+),

where g = n+⊕h⊕n− is the Lie algebra associated to W -algebra. In our work, we describe
some variant of lattice analogus of W -algebras, given by definition 1.18. First example of
classical lattice W2 algebra (lattice Virasoro algebra) was found by Faddeev and Takhtajan
in the work [21] under their studying of Liouville model on the lattice. Quantum analogue
of Faddeev-Takhtajan algebra was obtained by Volkov in 1992. Boris L. Feigin noticed that
the lattice “bosonization” rule for Virasoro algebra can be obtained from the solution of some
kind of difference equations in one unknown f with non-commutative coefficients composed
of functions of n independent variables x1, x2, · · · , xn which do not contain the unknown
function f . At the time of publishing the work by Yaroslav Pugai [43], no one knew any
way to solve similar equations for W -algebras associated to other simple Lie algebras, but in
[44, 45] we have shown on the examples that how the classical limit consideration can help
to find the right solution. For to do this, we defined a new Poisson bracket based on the
Cartan matrix An of sln. For example in the case of sl2 we define our Poisson bracket as
follows

(1.19)

{
{Xi, Xj} := 2XiXj if i < j

{Xi, Xi} := 0.

As we mentioned above, the main problem is to find solutions of the system of difference
equations from infinite number of non-commutative variables in quantum case and commu-
tative variables in classical case. It is significant that commutation relations (1.19) depend
just on the sign of the difference (i− j) and is based on our Cartan matrix. We should try
to find all solutions of the system:

(1.20)

{
D

(n)
x ◁ τ1 = 0

H
(n)
x ◁ τ1 = 0.
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Where τ1 := τ1[· · · , X(11)
1 , X

(21)
1 , X

(31)
1 , · · · , X(12)

2 , X
(22)
2 , X

(32)
2 , · · · ], a multi-variable func-

tion depend on {X(ji)
i }’s for i, j ∈ {−∞, · · · , 1, · · · , n, · · · ,+∞} and D

(n)
x comes from

(1.21) {SXji
i
, τ1}p = SXji

i
τ1 − pdegτ1<αi,αj>τ1SXji

i

for system of variables Xji
i equiped with lexicographic ordering i.e. jkmi < jkni if jkm < jkn

and jikm < jikn if ikm < ikn and where < αi, αj >= aij which is related to our Cartan
matrix and SXji

i
is the screening operator on one of our variable sets, i.e. SXji

i
=

∑
j∈Z

Xji
i .

And H(n)
x means that the degree of the main solution has to be zero.

By solving these system of differential equations, we were able to compute the main
dependent nontrivial solution for lattice W2, W3, and up to Wn algebras.

For example in the case of latticeWn algebras, the functional dependent nontrivial solution
for the whole system of the first order partial differential equations will be as follows:

(1.22) τ
(n)
1 =

(Σ1≤i1≤i2···≤in−1≤2 x
(1)
i1
x
(2)
i2

· · ·x(n−1)
in−1

)(Σ1≤i1≤i2···≤in−1≤2 x
(1)
i1+1x

(2)
i2+1 · · ·x

(n−1)
in−1+1)

x
(1)
2 · · ·x(n−1)

2 (Σ1≤i1≤i2···≤in−1≤3 x
(1)
i1
x
(2)
i2

· · ·x(n−1)
in−1

)
.

We should notice that x(j)ij s are different of each other for any j ∈ {1, · · ·n− 1}.

Author’s works on the topic of Lattice W-algebras:
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1.3. Bergman’s centralizer theorem. Let X be a set of noncommuting variables, which
may or may not be finite, and F be a field. Let X∗ denote the free monoid generated by
X. An element of X (resp. X∗) is also called a letter (resp. word) and X is called an
alphabet. Let F ⟨⟨X⟩⟩ and F ⟨X⟩ denote the F-algebra of formal series and polynomials in
X, respectively. So an element of F ⟨⟨X⟩⟩ is in the form a =

∑
ω∈X∗ aωω, where aω ∈ F

is the coefficient of the word ω in a. The length | ω | of ω ∈ X∗ is the number of letters
appearing in ω. For example, if X = {xi} and ω = x1x

