На правах рукописи

БЕЛОВА ИВАННА АНАТОЛЬЕВНА

ТОКСИКО-ФАРМАКОЛОГИЧЕСКИЕ СВОЙСТВА «ПОЛИЗОНА» И ЕГО ПРИМЕНЕНИЕ В ПТИЦЕВОДСТВЕ

16.00.04 - ветеринарная фармакология с токсикологией

АВТОРЕФЕРАТ

Диссертация на соискание ученой степени кандидата биологических наук

Работа выполнена в ФГОУ ВПО «Башкирский государственный аграрный университет»

Научный руководитель:

доктор биологических наук, профессор

Исмагилова Асия Фахретдиновна

Официальные оппоненты: доктор биологических наук, профессор

Зимаков Юрий Андреевич

доктор ветеринарных наук, профессор Софронов Владимир Георгиевич

Ведущая организация:

ФГОУ ВПО «Ульяновская

сельскохозяйственная академия»

Защита диссертации состоится «22» мая 2007 года в 10 часов на заседании диссертационного совета Д-220.012.01 при ФГУ «Федеральный центр токсикологической и радиационной безопасности животных» по адресу: 420075, Республика Татарстан, г. Казань, Научный городок - 2.

С диссертацией можно ознакомиться в библиотеке ФГУ «Федеральный центр токсикологической и радиационной безопасности животных»

Автореферат разослан «Д» СУ 2007 года.

Ученый секретарь диссертационного совета

1. ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

1.1. Актуальность темы. В настоящее время большое значение имеет разработка комплекса ветеринарных мероприятий, направленных на повышение жизнеспособности и продуктивности птицы путем целенаправленного применения фармакологически и экологически безопасных препаратов.

По данным Госсанэпиднадзора Российской Федерации 10% проб, исследованных продуктов, содержат токсичные элементы и половина из них в дозах, превышающих допустимо предельные концентрации.

Существующими путями, методами и средствами трудно обеспечить продуктивное здоровье сельскохозяйственных животных и птиц. В настоящее время остро стоит вопрос о новой стратегической политике в этом направлении, сущность которого заключается во внедрении комплекса новых фармакологических веществ и способов их введения в технологию получения, выращивания и использования животных и поддержания их продуктивности. (Папуниди К.Х., Иванов А.В., 2001, Беркович А.М., Бузлама В.С.,2003,).

Фосфорнокислая соль 2-амино-4-метилтио-(5-оксо-8-имино)- масляной кислоты зарегистрирована в Федеральном институте промышленной собственности под торговым названием «Полизон». Подробное исследование биологического действия ототе препарата показало. характера способствуют аминокислота ee фосфатная соль увеличению И продуктивности сельскохозяйственных животных и птиц. При этом препарат не оказывает отрицательного влияния на состояние здоровья и обмен веществ у животных, а обладает ярко выраженным ростостимулирующим эффектом и снижает удельный расход кормов. Стимуляцию гуморальных и клеточных реакций, фагоцитоза и повышение естественной резистентности организма «Полизоном» показали Исмагилова А.Ф., Каримов Р.Р., Тухфатова Р.Ф., Файзуллина Л.Р. в 2006 году. На основе доступного крупнотоннажного производства метионина нами разработан четырехстадийный способ получения препарата «Полизон» с выходом 62-63% (Струнин Б.П., Антипов В.А., Дорожкин В.И. и др., 2001).

1.2. Цель и задачи исследования. Целью исследования явилось изучение токсико-фармакологических свойств «Полизона», а также обоснование его применения в ветеринарии.

Для реализации поставленной цели были определены следующие запачи:

- установить параметры острой токсичности «Полизона» для мышей, крыс и цыплят;
- установить параметры хронической токсичности «Полизона» для крыс;
- изучить влияние «Полизона» на постнатальное развитие потомства крыс;

- раскрыть механизм иммунотропного действия «Полизона» на фоне угнетения циклофосфаном;
 - изучить антиульцерогенные свойства «Полизона»;
- исследовать процессы перекисного окисления липидов и антиоксидантные свойства «Полизона»;
- определить влияние «Полизона» на гематологические и биохимические показатели крови цыплят;
 - изучить влияние «Полизона» на массу тела и выживаемость цыплят;
- изучить влияние «Полизона» на массу и размер внутренних органов цыплят;
- провести ветеринарно-санитарную экспертизу и определить степень безвредности мяса кур, получавших «Полизон»;
- изучить влияние «Полизона» на товарное качество мяса кур (аминокислотный состав, содержание макро- и микроэлементов);
 - провести гистологические исследования фабрициевой бурсы.
- 1.3. Научная новизна. Впервые определены параметры острой и хронической токсичности «Полизона» на лабораторных животных. Изучено влияние на постнатальное развитие потомства, антиульцерогенные свойства; исследованы процессы перекисного окисления липидов и антиоксидантные свойства исследуемого препарата; впервые раскрыт механизм иммунотропного действия «Полизона» на фоне угнетения циклофосфаном, изучено действие «Полизона» на массу и размер внутренних органов цыплят. Впервые изучены гистологические исследования фабрициевой бурсы при применении «Полизона». Проведена ветеринарно-санитарная экспертиза и изучено влияние «Полизона» на товарное качество мяса. Оценена экологическая и пищевая безопасность.

1.4. Теоретическая и практическая значимость работы.

Проведенные исследования позволяют рекомендовать «Полизон» в качестве иммунностимулятора и для увеличения прироста живой массы птиц.

Получено наставление, утвержденное Департаментом ветеринарии Минсельхоза РФ от 26 июня 2002 года (протокол №2). Регистрационный номер № ПВР — 2 — 2.2\00969. За проект «Токсико-фармакологические свойства «Полизона»-фосфорнокислой соли 2-амино-4 метилтио-(5-оксо-8-имино)- масляной кислот присвоен диплом на Второй окружной ярмарке бизнес — ангелов и инноваторов в Приволжском Федеральном округе, проходившей 29-30 апреля 2004 года, в секции «Медицинская техника и фармация. Агро-,биотехнологии и новые продукты питания».

