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General description of the subject of work

The dissertation is devoted to the development of algorithms for non-
smooth convex optimization problems with several convex non-smooth functional
constraints.

Optimization problems arise naturally in many different fields, but unfortunately
for a majority of optimization problems, there is no hope to find a solution
analytically (i.e. find an explicit-form to an optimal solution). Therefore in order to
solve an optimization problem, we have to use numerical methods. There are different
classifications and types of these methods, one of them is first-order methods,
which go back to 1847 with the work of Cauchy on the steepest descent method.
With the increase in the amount of applications that can be modeled as large-
or even huge-scale optimization problems (some of such applications arising in:
machine learning, deep learning, data science, control, signal processing, statistics,
and so on), first-order methods, which require low iteration cost as well as low
memory storage, have received much interest over the past few decades in order
to solve the convex optimization problems, in the smooth and non-smooth cases1.
Especially, the optimization of non-smooth functions with functional constraints
attracts widespread interest, in large-scale optimization and its applications2 3.
On continuous optimization with functional constraints, there is a long history of
studies. In this area, there are some monographs4 5, many recent works on first-
order methods for convex optimization problems with convex functional constraints
for the deterministic setting6 7 8 and for the stochastic setting9 10 11. However,
the parallel development for problems with non-convex objective functions and
also with non-convex constraints, especially for theoretically provable algorithms,

1A. Beck: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, 2017.
2A. Ben-Tal, A. Nemirovski: Robust Truss Topology Design via semidefinite programming. SIAM Journal on

Optimization,7(4), pp. 991–1016, 1997.
3S. Shpirko, Y. Nesterov: Primal-dual subgradient methods for huge-scale linear conic problem. SIAM Journal

on Optimization, 24(3), pp. 1444–1457, 2014.
4D. P. Bertsekas: Constrained optimization and Lagrange multiplier methods. Academic press, 2014.
5J. Nocedal, S. J. Wright: Numerical Optimization. Springer, New York, 2006.
6O. Fercoq, A. Alacaoglu, I. Necoara, V. Cevher: Almost surely constrained convex optimization. Proceedings

of the 36th International Conference on Machine Learning, PMLR 97, pp. 1910–1919, 2019.
7Q. Lin, R. Ma, Y. Xu: Inexact Proximal-Point Penalty Methods for Non-Convex Optimization with Non-Convex

Constraints. 2019. https://arxiv.org/pdf/1908.11518.pdf
8Y. Xu: Iteration complexity of inexact augmented lagrangian methods for constrained convex programming.

Mathematical Programming, Series A, pp. 1–46, 2019.
9K. Basu, P. Nandy: Optimal Convergence for Stochastic Optimization with Multiple Expectation Constraints.

2019. https://arxiv.org/pdf/1906.03401.pdf
10G. Lan, Z. Zhou: Algorithms for stochastic optimization with functional or expectation constraints. 2019.

https://arxiv.org/pdf/1604.03887.pdf
11Y. Xu: Primal-dual stochastic gradient method for convex programs with many functional constraints. 2019.

https://arxiv.org/pdf/1802.02724.pdf
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remains limited12. There are various first-order methods, for solving the convex
optimization problems in the case of non-smooth objective function. Among them,
Mirror Descent method, which was originated in the works of Nemirovski and
Yudin more 30 years ago13 14, and was later analyzed in 200315. This method is
considered as the non-Euclidean extension of subgradient methods, and used in
many applications16 17 18. The standard subgradient methods employ the Euclidean
distance function with a suitable step-size in the projection step. Mirror Descent
extends the standard projected subgradient methods by employing a nonlinear
distance function with an optimal step-size in the nonlinear projection step19. Mirror
Descent method not only generalizes the standard subgradient descent method, but
also achieves a better convergence rate and it is applicable to optimization problems
in Banach spaces where subgradient descent is not20.Also, in some works21 22, it
was proposed an extension of the Mirror Descent method for constrained problems.
Usually, the step-size and stopping rule for Mirror Descent method require to know
the Lipschitz constant of the objective function and constraints, if any. Adaptive
step-sizes, which do not require this information, are considered for unconstrained
problems23, and for constrained problems24. Recently some adaptive optimal Mirror
Descent methods were proposed for convex optimization problems with non-smooth
functional constraints, in deterministic and stochastic settings25. In order to solve

12see "Q. Lin, R. Ma, Y. Xu: Inexact Proximal-Point Penalty Methods for Non-Convex Optimization with
Non-Convex Constraints. 2019. https://arxiv.org/pdf/1908.11518.pdf" and references therein.