2
2x1x3, then | ω |= 5. Now, we define

the valuation
ν : F ⟨⟨X⟩⟩ → Z≥0 ∪ {∞}

as follows: ν = ∞ and if a =
∑
ω∈X∗ aωω ̸= 0, then ν(a) = min{| ω |: aω ̸= 0}. Note that

if w is constant, then ν(ω) = 0 and ν(ab) = ν(a) + ν(b) for all a, b ∈ F ⟨⟨X⟩⟩. The following
fact is easy to prove.
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Lemma 1.23 (Levi’s Lemma). Let ω1, ω2, ω3, ω4 ∈ X∗ be nonzero with |ω2| ≥ |ω4|. If
ω1ω2 = ω3ω4, then ω2 = ωω4 for some ω ∈ X∗.

Next lemma extends Levi’s lemma to k ⟨⟨X⟩⟩.

Lemma 1.24 ([34], Lemma 9.1.2). Let a, b, c, d ∈ F ⟨⟨X⟩⟩ be nonzero. If ν(a) ≥ ν(c) and
ab = cd, then a = cq for some q ∈ F ⟨⟨X⟩⟩.

An interesting consequence of Lemma 1.24 is the following result:

Corollary 1.25. Let a ∈ ⟨⟨X⟩⟩. Then b ∈ C (a;F ⟨⟨X⟩⟩) if and only if a, b are not free, i.e.
f(a, b) = 0 for some nonzero series f ∈ F ⟨⟨x, y⟩⟩.

Lemma 1.26. Suppose that the constant term of an element a ∈ F ⟨⟨X⟩⟩ is zero and b, c ∈
C (a;F ⟨⟨X⟩⟩) {0}. If ν(c) ≥ ν(b), then c = bd for some d ∈ C (a;F ⟨⟨X⟩⟩).

With the help of the preceding lemmas, we can state this well-known centralizer theorem
of F-algebra of formal series by Cohn.

Theorem 1.27 (Cohn’s Centralizer Theorem, [17]). If a ∈ F ⟨⟨X⟩⟩ is not a constant, then
the centralizer C(a; k ⟨⟨X⟩⟩) ∼= F[[x]], where F[[x]] is the algebra of formal power series in the
variable x.

Now since F⟨X⟩ ⊂ F ⟨⟨X⟩⟩, it follows from the above theorem that if a ∈ F⟨X⟩ is not
constant, then C(a;F⟨X⟩) is commutative because C(a;F ⟨⟨X⟩⟩) is commutative. The next
theorem is our main goal which shows that there is a similar result for C(a;F⟨X⟩).

Theorem 1.28 (Bergman’s Centralizer Theorem, [6]). If a ∈ F⟨X⟩ is not constant, then
the centralizer C(a;F⟨X⟩) ∼= F[x], where F[x] is the polynomial algebra in one variable x.

Here in this thesis, we will not fully restate the original proof of Bergman’s centralizer
theorem since this is not the main idea here. However, we do use a result in his original
proof [6] which helps us to finish the proof of the fact that the centralizer is integrally closed.

By the opinion of most specialists, including E. Rips, there are no new proofs of Bergman’s
centralizer theorem [6] for almost fifty years. We use a method of deformation quantization
presented by Kontsevich to give an alternative proof of Bergman’s centralizer theorem. First
we get that the centralizer is a commutative domain of transcendence degree one.

Theorem 1.29. Let A,B be two commuting generic matrices in F⟨X1, . . . , Xs⟩ with rankF⟨A,B⟩ =

2, and let Â and B̂ be quantized images (by sending multiplications to star products by means
of Kontsevich’s formal quantization) of A and B respectively by considering lifting A and B
in F⟨X1, . . . , Xs⟩[[h]]. Then Â and B̂ do not commute. Moreover,

(1.30)
1

h
[Â, B̂]⋆ ≡


1
h{λ1, µ1} 0

. . .
0 1

h{λn, µn}

 mod h,

where λi and µi are eigenvalues(weights) of A and B, respectively.

We need the following Lemma:

Lemma 1.31. Let Â ≡ A0 + hA1(mod h2) be the quantized image of a generic matrix
A ∈ F⟨X1, . . . , Xs⟩, where A0 is diagonal with distinct eigenvalues. Then, the quantized
images Â can be diagonalized over some finite extension of F[x

(ν)
ij ].
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NowA,B are two algebraically independent but commuting generic matrices in F⟨X1, . . . , Xs⟩.
Hence we may assume A and B can be both diagonalized over an integral extension of F[x

(ν)
ij ].