Материалы, представленные в настоящем диссертационном исследовании, используются в учебном процессе на кафедре внутренних незаразных болезней, клинической диагностики и фармакологии ФГОУ ВПО «Башкирский государственный аграрный университет».

1.5. Основные положения, выносимые на защиту:

- токсико-фармакологическая характеристика «Полизона»;
- обоснование степени безвредности применения «Полизона»;

- возможность использования «Полизона» для постоянного поддержания продуктивного здоровья птицы.
- эффективность использования «Полизона» в птицеводстве мясного направления;
 - экологическая и пищевая безопасность «Полизона».
- **1.6.** Апробация работы. Результаты диссертационной работы обсуждены на:
- Всероссийской научно-практической конференции «Современное развитие АПК: региональный опыт, проблемы, перспективы» (Ульяновск, 2005);
- Всероссийской научно-практической конференции «Перспективы агропромышленного производства регионов России в условиях реализации приоритетного национального проекта «Развитие АПК» (в рамках XVI Международной специализированной выставки «АгроКомплекс-2006») (Уфа, 2006).
- 1.7. Публикации результатов исследования. По материалам диссертации опубликовано 6 научных работ, в том числе 2 статьи в рецензируемых научных изданиях.
- 1.8. Объем и структура работ. Диссертационная работа состоит из введения, обзора литературы, собственных исследований, заключения, выводов, практических предложений, списка литературы, включающего 131 источников, из которых 100 отечественных и 31 зарубежных авторов, и приложения. Работа состоит из 105 страниц компьютерного текста, содержит 24 таблицы и 14 рисунков.
- 1.9. Внедрение. Опытно производственные испытания проведены на птицефабрике «Турбаслинские бройлеры» Благовещенского района Республики Башкортостан.

2. СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

2.1. Материалы и методы исследований

токсико-фармакологических свойств Исследования препарата «Полизон» проводились на кафедре внутренних незаразных болезней, клинической диагностики и фармакологии Башкирского государственного аграрного университета в период с 2003-2007 гг. на 156 белых беспородных мышах с живой массой -18 - 20г; 300 белых беспородных крысах разного пола массой 180 – 230г. Производственные опыты проводились на цыплятах кросса «Родонит» в возрасте 30 - 37 суток массой 200-380г, на цыплятах кросса «Конкурент» в возрасте 15-30, 64-80 дней. Лабораторные животные содержались в одинаковых зоогигиенических условиях вивария. Кормление проводилось суточной потребности использованием согласно индивидуальных особенностей животных (Ковалевский К.Л., 1968.).

Изучение острой токсичности проводили по общепринятой методике (Саноцкий И.В. 1970, Елизарова О.Н. 1971).

Морфологические исследования крови птиц проводили по общепринятым методикам. Гемоглобин определяли с помощью гемометра Сали. В счетной камере Горяева проводили подсчет эритроцитов по методике Болотниковой И.А., Конопатова Ю.В. (1993) и лейкоцитов по методике Коромыслова В.Ф., Кудрявцева Л.А. (1972).

Лейкоцитарную формулу считали в мазках, окрашенных по Романовскому – Гимзе под микроскопом (окуляр 15, объектив 90). При этом определяли процент лимфоцитов и гранулоцитов (нейтрофилов).

При исследовании антиульцерогенных свойств «Полизона» уксусные язвы вызывали по методике Аничкова С.В. и Заводской И.С. (1965).

Перекисное окисление липидов и систему антиоксидантной защиты оценивали согласно методическим указаниям (Бузлама В.С., 1997).

Биохимические исследования крови цыплят проводили по следующим методикам: общий белок определяли рефрактометрическим методом по Рейсу (Андросов Ф.Э., 1981); белковые фракции крови - экспресс методом Олла и Маккорда в модификации Корнока; общий кальций — комплексометрическим методом по Уилкинсону (Кудрявцев с соавт., 1975); определение неорганического фосфора - колометрически по методике Коромыслова В.Ф. и Кудрявцева Л.А. (1972); медь - по Сенделу в модификации Кузнецова С.Г.; цинк - по методике Н.А. Чеботаревой.

Изучение влияния «Полизона» на рост и сохранность цыплят, развитие внутренних органов проводили в условиях производства на цыплятах-бройлерах кросса «Конкурент».

Для определения аминокислотного состава мяса тушек птицы пользовались методикой тонкослойной жидкостной хромотографии согласно ГОСТ 13496.22-90 2.5.43. Определение содержания калия и натрия в мышечной ткани тушек птиц проводили методом пламенной фотометрии при помощи пламенного фотометра РГС- 4. Определение содержания кальция — по методике Вичева и Каракашева; магния — по цветной реакции с титановым желтым по Кункелю, Пирсону, Швейгкру в модификации И.В. Петрухина; железа — путем исследования золы, полученной при озолении мяса, по Сенделу в модикации С.Г. Кузнева; фосфора — согласно ГОСТ 9794-74 (И.П. Кондрахин, с соавт.,1985)

Для гистологического исследования кусочки тканей фиксировались в 10%-ном нейтральном формалине. После формалиновой фиксации препарат промывался в проточной воде в течение суток. Проводка и заливка осуществлялись по общепринятым методикам (Меркулов Г.А., 1969). Уплотнение материала осуществлялось путем заливки в парафин. Срезы готовили на микротоме LEIKA RM 2145, окраску проводили гематоксилином и эозином (Кононский А.И., 1976).

Микроскопические исследования проводились с использованием светового микроскопа JENAVAL фирмы «CARL ZEISS» (Германия).

Статистическую обработку цифровых данных осуществляли с использованием прикладной программы MS $\operatorname{Exsel}^{\mathfrak{D}}$, включающей подсчет средних величин (M), средней ошибки (m), среднеквадратичных отклонений выборки, определение степени достоверности по Стьюденту (Стрелков Р.Б.,1996).