13A. Nemirovskii: Efficient methods for large-scale convex optimization problems. Ekonomika i Matematicheskie
Metody, 1979. (in Russian)

14A. Nemirovsky, D. Yudin: Problem Complexity and Method Efficiency in Optimization. J. Wiley & Sons, New
York 1983.

15A. Beck, M. Teboulle: Mirror descent and nonlinear projected subgradient methods for convex optimization.
Oper. Res. Lett., 31(3), pp. 167–175, 2003.

16A. V. Nazin, B. M. Miller: Mirror Descent Algorithm for Homogeneous Finite Controlled Markov Chains with
Unknown Mean Losses. Proceedings of the 18th World Congress The International Federation of Automatic Control
Milano (Italy) August 28 - September 2, 2011.

17A. Nazin, S. Anulova, A. Tremba: Application of the Mirror Descent Method to Minimize Average Losses
Coming by a Poisson Flow. European Control Conference (ECC) June 24-27, 2014.

18A. Tremba, A. Nazin: Extension of a saddle point mirror descent algorithm with application to robust
PageRank. 52nd IEEE Conference on Decision and Control December 10-13, 2013.

19D. V. N. Luong, P. Parpas, D. Rueckert, B. Rustem: A Weighted Mirror Descent Algorithm for Nonsmooth
Convex Optimization Problem. J Optim Theory Appl 170(3), pp. 900–915, 2016.

20T. T. Doan, S. Bose, D. H. Nguyen, C. L. Beck: Convergence of the Iterates in Mirror Descent Methods. IEEE
Control Systems Letters, 3(1), pp. 114–119, 2019.

21A. Beck, A. Ben-Tal, N. Guttmann-Beck, L. Tetruashvili: The comirror algorithm for solving nonsmooth
constrained convex problems. Operations Research Letters, 38(6), pp. 493–498, 2010.

22A. Nemirovsky, D. Yudin: Problem Complexity and Method Efficiency in Optimization. J. Wiley & Sons, New
York 1983.

23A. Ben-Tal, A. Nemirovski: Lectures on Modern Convex Optimization. Society for Industrial and Applied
Mathematics, Philadelphia 2001.

24A. Beck, A. Ben-Tal, N. Guttmann-Beck, L. Tetruashvili: The comirror algorithm for solving nonsmooth
constrained convex problems. Operations Research Letters, 38(6), pp. 493–498, 2010.

25A. Bayandina, P. Dvurechensky, A. Gasnikov, F. Stonyakin, A. Titov: Mirror descent and convex optimization
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the optimization problem in the stochastic setting, the Mirror Descent method also
has been widely used26 27 28.

Also in recent years, online convex optimization (OCO) has become a leading
online learning framework, via its powerful modeling capability for a lot of problems
from diverse domains. OCO plays a key role in solving the problems where
statistical information is being updated29 30. There are a lot of examples of such
problems, concerning Internet network, consumer data sets or financial market, and
in machine learning applications such as adaptive routing in networks, online display
advertising31, dictionary learning, classification, and regression32. In recent years,
methods for solving online optimization problems have been actively developed, in
both deterministic and stochastic settings33 34 35. Also, some adaptive methods
were considered for OCO problem with constraints, but with only a standard
Euclidean prox-structure36. Some algorithms were proposed for OCO with stochastic
constraints, where the objective function varies arbitrarily but the functionals
constraints are varying independently and identically distributed (i.i.d.) over time37.

For the display to be complete, it is useful to take into account the saddle point
problems, which are closely related to the optimization problems. Where in the
general case we can consider the saddle point problem as a non-smooth convex
optimization problem with a certain structure. Moreover, saddle point problems
problems with non-smooth inequality constraints. In: Large-Scale and Distributed Optimization, Springer, Cham
pp. 181–213, 2018.