Consider the result of diagonalization in F⟨X1, . . . , Xs⟩[[h]] and then we compute the quanti-
zation commutator of two quantized generic matrices over F⟨X1, . . . , Xs⟩[[h]].

This leads to a contradiction to Theorem 1.29 which shows that [Â, B̂]⋆ ̸= 0. So we obtain
the following result.

Theorem 1.32. There are no commutative subalgebras of rank ≥ 2 in the free associative
algebra F⟨X⟩. □

Hence, so far by the above results we just was able to show that the centralizer C is a
commutative domain of transcendence degree one. However, we have to prove the fact that
C is integrally closed in order to complete the proof of Bergman’s Centralizer Theorem.

By Cohn’s centralizer theorem, the centralizer of every nonconstant element in F ⟨⟨X⟩⟩ is
commutative and since F⟨X⟩ is a F-subalgebra of F ⟨⟨X⟩⟩, the centralizer of a nonconstant
element of F⟨X⟩ will be commutative as well.

Bergman proved that if f ∈ F⟨X⟩ is not constant, then C(f ;F⟨X⟩) is integrally closed. He
used this result to prove that C(f ;F⟨X⟩) = F[ℓ] for some h ∈ F⟨X⟩. This is called Bergman’s
centralizer theorem. Next, we will give a proof of the following main theorem by using the
generic matrices technique:

Theorem 1.33. The centralizer C of a non-trivial element f in the free associative algebra
is integrally closed.

we have the following proposition:

Proposition 1.34. Let p be a large enough prime number, and F{X} the algebra of generic
matrices of order p. For any A ∈ F{X}, the centralizer of A is rationally closed and integrally
closed in F{X} over the center of F{X}.

Now we need one fact from Bergman [6]. Let X be a totally ordered set, W be the free
semigroup with identity 1 on set X. We have the following lemma.

Lemma 1.35 (Bergman). Let u, v ∈ W \ {1}. If u∞ > v∞, then we have u∞ > (uv)∞ >
(vu)∞ > v∞.

Proposition 1.36 (Bergman). If C ̸= F is a finitely generated subalgebra of F⟨X⟩, then
there is a homomorphism f of C into the polynomial algebra over F in one variable, such
that f(C) ̸= F.

And by using these results we can finish the proof of Bergman’s centralizer theorem.
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1.4. Algebraic torus actions. Let us first restrict ourselves to the situation in which an
r-dimensional torus Tr = (Gm)r ≃ (F∗)r acts on an affine n-space An := SpecF[x1, · · · , xn],
where F[x1, · · · , xn] = F[n] is an n-variable polynomial ring over F. Since the quotient of a
torus by any subgroup is again a torus we may assume that Tr acts effectively, i.e. that no
proper subgroup of Tr acts neutrally on An.

In [9, 10], Bia lynicki-Birula proved the following results, for F algebraically closed.

Theorem 1.37. Any regular action of Tn on An has a fixed point.

Theorem 1.38. Any effective and regular action of Tn on An is a representation in some
coordinate system.

Theorem 1.39. The action of Tr on An is linearizable in the cases of r = n or r = n− 1,
which means that one can find isobaric elements y1, · · · , yn in F[n] = F[x1, · · · , xn] such that
F[n] = F[y1, · · · , yn].

We then establish the free algebra version of the Bia lynicki-Birula theorem. The latter is
formulated as follows.

Theorem 1.40. Suppose given an action σ of the algebraic n-torus Tn on the free algebra
Fn. If σ is effective, then it is linearizable.

The linearity (or linearization) problem, as it has become known since Kambayashi, asks
whether all (effective, regular) actions of a given type of algebraic groups on the affine
space of given dimension are conjugate to representations. According to Theorem 1.40,
the linearization problem extends to the noncommutative category. Several known results
concerning the (commutative) linearization problem are summarized below.