2.2. Результаты собственных исследований

2.2.1. Острая токсичность нового препарата - «Полизон»

Параметры острой токсичности «Полизона» определяли на белых беспородных мышах, крысах и цыплятах. Исследуемый препарат вводили перорально в дозах от 100 мг/кг до 2000 мг/кг.

У белых мышей, при введении внутрь «Полизона» в дозах 1100-1250 мг/кг, признаки отравления проявлялись через 30-40 минут. Отмечалась повышенная рефлекторная возбудимость, животные бегали по клетке. В течение судорожного периода погибло большинство мышей. Судороги чередовались с периодами покоя. Животные, перенесшие судороги, как правило, выживали и в дальнейшем не погибали.

У белых крыс через 5-10 минут после введения «Полизона» в дозе 1600 мг/кг пропадала двигательную активность, а затем, спустя 1-2 минуты, начинались судороги. В последующем, животные принимали боковое положение, часть которых, не выходя из этого состояния, погибали от остановки дыхания.

У цыплят, при введении «Полизона» в дозе 1600-2000мг/кг, признаки отравления проявлялись через 15-25 минут в виде запрокидывания головы назад, клонических подергиваний крыльев и лапок. В последующем животные падали на живот и совершали плавательные движения. Смерть наступала через 60-70 минут после введения исследуемого препарата в токсической дозе. При введении «Полизона» в среднетоксических дозах у цыплят отмечалось некоторое угнетение, проявляющееся в виде пониженной двигательной активности, пошатывания из стороны в сторону, иногда заканчивающееся падением, у выживших цыплят подобные симптомы отравления исчезали через 3-5 часов.

Таблица 1 - Показатели острой токсичности «Полизона» (мг/кг)

Вид животного	кол-во животных	LD ₁₆	LD ₅₀	LD ₈₄	коэффициент вариабельности смергельных доз
мыши	- 36	760	1070,0±89	1440	1,89
крысы	36	1130	1454,17±79	1760	1,56
цыплята	36	1370	1625,0±67	1880	1,37
Примечание	P<0,05.				

Таким образом, в результате проведенных исследований установлено, что согласно ГОСТ 12.1.00. 7-76 «Полизон» относится к III классу опасности.

2.2.2. Хроническая токсичность «Полизона» для крыс при длительном внутреннем применении

Опыты были проведены на 80 беспородных белых крысах, которые были разделены на опытную и контрольную группы. Животные содержались раздельно. Опытные животные в течение 4-х месяцев получали внутрь «Полизон» в дозе 1 мг/кг, контрольные животные – дистиллированную воду. В ходе эксперимента на 30,60,90,120-ый день исследовали периферическую кровь (эритроциты, гемоглобин, лейкоциты, лейкоцитарную формулу и тромбоциты).

У крыс, получавших «Полизон», количество эритроцитов существенно не изменяется. В то же время у контрольных животных на 30-ый и 90-е дни отмечается уменьшение количества эритроцитов (P<0,05). Уровень гемоглобина у животных, получающих «Полизон» в дозе 1 мг/кг, снижается, как в опытной, так и в контрольной группах, однако, в контроле это снижение более выражено.

В опытной группе количество лейкоцитов имеет тенденцию к увеличению, но статистическая достоверная разница наблюдается лишь на 30-ый день. В контрольной группе животных число лейкоцитов увеличивается во все сроки наблюдения (Р<0,05). Увеличение числа лейкоцитов у крыс в контроле, по-видимому, связано с тем, что при взятии крови путем отсечения кончика хвоста, возникает воспалительная реакция, поэтому это изменение считается нехарактерным для «Полизона». В группе крыс, получавших внутрь «Полизон» в дозе 1 мг/кг, за период наблюдения уменьшается относительное количество палочкоядерных и сегментоядерных нейтрофилов, моноцитов и происходит некоторое увеличение лимфоцитов. Однако указанные изменения отмечены и в контроле. Число тромбоцитов в опытной группе не изменяется, а в контрольной группе на 30-ый день наблюдается увеличение их количества (Р<0,05).

Таким образом, данные опыта показывают, что у крыс при хроническом поступлении «Полизона» в дозе 1 мг/кг морфологические показатели периферической крови к 120-му дню остаются в пределах физиологической нормы.

2.2.3. Влияние «Полизона» на постнатальное развитие потомства крыс

О постнатальном развитии потомства судили по массе, показателям физиологического развития и по поведенческим реакциям. Начиная с 35-дневного возраста, один раз в неделю, определяли спонтанную двигательную активность крысят. На 35, 45, 55-ый день жизни изучали ориентировочную реакцию крысят по методике «залезания на сетку» (Kneip, 1960).

На течение и продолжительность беременности препарат не оказывает отрицательного влияния. У опытных самок беременность продолжается 22-23 дня, а у контрольных — 23-24 дня. Не отмечается разницы в численности помета крыс, получавших «Полизон». У крысят в опытной и контрольной группах не наблюдается различия в показателях общего развития.

Двигательная активность крысят, матери которых получали «Полизон» в дозах 1,2,3 мг/кг во время беременности, идентична двигательной активности крысят контрольной группы. В ходе опыта установлено, что двигательная активность опытных крысят на 35-ый день составляет 87,1 \pm 1,10 (доза 1 мг/кг); на 45-ый день 42,0 \pm 3,40 (доза 2 мг/кг); на 55-ый день - 50,8 \pm 7,0 (доза 3 мг/кг), а в контрольной группе на 35, 45, 55-ый день - 87,8 \pm 0,90, 42,2 \pm 3,60,60,0 \pm 7,3 соответственно.

Проведенные исследования показали, что у животных опытной и контрольной групп разницы в ориентировочной активности не наблюдается.

Таким образом, «Полизон» в дозах 1, 2, 3 мг/кг при введении крысам в течение беременности не оказывает влияния на постнатальное развитие потомства. Физическое развитие опытных крысят не отличается от развития контрольных животных.