26G. Lan, A. Nemirovski, A. Shapiro: Validation analysis of mirror descent stochastic approximation method.
Math. Program., 134(2), pp. 425–458, 2012.

27A. V. Nazin, A. S. Nemirovsky, A. B. Tsybakov, A. B. Juditsky: Algorithms of Robust Stochastic Optimization
Based on Mirror Descent Method. Automation and Remote Control, 80(9), pp. 1607–1627, 2019.

28A. V. Nazin: Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization. Automation
and Remote Control, 79(1), pp. 78–88, 2018.

29E. Hazan, S. Kale: Beyond the regret minimization barrier: Optimal algorithms for stochastic strongly-convex
optimization. JMLR. 15, pp. 2489–2512, 2014.

30E. Hazan: Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3–4), pp.
157–325, 2015.

31B. Awerbuch, R. Kleinberg: Online linear optimization and adaptive routing. Journal of Computer and System
Sciences. 74(1), pp. 97–114, 2008.

32See "J. Yuan, A. Lamperski: Online convex optimization for cumulative constraints. Published in NIPS,
pp. 6140–6149, 2018." and references therein.

33S. Bubeck, R. Eldan: Multi-scale exploration of convex functions and bandit convex optimization. JMLR:
Workshop and Conference Proceedings 49, pp. 1–7, 2016.

34A. V. Gasnikov, A. A. Lagunovskaya, L. E. Morozova: On the relationship between simulation logit dynamics
in the population game theory and a mirror descent method in the online optimization using the example of the
shortest path problem. Proceedings of MIPT, 7(4), pp. 104–113, 2015. (in Russian)

35A. V. Gasnikov, A. A. Lagunovskaya, I. N. Usmanova, F. A. Fedorenko, E. A. Krymova: Stochastic online
optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case.
Automation and Remote Control, 78(2), pp. 224–234, 2017.

36R. Jenatton, J. Huang, C. Archambeau: Adaptive Algorithms for Online Convex Optimization with Long-term
Constraints. Proceedings of The 33rd International Conference on Machine Learning, PMLR 48, pp. 402–411, 2016.

37Y. Hao, M. J. Neely, W. Xiaohan: Online Convex Optimization with Stochastic Constraints. Published in
NIPS, pp. 1427–1437, 2017.
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appear when applying the Lagrange multiplier method to the convex optimization
problems with functional constraints (linear types of equalities and nonlinear convex
types of inequalities). Recently, many researchers actively working in the subject of
accelerated methods for saddle point problems, based on their structure. Over the
past 15 years, the Nesterov’s acceleration scheme38 has been successfully transferred
to smooth constrained optimization problems and to problems with structure (in
particular, the so-called composite problems). Also, the acceleration scheme was
successfully transferred to gradient-free methods, subgradient methods, directional
descents, coordinate descents and methods using higher derivatives. It was also
possible to accelerate randomized methods (for example, variance reduction methods
in minimizing the sum of functions) and methods for solving smooth stochastic
optimization problems. The success of the transfer, mentioned above, is understood
to mean the achievement of well-known lower bounds of estimates by using the
corresponding accelerated methods (with accuracy to a numerical factor). Very
recently39, it was generalized our results40 and resolved a longstanding open question
pertaining to the design of near-optimal first-order algorithms for smooth and
µx–strongly-convex µy–strongly-concave minimax problems. They proposed a near-
optimal algorithm, achieves a gradient complexity Õ

(
1/
√
µxµy

)
, which matches the

lower complexity bound41 up to logarithmic factors.
Despite the noted achievements, as mentioned previously, there remains a number

of problems that are quite important for practice, in which it is not yet completely
clear how to accelerate the available methods.

The main theme of the thesis focuses on the non-smooth convex optimization
problems with convex functional constraints and on their connection with the convex-
concave composite saddle point problems.

The goals of the thesis.

1. Development adaptive Mirror Descent algorithms, in order to solve convex
optimization problems with functional constraints, in both deterministic and
stochastic settings, with different levels of smoothness for the convex or strongly

38Y. Nesterov: A method of solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27(2), pp. 372–376, 1983.