(1) Any effective regular torus action on A2 is linearizable (Gutwirth [29]).
(2) Any effective regular torus action on An has a fixed point (Bia lynicki-Birula [9]).
(3) Any effective regular action of Tn−1 on An is linearizable (Bia lynicki-Birula [10]).
(4) Any (effective, regular) one-dimensional torus action (i.e., action of F∗) on A3 is

linearizable (Koras and Russell [33]).
(5) If the ground field is not algebraically closed, then a torus action on An need not

be linearizable. In [1], Asanuma proved that over any field F, if there exists a
non-rectifiable closed embedding from Am into An, then there exist non-linearizable
effective actions of (F∗)r on A1+n+m for 1 ≤ r ≤ 1 +m.

(6) When K is infinite and has positive characteristic, there are examples of non-linearizable
torus actions on An (Asanuma [1]).

we can give the following linearization problem, which we formulate as a conjecture.

Conjecture 1.41. For n ≥ 1, let Pn denote the commutative Poisson algebra, i.e., the
polynomial algebra

F[z1, . . . , z2n]

equipped with the Poisson bracket defined by

{zi, zj} = δi,n+j − δi+n,j .
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Then any effective regular action of Tn by automorphisms of Pn is linearizable.

It is nonetheless possible that the free analogue of the main result of [10] exists. We have
then the following conjecture.

Conjecture 1.42. Any effective regular action of Tn−1 on the free algebra Fn(F) is lineariz-
able, provided that F is algebraically closed.

And according to above results we are now able to state and prove one of our main results:

Theorem 1.43. Let F be algebraically closed. Any effective regular action of (the one-
dimensional torus) F∗ on the free algebra F⟨z1, z2⟩ is linearizable.

Next we consider positive-root torus actions and prove the linearity property analogous
to the Bia lynicki-Birula theorem.

Theorem 1.44. Any effective positive-root action of Tr on F[x1, . . . , xn] is linearizable.

In order to prove the free associative version of this theorem, we devise a way to reduce the
positive-root case to the commutative one. To that end, we introduce the generic matrices
and induce the action on the rings of coefficients.

More precisely, we have the following.

Theorem 1.45. Let σ : Tr ×Fn → Fn be a regular torus action with positive roots. Then it
is linearizable.

Next we study non-linearizable torus actions. The examples of non-linearizable torus
actions, as well as a way to study them, were developed by Asanuma [1]. It is not difficult to
observe that most of Asanuma’s technique can be carried to the free associative case without
loss of generality. As in Asanuma’s case, the existence of non-linearizable torus actions is
tied to the existence of so-called non-rectifiable ideals in the appropriate algebras. One
rather remarkable feature of Asanuma’s technique is the fact that, modulo minor details and
replacements, it may be repeated almost verbatim in the associative category – a situation
similar to the one we have observed in the Bia lynicki-Birula theorem on the action of the
maximal torus.

Definition 1.46. Two (regular) Tr-actions ϕ and ψ, respectively, on A and B are equivalent,
if there exists a F-homomorphism σ : A→ B, such that the diagram

A[T1, . . . , Tr, T
−1
1 , . . . , T−1

r ] B[T1, . . . , Tr, T
−1
1 , . . . , T−1

r ]

A B

σ⊗Id

σ

ϕ ψ

commutes.

Proposition 1.47. A regular Tr-action ϕ on A is linearizable (in the sense of the previous
sections), if and only if it is equivalent, in the sense of Definition 1.46, to a linear action
on A. (An action ψ : A → A[T1, . . . , Tr, T

−1
1 , . . . , T−1

r ] is linear if the images ψ(xi) of the
generators of A are linear in xi.)

The main problem of interest is the free associative analogue of the so-called Cancellation
Conjecture, as formulated by V. Drensky and Yu [18]:

Conjecture 1.48. Let R be a F-algebra. If

R ∗ F⟨y⟩ ≃F F⟨x1, . . . , xn⟩,
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then

R ≃F F⟨x1, . . . , xn−1⟩.

Asanuma’s results on the Rees algebras allow us to establish a version of the Cancellation
Conjecture for co-products over a (commutative) F-algebra D. The following statement
holds.

Theorem 1.49. Let D be an integral domain which is a F-algebra, and let x be an indeter-
minate over D. Given a non-zero element t ∈ D and monic polynomials f(x) and g(x) in
F[x] of degree greater than 1. Set A = D[x, t−1f(x)] and B = D[x, t−1g(x)]. If

F[x]/(f(x)) ≃F F[x]/(g(x)),

then

A ∗D F⟨y⟩ ≃D B ∗D F⟨y⟩,

where the product R∗DS is the quotient of the free product R∗S over F by the ideal generated
by all elements of the form

r ∗ (ds) − d(r ∗ s).