2.2.4. Коррекция иммунитета «Полизоном» на фоне угнетения циклофосфаном

введении циклофосфана в дозе 200 мг/кг однократно внутрибрющинно у животных на 5-ые сутки наблюдения зарегистрирована лейкопения, при этом количество нейтрофилов уменьшается до 10,25%, а лейкопитов до 31,15% no отношению к контролю. сопровождается подавлением фагоцитарной активности полиморфноядерных лейкоцитов (ПМЯЛ). Изучение фагоцитарной активности ПМЯЛ выявило статистически достоверное угнетение кислородзависимого метаболизма и поглотительной способности клеток. При цитохимическом исследовании установлено, что процент мислопероксидазы не отличается от показателей интактных животных. Отмечается снижение активности нейтрофилов на 25%, а активных лейкоцитов до 20% по отношению к контролю, что объясняется лейкопенией, спровоцированной циклофосфаном. Отмечается снижение содержания неферментных катионных белков в ПМЯЛ.

На 14-ые сутки при применении комбинации циклофосфан + «Полизон» количество лейкоцитов повышается до уровня контрольных животных, что достигается в результате резкого увеличения содержания в крови опытных животных гранулоцитов и повышения числа лимфоцитов.

Таким образом, однократное воздействие циклофосфана на 5-ые сутки приводит к лейкопении, подавлению фагоцитарной активности ПМЯЛ в результате нарушения функционирования как кислородзависимых, так и кислороднезависимых микробоцидных систем фагоцитов. Однако на 14-ые сутки наблюдения количество лейкоцитов в периферической крови

восстанавливается до уровня интактных животных за счет поступления в кровеносное русло незрелых гранулоцитов и повышения числа лимфоцитов.

Специфическое действие циклофосфана на организм мышей оценивали по динамике массы селезенки, селезеночному индексу, патоморфологическими изменениями в печени, селезенки. Однократная инъекция циклофосфана в дозе 200 мг/кг снижает у мышей массу селезенки с 0,210 до 0,045г (P<0,05). При ежедневном введении «Полизона» в дозе 1 мг/кг лишь на 4-ые сутки намечается тенденция к нормализации массы селезенки мышей (до 0,12г), что значительно ниже нормы (P<0,05). На 8-ые сутки эти показатели приближаются к значениям интактных мышей.

Четырехкратное введение мышам циклофасфана вызывает изменения в печени. Так, объем паренхимы составляют гепатоциты с признаками жировой дистрофии — 38%, участки некроза — 15%, очаги инфильтрации — 8%, а синусоиды оказываются расширенными и просвет достигает 31% объема паренхимы, а также выявляются значительные увеличения гликогена из цитоплазмы гепатоцитов. При применении «Полизона» в дозе 1 мг/кг обнаружено его нормализующее действие на печень. Например, участки некроза уменьшаются и составляют 1,1%, область инфильтратов составляет 1,5%. Восстанавливается также количество гликогена в гепатоцитах.

2.2.5. Антнульцерогенные свойства «Полизон»

В ходе исследования изучалось действие «Полизона» на течение хронических уксусных, длительно незаживающих язв слизистой оболочки желудка (СОЖ).

При вскрытии желудков на 10-ый день язвы обнаруживаются у всех животных контрольной группы, слизистая оболочка желудка которых гиперемирована, имеется складчатость, слипчевый перитонит, прободные язвы. В группе животных, которых лечили «Полизоном» в дозе 5 мг/кг, отмечается слабо выраженная гиперемия слизистой оболочки желудка и складчатость; прободная язва имеется только у одного животного из шести; слипчивый перитонит выражен лишь у двух животных из шести; отечности слизистой нет. В группе животных, которых лечили циметидином, в сравнении с контролем, отмечается слипчевый перитонит, язвы меньших размеров, гиперемия выражена только у одного животного из шести, отека слизистой нет, складчатость слизистой оболочки желудка отмечается у двух из шести крыс. У животных, получавших карбеноксолон, слипчевый перитонит отмечается у пяти из шести животных, гиперемия СОЖ и складчатость у трех из пяти животных, отек СОЖ не отмечен, язвы меньших размеров, чем в контроле.

У животных контрольной группы на 15-ый день исследования наблюдается слипчевый перитонит, СОЖ гиперемирована, отечна, складчатость слизистой резко выражена, крупные язвы имеются у всех животных. В группе животных, леченых циметидином, наблюдается гиперемия слизистой желудка, складчатость у двух животных из шести,

отечности нет, у двух животных язвы полностью зарубцевались. У животных, получавших карбеноксолон, СОЖ бледно-розовая, гиперемия слизистой у одного из шести, отечности нет, у трех животных язвы зарубцевались. В группе животных, применявших «Полизон», СОЖ бледно-розовая, складчатость и прободная язва отмечается лишь у одного животного из шести, гиперемии и отечности нет, у двух крыс язвенные очаги полностью зарубцевались. Индекс изъязвления такой же, как у животных, получавших циметидин.

В контрольной группе на 20-ые сутки исследования у пяти животных из шести отмечается полное заживление язв. У животных, получавших «Полизон» и карбеноксолон, наблюдается полное рубцевание язвенных поражений, слизистая бледно-розовая, отечность отсутствует.

Таким образом, при введении препаратов «Полизон», циметидин, карбеноксолон крысам с хроническими уксусными язвами не отмечается ухудшения репаративной регенерации СОЖ. В этих группах происходит более раннее заживление язв. Наиболее эффективным антиульцерогенным действием обладает «Полизон».

2.2.6. Изучение процессов перекисного окисления липидов при применении «Полизона»

Влияние «Полизона» на процессы перекисного окисления липидов изучали на курах кросса «Конкурент». У кур опытной группы, получавших «Полизон» в дозе 2 мг/кг в течение 15-ти дней, по сравнению с контрольной, установлена более низкая концентрация начальных и промежуточных продуктов перекисного окисления липидов. Так, уровень конъюгированных диенов в крови опытных птиц ниже, чем в контроле — на 43%, а малонового диальдегида — на 19 %. У опытных кур установлена тенденция к повышению уровня глутатионпероксидазы на 25%, глутатионредуктазы на 16% и уменьшение каталазы на 24 %.