39T. Lin, C. Jin, M. I. Jordan: Near-Optimal Algorithms for Minimax Optimization. 2020. https://arxiv.org/
pdf/2002.02417.pdf

40M. S. Alkousa, D. M. Dvinskikh, F. S. Stonyakin, A. V. Gasnikov, D. Kovalev: Accelerated Methods for Saddle
Point Problems. Accepted paper to the print in the journal Computational Mathematics and Mathematical Physics.
https://arxiv.org/pdf/1906.03620.pdf

41J. Zhang, M. Hong, S. Zhang: On lower iteration complexity bounds for the saddle point problems. 2019.
https://arxiv.org/pdf/1912.07481.pdf
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convex objective function, such as Lipschitz-continuous, the gradient or the
Hessian of the objective function is Lipschitz-continuous.

2. Development some Mirror Descent algorithms for online optimization problems
with functional constraints, in both deterministic and stochastic settings.

3. Development accelerated methods for a more general class of the convex-concave
composite saddle point problems and obtain the optimal estimates of the
convergence rate for accelerated methods for the considered class of problems.

The tasks of the thesis.

1. Developing modifications of adaptive Mirror Descent algorithms to solve the
optimization problem of a convex function with convex functional constraints,
in deterministic and stochastic settings.

2. Developing some algorithms for online optimization problems with functional
constraints, in both deterministic and stochastic settings.

3. Developing adaptive algorithms for solving strongly convex optimization
problems with one functional constraint.

4. Studying a more general class of the convex-concave composite saddle point
problems and obtain the estimates of the convergence rate for accelerated
methods for non-bilinear convex-concave smooth composite saddle point
problems.

Scientific novelty.

It was proposed a new modification of an adaptive deterministic and stochastic
Mirror Descent algorithms, in order to solve the convex optimization problems
with non-smooth functional constraints, in the case when the objective function
is Lipschitz-continuous. The proposed modification allows saving the running time
of the algorithms due to the consideration of not all functional constraints on non-
productive steps. Specific estimates of the convergence rate for some adaptive and
partial adaptive Mirror Descent algorithms, in the case, when the objective function
is Lipschitz-continuous and when its Hessian is Lipschitz-continuous, were obtained.
Also, adaptive and non-adaptive algorithms, for stochastic online optimization
problems with functional constraints were proposed. In order to solve the non-
smooth, strongly convex optimization problems with one functional constraint, it was
proposed an adaptive algorithm, its stopping criterion can speed up the work of the
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algorithm compared to the other optimal algorithm for some examples of non-smooth
strongly convex problems. Also, it was studied a more general class of the convex-
concave saddle point problems and obtained the estimates of the convergence rate for
accelerated methods for non-bilinear convex-concave smooth composite saddle point
problems. Furthermore, numerical experiments were carried out for some examples,
to show the advantages of the proposed algorithms, in deterministic and stochastic
settings of the considered optimization problem, and the advantages of the using the
technique of restarts, in order to solve the optimization problems with functional
constraints in the case when the objective function and the functional constraints
are strongly convex.

The theoretical and practical value of the work in the thesis.

The proposed algorithms in the thesis, for convex optimization and online
optimization problems with functional constraints, in both deterministic and
stochastic settings, are adaptive. The adaptive adjustment is with respect to the
Lipschitz constant of the objective function itself or of its gradient or Hessian,
as well as the Lipschitz constant of the functional constraints. This adaptivity
of the proposed algorithms is very important in practice and many applications,
such as in Machine Learning scenarios, large-scale optimization problems, and their
applications. Also, the proposed modified algorithms are applicable to the objective
functions of various levels of smoothness: the Lipschitz condition holds either for the
objective function itself or for its gradient or Hessian (while the function itself can
fail to satisfy the Lipschitz condition) and they allow saving the running time of the
algorithms. In the proposed algorithms, we consider an arbitrary proximal structure,
which allows us to solve the optimization problems in the case of non-Euclidean
distance. Also, in order to solve the classical problem of minimizing a strongly convex
function with one non-smooth functional constraint, in the proposed algorithm there
is an adaptive adjustment with respect to the strong convexity parameter, where the
strong convexity of the functional constraint is not required, and there is also no
need to know the value of the strong convexity parameter of the objective function,
which is not available in some optimal algorithms, such as Mirror Descent. The
studied approach of accelerated methods for saddle point problems was for a more
general class of the convex-concave composite saddle point problems. Such problems
arise, for example, in image processing and in solving various inverse problems. The
obtained results can be generalized to the case of more general settings, such as
a stochastic setting. Also, instead of the Euclidean norm, one could consider more
general norms and proximal structures; finally, one could try to consider more than

10



two terms in the structure of the objective function.