And we have the following conjectures:
One notable example is that we expect the free associative analogue of the second Bia lynicki-

Birula theorem to hold and formulate it here as a conjecture.

Conjecture 1.50. Any effective action of Tn−1 on Fn is linearizable.

Also of independent interest is the following instance of the linearity problem.

Conjecture 1.51. For n ≥ 1, let Pn denote the commutative Poisson algebra, i.e., the
polynomial algebra F[z1, . . . , z2n] equipped with the Poisson bracket defined by

{zi, zj} = δi,n+j − δi+n,j .

Then any effective regular action of Tn by automorphisms of Pn is linearizable.

This problem is loosely analogous to the Bia lynicki-Birula theorem, in the sense of maxi-
mality of torus with respect to the dimension of the configurations space (spanned by xi).
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The scientific novelty of the work:

All results of the dissertation are prepared personally by the applicant under the scientific
supervision of the Doctor of Physical and Mathematical Sciences, Professor Alexei Kanel-
Belov and all are new.

• We propose a very efficient way of solving a system of q-linear homogeneous dif-
ferential equations in one unknown f with coefficients composed of functions of n
independent variables x1, x2, ..., xn which do not contain the unknown function f .

• We propose a very efficient way of solving a system of q-linear homogeneous dif-
ferential equations in one unknown f with coefficients composed of functions of n
independent variables x1, x2, ..., xn which do not contain the unknown function f .

• We present a new concept of looking at quantized algebras by defining our new class
of algebras by showing their connectivity to the already known class of algebras.

• We propose a new conceptual proof of an old and known theorem, Bergman’s cen-
tralizer theorem, which hasn’t been revisited for almost 50 years.

• We study a free algebra analogue of a classical theorem of Bia lynicki-Birula’s the-
orem and give a noncommutative version of this famous theorem. We also con-
sider positive-root torus actions and prove the linearity property analogous to the
Bia lynicki-Birula theorem.

Presentations and validation of research results.

The main results of the work were reported at the following scientific conferences and
seminars:

1 conference on modern methods, problems and applications of operator theory and
harmonic analysis VII, Talk on “Weak Faddeev-Takhtajan-Volkov algebras” Rostov-
on-Don, Russia - Southern Federal University, 2017.

2 Ph.D. student seminar; October 15th, 2017, “Weak Faddeev-Takhtajan-Volkov alge
bras”; Porto, Portugal, Department of mathematics, University of Porto.

3 Summer School of the UC|UP Joint Ph.D. Program in Mathematics, University of
Aveiro, mathematics department; September 3-14th, 2018, “Generalized Heisenberg
Algebras and their Poisson semiclassical limit”.

4 Moscow-Beijing Topology Seminar, Online via Zoom; February 17th, 2021, “On the
algebraic structures of the quantum generalized Heisenberg algebras”.
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5 The 86th seminaire Lotharingien de Combinatoire, Evangelische Akademie, Bad Boll,
Germany; 2021, September 5-8th, “Quantum generalized Heisenberg algebras and
their combinatorial trace”.

The content of the work:

The thesis consists of the Conventions and the organization of the thesis, introduction,
and five more chapters, which can be summarized as follows:

Chapter 2 is devoted to the preliminaly results and definitions, which starts from groups,
rings, algebras and modules to Ore extensions, ambiskew polynomial rings, generalized Weyl
algebras, (generalized) down-up algebras, generalized Heisenberg algebras, semisimple Lie
algebras, Kac-Moody Lie algebras, Hopf algebras, quantum groups, deformation quantiza-
tion, Jacobian, Dixmier and Kontsevich conjectures, approximation, torus actions and Bia ly
nicki-Birula theorem.

In chapter 3 we will introduce Feigin’s homomorphisms and we will explore their relations
with screening operators. Then we turn to local integral of motions; Volkov’s scheme and
lattice Virasoro algebras. In Section ?? we will introduce lattice W2 algebra, W3 algebra,
up to Wn algebras based on our newly defined Poisson bracket which has been obtained by
using the Cartan matrix An.