Таким образом, применение «Полизона» в дозе 2 мг/кг способствует уменьшению накопления в организме продуктов перекисного окисления.

2.2.7. Влияние «Полизона» + витамин Е на гематологические и биохимические показатели крови цыплят

Влияние «Полизон» + витамин Е на систему кроветворения изучали на цыплятах в возрасте 30-ти суток. Было сформировано семь групп, которые получали стандартный рацион, дополнительно с кормом задавали исследуемую композицию. Полученные данные сравнили с общепринятыми физиологическими нормами.

В соответствии с вышеизложенным, первая группа получала «Полизон» в дозе 1 мг/кг; вторая группа - «Полизон» в дозе 2 мг/кг; третья группа - байонокс в дозе 10 мг/кг; четвертая группа - байонокс в дозе

20 мг/кг; пятая группа — витамин Е в дозе 15,0 мг/кг; шестая группа — «Полизон» + витамин Е в дозе 2+15,0 мг/кг; седьмая группа - контроль.

Исследование действия «Полизона» + витамин Е в дозах 1-2+15,0 мг/кг на систему гемопоэза цыплят показывает, что его применение в течение 7-ми дней не меняет картину периферической крови. Следует отметить, что незначительное вызывает повышение «Полизон» объясняющееся положительным влиянием препарата на клетки «белой крови» и их продукцию. Увеличение дозы «Полизона» + витамин Е до мг/кг не выявляет достоверных изменений гемограммы, свидетельствующих о нецелесообразности дальнейшего увеличения дозы исследуемого препарата.

Препарат сравнения байонокс в дозах 10 мг/кг, 20 мг/кг приводит к достоверному снижению содержания эритроцитов, гемоглобина, цветного показателя и лейкоцитов в периферической крови цыплят (на 2,9%, 0,1%, 5,5% и 2,7% соответственно) по сравнению с контрольной группой. Другой препарат сравнения витамин Е в дозе 15,0 мг незначительно снижает гематологические показатели периферической крови цыплят

Изучение влияния «Полизона»+витамин Е на относительные показатели «белой» периферической венозной крови показывает, что он не изменяет соотношения клеток лейкоформулы и эти данные достоверно не отличаются от значений контрольной группы и исходных показателей. Увеличение дозы «Полизона» + витамин Е до 2 мг/кг также не влияет на показатели лейкоформулы и не наблюдается патологических включений в клетках крови и изменение их формы. По нашему мнению, это свидетельствует о достаточной широте терапевтического действия и аддитивном влиянии «Полизона»+витамин Е и отсутствии отрицательного влияния на белый росток костного мозга и на состояние клеток крови.

У кур, получающих байонокс, наблюдается гранулоцитопения, а применение витамина Е и «Полизона» + витамин Е благотворно влияет на клетки белой крови. Так, содержание эозинофилов и псевдоэозинофилов в периферической крови снижается по отношению к данным контроля на 28% и 18%; получающих «Полизон» повышается на 1,8% и 5,4%; получающих витамин Е снижается на 4% и 5 %; «Полизон»+витамин Е повышает на 2% и 9%.

При пересчете относительных показателей лейкограммы в абсолютные цифры «Полизон»+витамин E и витамин E не изменяет соотношения содержания лейкоцитов в периферической крови, а также не влияют на количество их содержания в единице объема крови.

При сравнении с контрольной группой содержание эозинофилов снижается на 9,09%, а при сопоставлении с группой, получавшей «Полизон», витамин Е и «Полизон»+витамин Е аналогичные показатели, наоборот, повышаются на 1,8% и 5,4% соответственно.

Таким образом, «Полизон»+витамин Е не обладает гематотоксическим действием и в отличие от байонокса не вызывает гранулоцитопению.

Таблица 2 - Влияние «Полизона» + витамин Е на биохимические

		HORasa	it com kpc	ועוווטעו ואסי	AL D DOS	Jacic 50-	IN CYTOR	
Наименование	доза	медь	цинк	кальция	фосфор	общий	альбумин	глобулин,
соединения	мг/кг	мкмоль\п	мкмоль\п	мМоль\л	мМоль\л	белок, г\л	г∖л	г∖л
«Полизон»	1	7,86±1,20	78,7±5,21	3,00±0,26	3,59±0,33	49,0±3,01	34,3±3,22	29,1±1,20
«Полизон»	2	7,88±1,10	78,5±5,1	3,04±0,29	3,61±0,30	49,1±3,00	35,1±2,90	29,3±1,90
«Полизон»+	2+15,0	7,91±1,01	79,0±5,0	3,06±0,27	3,63±0,25	49,3±2,2	35,2±2,81	29,4±1,89
витамин Е								
контроль	-	5,96±0,54	61,7±3,9	2,36±0,12	2,60±0,22	39,1±2,12	24,2±1,29	19,4±2,21
Примечание Р	< 0,05.							

Из таблицы 2 видно, что биохимические показатели крови опытных цыплят изменяются при применении «Полизона». Содержание микроэлементов и макроэлементов выше в крови опытных птиц: меди — на 32%, цинка — на 27%, кальция — на 27%, фосфора — на 38%. Отмечается увеличение общего белка на 25 %, альбуминов на 42% и глобулинов на 50%.

Таким образом, «Полизон» в дозе 2 мг/кг оказывает положительное влияние на биохимические показатели крови цыплят.