Statements to be defended.

The statements to be defended in the thesis can be enumerated as follows:

1. A new modification of adaptive deterministic and stochastic Mirror Descent
algorithms, in order to solve the convex optimization problems with non-smooth
functional constraints, in the case when the objective function is Lipschitz-
continuous.

2. Specific estimates of the convergence rate for some adaptive and partial adaptive
Mirror Descent algorithms, in the case, when the objective function is Lipschitz-
continuous and when its Hessian is Lipschitz-continuous.

3. Adaptive and non-adaptive algorithms, for the stochastic online optimization
problems with functional constraints.

4. An adaptive algorithm, in order to solve non-smooth, strongly convex
optimization problems with one functional constraint and comparison with an
optimal Mirror Descent algorithm.

5. Studying a more general class of the convex-concave saddle point problems and
obtain the estimates of the convergence rate for accelerated methods for non-
bilinear convex-concave smooth composite saddle point problems.

Presentations and validation of research results.

The results of the thesis were reported and discussed at the following scientific
conferences and seminars:

1. 61st Scientific Conference MIPT. Moscow, 24.11.2018;

2. Conference on graphs, networks, and their applications (Workshop Network
Optimization). Moscow, MIPT, 16.05.2019;

3. 18th International Conference on Mathematical Optimization Theory and
Operation Research (MOTOR-2019), Ekaterinburg, Russia, July 8–12, 2019;

4. International conference "Equation of Convolution Type in Science and
Technology"ECTST-2019, Simferopol, Russian Federation, September 25–28,
2019;
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5. 62nd Scientific Conference MIPT. Moscow, 23.11.2019;

6. Fifth international conference Quasilinear Equations, Inverse Problems and
Their Applications. Moscow, MIPT, 02.12.2019;

7. Scientific seminar in the laboratory of numerical methods of applied structural
optimization (under the guidance of Professor Yu. G. Evtushenko). Moscow,
MITP, 29.05.2019 and 12.02.2020;

8. Scientific seminar of the Department of Algebra and Functional Analysis,
Faculty of Mathematics and Computer Science, Taurida Academy, V. I.
Vernadsky Crimea Federal University (under the guidance of Professor
I. V. Orlov). Simferopol, Russia, 22.09.2019.

Publications

The results in the thesis are represented in five published papers (1)–(5) and in
two accepted papers to print, (6) and (7).

(1) F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, M. A. Barinov: Adaptive mirror
descent algorithms in convex programming problems with Lipschitz constraints.
Trudy Instituta Matematiki i Mekhaniki URO RAN, 24(2), pp. 266–279, 2018.
http://journal.imm.uran.ru/node/287 "Web of Science"

(2) A. A. Titov, F. S. Stonyakin, A. V. Gasnikov, M. S. Alkousa: Mirror Descent and
Constrained Online Optimization Problems// Optimization and Applications.
9th International Conference OPTIMA-2018. Communications in Computer
and Information Science, 974, pp. 64–78, 2019. https://link.springer.com/
chapter/10.1007/978-3-030-10934-9_5 "Scopus"

(3) F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, A. A. Titov: Adaptive Mirror
Descent Algorithms for Convex and Strongly Convex Optimization Problems
with Functional Constraints. Journal of Applied and Industrial Mathematics,
13(3), pp. 557–574, 2019. https://link.springer.com/article/10.1134/
S1990478919030165 "Scopus"

(4) M. S. Alkousa: On Some Stochastic Mirror Descent Methods for Constrained
Online Optimization Problems. Computer Research and Modeling, 11(2), pp.
205–217, 2019. DOI: 10.20537/2076-7633-2019-11-2-205-217. http://crm-en.
ics.org.ru/journal/article/2775/ "Scopus"
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(5) F. S. Stonyakin, M. S. Alkousa, A. A. Titov, V. V. Piskunova: On Some Methods
for Strongly Convex Optimization Problems with One Functional Constraint.
In book: Mathematical Optimization Theory and Operations Research, 18th
International Conference, MOTOR 2019, LNCS 11548, pp. 82–96, 2019. https:
//doi.org/10.1007/978-3-030-22629-9_7 "Scopus"