Chapter 4 is devoted to the history of the creation of generalized Heisenberg algebras
and the advent of quantum generalized Heisenberg algebras.

Chapter 5 starts off with the definition of the quantum generalized Heisenberg algebras
Hq(f, g) and then in Section 5.2 we relate quantum generalized Heisenberg algebras to known
constructions, such as Ore extensions, ambiskew polynomial rings and generalized Weyl
algebras. From these we deduce the basic properties of the algebras Hq(f, g), including a
PBW-type basis, necessary and sufficient conditions for Hq(f, g) to be a domain. By using
an appropriate filtration and results on Gelfand-Kirillov dimension, we are able to prove in
Corollary 5.75 that if deg f > 1 then Hq(f, g) is not isomorphic to a generalized down-up
algebra. This divides the class of qGHA into two natural subclasses: if deg f ≤ 1 we get
all generalized down-up algebras, which have been extensively studied from many points of
view; if deg f > 1 we get algebras which are non-Noetherian domains (as long as q ̸= 0) and
which, in spite of appearing to be of a similar nature, have not been yet studied in depth,
as far as we know.

In Section 5.2 we also characterize the Noetherian quantum generalized Heisenberg al-
gebras. While it is well known that for generalized down-up algebras being Noetherian is
equivalent to being a domain ([32], [13]), we see that within our wider class of algebras this
correspondence no longer holds as for q ̸= 0 and deg f > 1 the algebra Hq(f, g) will be a
non-Noetherian domain.

The isomorphism problem for quantum generalized Heisenberg algebras is tackled in Sec-
tion 5.3 and it will be seen that the isomorphism relation can be phrased in very concrete
geometric terms, very much like in [4]. It will follow in particular that, in case q ̸= 0 and
deg f > 1, the parameter q, as well as the integers deg f and deg g, are invariant under
isomorphism, showing that qGHA are indeed a vast generalization of generalized Heisenberg
algebras and generalized down-up algebras.
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In Section 5.4, we classify, up to isomorphism, all finite-dimensional simple representations
of Hq(f, g), assuming only that q ̸= 0 and that the base field is algebraically closed, although
of arbitrary characteristic. We also explicitly describe all possible isomorphisms between
these modules.

In terms of automorphism groups, which we study in Section 5.6, an interesting phenom-
enon occurs. Although, as long as either char(F) = 0 or char(F) ̸= deg f , the automorphism
group of a quantum generalized Heisenberg algebra Hq(f, g) with q ̸= 0 and deg f > 1 is
Abelian and does not depend on the parameter q (although its isomorphism class does), if
we allow char(F) = deg f then we can obtain non-Abelian automorphism groups.

In section 5.7, we will investigate the Gelfand–Kirillov dimension of quantum generalized
Heisenberg algebras Hq(f, g).

In section 5.8, if we let F be a field of prime characteristic p; we will try to define a Hopf
algebra structure on the quantum generalized Heisenberg algebras Hq(f, g) in the case where
f(h) = h + b for any b ∈ F or f(h) = qh and g(h) ∈ spanF{hp

k

: k ≥ 0}. After that we will
study the tensor product of their simple modules.

In Chapter 6 we first give a brief summary of the background of two well-known cen-
tralizer theorems in the power series ring and in the free associative algebra, i.e. Cohn’s
centralizer theorem and Bergman’s centralizer theorem and then in Section 6.2 we will es-
tablish the relation between the algebra of generic matrices and the commutative subalgebras
in the free associative algebra. In Section 6.3 we give an alternative proof of Bergman’s cen-
tralizer theorem by using a method of deformation quantization presented by Kontsevich and
will complete this proof in Section 6.4 by proving the fact that the centralizer C is integrally
closed.

Chapter 7 starts by giving some introductury facts on torus actions and Bia lynicki-
Birula type theorems and then in Section 7.2 we give a proof of the free algebra analogue
of a classical theorem of Bia lynicki-Birula (Theorem 7.5), which intuitively states that every
maximal torus action on the free algebra is conjugate to a linear action. In the Section
7.4, we consider positive-root torus actions and prove the linearity property analogous to
the Bia lynicki-Birula theorem and finally in Section 7.5 we study the non-linearizable torus
actions.
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