2.2.8. Влияние «Полизона» на массу тела и выживаемость кросса «Родонит»

Для стимуляции прироста живой массы цыплят 30-ти суточного возраста кросса «Родонит» и предохранения их от заболевания, нами проведено испытание «Полизона» в дозе 2 мг/кг при добавке в корм. Цыплят распределили на 3 группы, живая масса в первой опытной группе составила 281,0±0,52 г, во второй опытной группе - 280,0±0,4 г и в контрольной -279,0±0,6 г. Первая группа в количестве 60 голов получила стандартный комбикорм с добавлением витаминов, микроэлементов и «Полизона» в дозе 2 мг/кг. Во второй группе вместо «Полизона» применяли препарат сравнения байонокс в дозе 10 мг/кг. Третья группа служила контролем.

Таблица 3 - Влияние «Полизона» на среднесуточный прирост массы

	тола ц	DITIDITI			
Исследуемый препарат	доза мг/кг	живая масса, г	средне- суточный прирост, г	относительный прирост, %	относитель ная масса к норме, %
		Возрас	г 30 дней		
«Полизон»	2	281,0±0,5	-	-	
байнокс	10	280,0±0,4		_	93,2
контроль		279,0±0,6	_	_	92,8
	<u> </u>	Возрас	г 37 дней	-	
«Полизон»	2	420,0±5,60	19,85±1,1	33,09±2,42	110%
байонокс	10	350,0±3,50	10,0±0,8	20,0±1,23	101%
контроль	_	320,0±4,49	5,85±0,3	12,81±0,74	94,65%
Примечание Р	< 0,05.				

Анализируя таблицу 3, отмечаем существенное увеличение прироста живой массы цыплят первой опытной группы по сравнению со второй опытной и контрольной группами.

После применения «Полизона» на 37-ой день относительный прирост цыплят в первой группе составляет в среднем 33%, а среднесуточный прирост — около 20г, превышая контрольную группу на 20%. В возрасте 37-ми дней среднесуточный прирост в первой опытной группе превышает аналогичный во второй на 13г.

2.2.9. Влияние «Полизона» на развитие внутренних органов цыплят

Влияние «Полизона» на массу и размер внутренних органов птиц проводили на цыплятах — бройлерах кросса «Конкурент» 2-х возрастных групп в ОАО «Турбаслинские бройлеры» Благовещенского района Республики Башкортостан.

Первая серия опытов проведена на цыплятах 15-ти дневного возраста. Сформировали 3 группы по 30 голов в каждой, получавшей стандартный рацион. Дополнительно с кормом задавалось исследуемое соединение один раз в день в течение 15-ти дней. Первая группа послужила контролем, вторая группа получала «Полизон» в дозе 1мг/кг; третья группа — «Полизон» в позе 2 мг/кг.

Влияние «Полизона» оценивалось по состоянию органов пищеварения (печень, железистый желудок) и иммунитета (тимус, сумка фабрициуса). Особое внимание обращалось на центральные органы иммунитета, интенсивно растущие в первые месяцы жизни и достигающие максимального развития тимуса к 3,5-4 месяцам; бурсы — к 4-4,5 месяцам. Вскрытие проводилось на 30 — 35-ый день жизни цыплят в условиях кафедры.

Таблица 4 - Влияние «Полизона» на массу внутренних органов цыплят

1 4 7		Время исследования в днях						
	доза мг/кг	30 дней			35дней			
	MI/KI	тимус	печень	желудок	тимус	печень	желудок	
контроль	-	0,82±0,05	7,59±0,26	1,69±0,85	0,83±0,06	10,5±0,23	2,30±0,22	
«Полизон»	1	1,46±0,21	8,22±1,11	2,0±0,19	1,49±0,22	10,8±0,23	3,15±0,08	
«Полизон»	2	1,49±0,14	8,54±1,12	2,1±0,18	1,51±0,14	12,1±0,29	3,51±0,15	
Примечание	P < 0,0	5						

Таблица 5 - Влияние «Полизона» на размеры внутренних органов

Группы	доза мг/кг	параметры	тимус	печень	желудок	фабрициева бурса
		длина	4,61±0,22	5,59±0,22	1,81±0,06	0,85±0,09
контроль	ъ –	ширина	0,42±0,05	2,39±0,12	0,79±0,07	0,49±0,05
		высота	0,21±0,02	1,12±0,03	0,39±0,03	0,39±0,04
«Полизон»	1	длина	6,59±0,59	7,21±0,08	2,29±0,1	1,39±0,04
		ширина	0,59±0,04	3,49±0,22	1,31±0,05	0,71±0,05
		высота	0,24±0,02	1,42±0,08	0,61±0,05	0,45±0,04
		длина	6,92±0,30	7,45±0,05	2,61±0,08	1,52±0,08
«Полизон»	2	ширина	0,71±0,04	3,60±0,06	1,52±0,06	0,95±0,06
		высота	0,33±0,03	1,32±0,04	0,8±0,05	0,45±0,04
Примечани	P < 0,0	5.				

Из таблиц 4 и 5 видно, что масса и размер внутренних органов в опытных группах больше по сравнению с контролем, но значительное увеличение отмечено у цыплят, получавших «Полизон» в дозе 2 мг/кг.

Вторая серия органов проведена на 64-х дневных цыплятах, имеющих отклонение в развитии (дистрофия). Для изучения влияния «Полизона» на развитие внутренних органов иммунитета сформировали две опытные группы по 30 голов в каждой. Как и в предыдущем случае, «Полизон» задавался с кормом в течение 15 дней. Первая группа — контроль; вторая группа получала «Полизон» в дозе 1мг/кг; третья группа — «Полизон» в дозе 2мг/кг.

Вскрытие проводилось на 64-ый и 80-ый день жизни цыплят. Измерялись масса и размер тимуса, печени и сумки фабрициуса, а также проводились гистологические исследования последней. Отмечено, что масса фабрициевой бурсы у цыплят второй и третьей опытных групп больше на 7% и 148% соответственно, чем у цыплят контроля. Аналогичные изменения мы видим и в размерах внутренних органов.

Таким образом, при применении «Полизона» в дозе 2 мг/кг отмечается его стимулирующее действие на органы иммунитета и внутренние органы птиц, выражающееся в увеличении массы и размеров внутренних органов по сравнению с контролем.