(6) M. S. Alkousa: On Modification of an Adaptive Stochastic Mirror Descent
Algorithm for Convex Optimization Problems with Functional Constraints.
Accepted to the print as a chapter in the forthcoming book: Communications
in Mathematical Computations and Applications, Springer. https://arxiv.
org/pdf/1904.09513.pdf

(7) M. S. Alkousa, D. M. Dvinskikh, F. S. Stonyakin, A. V. Gasnikov, D. Kovalev:
Accelerated Methods for Saddle Point Problems. Accepted paper to the print
in the journal Computational Mathematics and Mathematical Physics. https:
//arxiv.org/pdf/1906.03620.pdf

Personal contribution

The main contributions of the author in the thesis can be summarized as follows:
The author in (1) and (6) proposed a new modification of adaptive deterministic
and stochastic Mirror Descent algorithms, in order to solve the convex optimization
problems with non-smooth convex functional constraints, in the case when the
objective function is Lipschitz-continuous. An optimal estimate of a non-adaptive
Mirror Descent algorithm, proposed in (2), obtained for the deterministic setting
of online optimization problems with functional constraints. In (3), obtained
specific estimates of the convergence rate of some adaptive and partial adaptive
Mirror Descent algorithms, when the objective function is Lipschitz-continuous
and when its Hessian is Lipschitz-continuous. In (4) proposed adaptive and non-
adaptive algorithms, for the stochastic online optimization problems with functional
constraints. In (5) proposed an adaptive algorithm, in order to solve the non-
smooth strongly convex optimization problems with one functional constraint and
comparison with an optimal Mirror Descent algorithm. Also, in (7), the author
studied a more general class of the convex-concave composite saddle point problems
and obtained the estimates of the convergence rate for accelerated methods for non-
bilinear convex-concave smooth composite saddle point problems.

The implementation of algorithms, as well as the preparation of numerical
experiments in works (1)—(6) were performed by the author. The problem statement
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in the works (1), (2), (3), (5) and (7) was carried out by F. S. Stonyakin and
A. V. Gasnikov.

The structure and amount of the thesis.

The thesis consists of an abstract, introduction, four chapters and list of 131
references. The full volume of the dissertation is 149 pages, including 16 figures and
15 tables.
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The content of the work

The introduction justifies the relevance of the research conducted within the
framework of the thesis, provides an overview of the scientific literature on the
problem under study and an overview of each chapter in the thesis, formulates the
goals, the tasks of the thesis, the scientific novelty, the theoretical and practical value
of the presented thesis.

The first chapter briefly describes some fundamental concepts and tools in
convex analysis and convex optimization, which will be useful in the remaining
chapters of the thesis. The first section 1.1 is devoted to the convex analysis
tools, such as convex sets, differentiable and non-differentiable convex functions,
and Lipschitz continuity. The second section 1.2 is devoted to some basics and
fundamental properties of the convex optimization problems and numerical methods
in order to solve them. The focus was on the first-order methods and more attention
on the basics of the Mirror Descent method.

Let (E, ‖ · ‖) be a normed finite-dimensional vector space, with an arbitrary
norm ‖ · ‖, and E∗ be the conjugate space of E with the standard norm ‖ · ‖∗ =
maxx{〈y, x〉, ‖x‖ ≤ 1}, where 〈y, x〉 is the value of the continuous linear y at x ∈ E.
Let d : Q→ R, whereQ ⊂ E is a closed convex set, be a distance generating function
(also called prox-function), which is continuously differentiable and 1-strongly convex
with respect to the norm ‖ · ‖, i.e.

d(y) ≥ d(x) + 〈∇d(x), y − x〉+
1

2
‖y − x‖2 ∀ x, y ∈ Q.

For all x, y ∈ Q we consider the corresponding Bregman divergence,

Vx(y) = d(y)− d(x)− 〈∇d(x), y − x〉.

For all x ∈ Q and p ∈ E∗, the proximal mapping operator (Mirror Descent step)
is defined as follows

Mirrx(p) = arg min
u∈Q

{
〈p, u〉+ Vx(u)

}
.