2.2.10. Ветеринарно-санитарная экспертиза мяса кур при применении «Полизона»

Послеубойная оценка тушек позволяет определить качество мяса реализуемой птицы, получающей «Полизон», а постановка биологической пробы является вспомогательным тестом определения токсического действия исследуемого препарата на организм и установление сроков пригодности мяса к употреблению.

Первые признаки порчи (показания рН и микробной обсемененности) наблюдаются в тушках контрольной группы на 12-ый день, а

органолептические изменения - на 15-ый день хранения и выражаются в исчезновении глянца клюва, блеска ротовой полости и западения глаз. Исследования показывают, что мясо тушек подопытных кур значительно устойчивее при хранении, а первые признаки порчи мяса появляются на 23-й день хранения. Это объясняется более выраженными процессами гликолиза, происходящими в мышцах тушек.

Количество свободных аминокислот зависит от способа откорма, технологической обработки, изменения белковых фракций при созревании мяса, степени его свежести, сроков хранения.

При одинаковых условиях хранения и содержания опытных и контрольных кур наблюдается интенсивный рост птицы опытной группы, проявляющийся в увеличении содержания белка, жира и углеводов и свидетельствующий о более эффективном использовании питательных веществ кормов под влиянием «Полизона».

У опытных кур количество триптофана в белом мясе увеличилось с $1,10\pm0,01$ до $1,45\pm0,01$, лейцина с $5,30\pm0,1$ до $6,76\pm0,1$, лизина с $9,68\pm0,18$ до $11,4\pm0,25$, метионина с $1,42\pm0,01$ до $3,00\pm0,02$. повышение содержания аминокислот произошло также в красном мясе (таблица 6).

Добавление «Полизона» в дозе 2 мг/кг в рацион цыплят способствует повышению биохимической полноценности мяса благодаря накоплению в органах и тканях макро- и микроэлементов. Наблюдается тенденция к повышению содержания натрия, калия, кальция, магния, фосфора и железа в мышечной ткани кур (содержание натрия в начале опыта находится в пределах $65,2\pm5,0$ мг, в конце $-71,6\pm6,20$; соответственно калия $202,0\pm9,9$ мг и $240,1\pm15,8$ мг; кальция $-11,8\pm0,04$ мг в и $15,5\pm0,73$ мг; магния $-16,8\pm0,22$ мг и $167,2\pm9,20$ мг; железа $0.98\pm0,01$ мг и $1,38\pm0,06$ мг).

Таблица 6 - Влияние «Полизона» в дозе 2 мг/кг на аминокислотный состав мяса кур

Показатели	белое мясо в 100 г белка, г	красное мясо в 100 г белка, г		
	до опыта			
триптофан	1,10±0,01	1,0±0,02		
лейцин	5,30±0,10	6,21±0,35		
лизин	9,88±0,18	8,2±0,47		
метионин	1,42±0,01	1,26±0,03		
	после опыта			
триптофан	1,45±0,01	1,23±0,02		
лейцин	6,75±0,10	7,52±0,26		
лизин	11,4±0,25	9,22±0,43		
метионин	3,00±0,02	2,62±0,08		
	контроль			
триптофан	1,12±0,02	1,0±0,11		
лейцин	5,45±0,12	5,58±0,39		
лизин	8,80±0,28	7,82±0,50		
метионин	1,39±0,02	1,32±0,02		

Степень безвредности мяса кур, получавших «Полизон» в дозе 2 мг/кг, устанавливали путем нормированного вскармливания белым крысам и котятам. Белым крысам мясо вскармливали в дозе 5 г, котятам в дозе 50 г на одну голову в сутки. Биологическая проба, проведенная на крысах и котятах, не выявила признаков отравления и нарушения общего состояния. Патологоанатомическое вскрытие крыс и котят, убитых через 5, 10, 15, 20 и 30-ть дней после начала вскармливания мяса кур, показало отсутствие изменений в органах и тканях.

Таким образом, применение «Полизона» приводит к улучшению товарных качеств мяса птицы (увеличению макро- и микроэлементов, и аминокислот), а мясо кур, убитых через 7 дней после последнего применения, является безвредным для организма крыс и котят.

2.2.11. Гистологические исследования фабрициевой бурсы при применении «Полизона»

Исследование иммуногенеза птицы - тимуса и фабрициевой бурсы позволяет получить ценный материал для ветеринарии, а также раскрыть механизм действия новых лекарственных препаратов. Функциональное значение фабрициевой сумки подчеркивает необходимость гистоморфологического изучения ее при всех болезнях птиц, что поможет расшифровать многие невыясненные вопросы влияния перенесенной инфекции и фармакологических средств на формирование гуморального иммунитета. Кроме того, патология этого органа при некоторых болезнях и взаимодействие препаратов имеет специфические особенности, что имеет значение при дифференциальной диагностике.

Стенки фабрициевой сумки состоят из слизистой, мышечной и серозной оболочек. Слизистая оболочка образует 12-14 продольных складок, которые включают в себя большое количество лимфоидных ячеек (фолликулов), окруженных соединительнотканными элементами. Каждая лимфоидная ячейка состоит из периферической корковой и центральной мозговой зон. Корковая зона представляет собой ретикулярную ткань, заполненную малыми и средними лимфоцитами. Мозговая зона, в которой находятся большие и средние лимфоциты, значительно светлее: она представлена рыхло расположенными лимфоцитами; хорошо видна ретикулярная ткань. В фолликулах хорошо выражено пограничное скопление недифференцированных клеток с крупными светлыми эксцентрично расположенными ядрами. Границы между зонами четко выражены. Складки фабрициевой сумки покрытые эпителием. Фолликулы расположены тесно и разделены тонкими прослойками соединительной ткани. Эпителий с четко выраженным апикальным краем. Ядра в эпителии относительно светлые, цитоплазма эпителиоцитов в виде сеточки, между ними много клеток мигрантов. Эпителиоциты лежат на хорошо выраженной базальной мембране. Субэпителиальная зона представлена плотной соединительной тканью, клеточные инфильтраты в ней выражены, но отмечается

повышенное содержание гранулированных форм тканевых базофилов. Между фолликулами соединительнотканная строма органа более рыхлая. Фолликулы характеризуются хорошо различимым корковым и мозговым веществом. Корковые зоны более темные, а фолликулы расположены более плотно.

Таким образом, гистологическое исследование фабрициевой бурсы показало, что применение «Полизона» в дозе 2 мг/кг предотвращает процессы акцидентальной инволюции.

3. ВЫВОДЫ

- 1. Среднесмертельная доза «Полизона» при пероральном применении составляет для белых мышей $1070,0\pm89,40$ мг/кг, крыс $1454,17\pm79,32$ мг/кг, цыплят $1625,0\pm67,0440$ мг/кг. Согласно ГОСТ 12.1.00.7-76 «Полизон» относится к III классу опасности.
- 2. Применение «Полизона» в дозе 1 мг/кг белым крысам в течение 4-х месяцев не вызывает изменений морфологических показателей крови. Введение крысам «Полизона» в дозах 1, 2, 3 мг/кг в течение беременности не оказывает влияния на постнатальное развитие потомства. Физическое развитие опытных крысят не отличается от развития контрольных животных.
- 3. Четырехкратное введение циклофосфана белым мышам в дозе 200 мг/кг вызывает выраженное изменение в печени, характеризующееся жировой дистрофией, участками некроза, очагами инфильтрации, расширением синусоидов. Применение «Полизона» в дозе 1 мг/кг оказывает нормализующее действие на печень.
- 4. Длительное применение «Полизона», циметидина, карбеноксолона крысам с хроническими уксусными язвами не вызывает ухудшения репаративной регенерации слизистой оболочки желудка. Применение указанных препаратов способствует быстрому заживлению язв. Наиболее эффективным антиульцерогенным действием обладает «Полизон».
- 5. Уровень конъюгированных диенов в крови опытных птиц ниже, чем у контрольных на 43%, малонового диальдегида на 19%. У опытных кур установлена тенденция к повышению уровня глутатионпероксидазы на 25%, глутатионредуктазы на 16% и уменьшение каталазы на 24% (Р < 0,05). Применение «Полизона» в дозе 2 мг/кг способствует уменьшению накопления в организме продуктов перекисного окисления липидов.
- 6. «Полизон» не обладает гематотоксическим действием и в отличие от байонокса не вызывает гранулоцитопению. Препарат не изменяет соотношения клеток лейкоформулы кур и эти данные не отличаются от значений контрольной группы и исходных показателей.
- 7. Применение «Полизона» в дозе 2 мг/кг оказывает стимулирующее действие на органы иммунитета птиц, увеличивает массу и размер внутренних органов по сравнению с контрольной группой. Масса фабрициевой бурсы у цыплят второй и третьей опытных групп соответственно больше на 96 % и 148% по сравнению с контрольной.

- 8. Применение «Полизона» стимулирует увеличение прироста живой массы цыплят. На 37-ой день относительный прирост составляет в среднем 33%, а среднесуточный прирост около 20 г, превышая контрольную группу на 20%.
- 9. Применение «Полизона» приводит к улучшению товарного качества мяса птицы (увеличению макро- и микроэлементов и аминокислот) и не обладает экологической и пищевой опасностью.
- 10. Гистологическое исследование фабрициевой бурсы цыплят показывает, что применение «Полизона» в дозе 2 мг/кг предотвращает процесс акцидентальной инволюции.

6. ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

- 1. Для улучшения здоровья, повышения продуктивности и выживаемости птиц рекомендуется применять «Полизон» в дозе 2 мг/кг в возрасте 15-30-ти суток в течение 7-ми дней.
- 2. Материалы исследований вошли в «Инструкцию по применению препарата «Полизон» в животноводстве и птицеводстве», утвержденную в установленном порядке.

5. СПИСОК ПУБЛИКАЦИЙ

- 1. Баранова, И.А. (Белова И.А.) Острая токсичность нового препарата «Полизон»/И.А. Баранова, М.Р. Фазлиахметов, А.Ф.Исмагилова, В.А.Антипов, Р.Ф. Халимов// Био. 2004. №7.— С.24.
- 2. Баранова, И.А. (Белова И.А.) Влияние «Полизона» на постнатальное развитие потомства/И.А. Баранова, А.Ф. Исмагилова, Р.Н. Файрушин, В.А.Антипов, Б.П. Струнин// Био. 2004. №3. С. 17.
- 3. Белова, И.А. Влияние «Полизона» на течение «хронических язв» /И.А.Белова, А.Ф.Исмагилова//Материалы Всероссийской научно-практической конференции «Современное развитие АПК: региональный опыт, проблемы, перспективы». Ульяновск, 2005. С.315-317.
- 4. Белова, И.А. Влияние композиции «Полизон» +витамин Е на организм цыплят/ И.А. Белова, А.Ф. Исмагилова// Всероссийской научнопрактической конференции «Перспективы агропромышленного производства регионов России в условиях реализации приоритетного национального проекта «Развитие АПК». Уфа, 2006. С.17.
- 5. Белова, И.А. Влияние «Полизона» на развитие внутренних органов цыплят/А.Ф. Исмагилова, И.А. Белова// Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э.Баумана. Казань, 2006. Т.184. С.117-122.
- 6. Белова, И.А. Токсико-фармакологические свойства «Полизона» и его применение в птицеводстве/А.Ф. Исмагилова, И.А. Белова// Научнопроизводственный журнал ветеринарный врач. 2006. №4. С.8-10.

Сдано в набор 10.04.2007 Подписано в печать 11.04.2007 Заказ № 37 Тираж 100 экз. Формат 60х90 1/16 Усл. печ. л 1,25