We make the simplicity assumption, which means that Mirrx(p) is easily computable.

The second chapter was under the title "Mirror Descent Algorithms for
Deterministic and Stochastic Constrained Optimization Problems". In this chapter,
it was considered the optimization problem of a convex function with several convex
non-smooth functional constraints (see problem (2), below) and proposed Mirror
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Descent algorithms in order to solve such problem, in deterministic or stochastic
(randomized) setting, and in different situations: smooth or non-smooth, convex or
strongly convex objective function and constraints. It was demonstrated that the
proposed algorithms are applicable to the objective functions of various levels of
smoothness: the Lipschitz condition holds either for the objective function itself or
for its gradient or Hessian (while the function itself can fail to satisfy the Lipschitz
condition).

Consider a set of convex functions f and gi : Q → R, i ∈ [m]
def
= {1, 2, . . . ,m}.

Assume that all functionals gi are Lipschitz-continuous with some constant Mg > 0,
i.e.

|gi(x)− gi(y)| ≤Mg‖x− y‖ ∀ x, y ∈ Q and ∀i ∈ [m]. (1)

In the thesis, it was focused on the most general constrained convex optimization
problem

min {f(x) : x ∈ Q and gi(x) ≤ 0 for all i ∈ [m]} . (2)

It is clear that instead of a set of functionals {gi(·)}mi=1 we can see one functional
constraint g : Q → R, such that g(x) = maxi∈[m]{gi(x)}, and the function g also
will be Lipschitz-continuous, with constant Mg > 0. Therefore, by this setting, the
problem (2) will be equivalent to the following constrained minimization problem

f(x)→ min
x∈Q, g(x)≤0

. (3)

The first section 2.1 is devoted to a new modification of an adaptive Mirror
Descent algorithm (see Algorithm 1, below) which was proposed for the deterministic
setting of the problem (2)42. The proposed modification allows saving the running
time of the algorithm, due to the consideration of not all functional constraints on
non-productive steps (i.e. skipping some of the functional constraints). Note that we
obtain the non-productive steps when we have non-feasible points.

In order to mention the proposed modified algorithm (see Algorithm 2, below),
suppose we have a constant Θ0 > 0, such that d(x∗) ≤ Θ2

0, where x∗ is a solution of
(2). Note that if there is a set, X∗ ⊂ Q, of optimal points for the problem (2), we
may assume that min

x∗∈X∗
d(x∗) ≤ Θ2

0. We say that a point x̂ ∈ Q is an ε–solution of

(2) if
f(x̂)− f(x∗) ≤ ε and g(x̂) ≤ ε. (4)

In thesis it was proved the following result, which gives the complexity estimate
for the proposed Algorithm 2 in the case when the objective function f is Lipschitz-
continuous.

42See the article referenced in footnote 25.
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Algorithm 1. Adaptive Mirror Descent: objective function is Lipschitz-continuous.

Algorithm 2. The modification of Algorithm 1.

Algorithm 1 Algorithm 2
Require ε > 0, Θ0. ε > 0, Θ0.

1: x0 = arg min
x∈Q

d(x) x0 = arg min
x∈Q

d(x)

2: I =: ∅ I =: ∅
3: N ← 0 N ← 0
4: repeat repeat
5: if g(xN) ≤ ε then if g(xN) ≤ ε then
6: hN = ε

‖∇f(xN )‖2∗
, hN = ε

‖∇f(xN )‖2∗
,

7: xN+1 = MirrxN
(
hN∇f(xN)

)
, xN+1 = MirrxN

(
hN∇f(xN)

)
,

8: N → I N → I
9: else //

(
g(xN) > ε

)
else // (gj(N)(x

N) > ε) for some j(N) ∈ [m]
10: hN = ε

‖∇g(xN )‖2∗
, hN = ε

‖∇gj(N)(x
N )‖2∗

,

11: xN+1 = MirrxN
(
hN∇g(xN)

)
, xN+1 = MirrxN

(
hN∇gj(N)(x

N)
)
,

12: end if end if
13: N ← N + 1 N ← N + 1

14: until
N−1∑
j=0

1
M2

j
≥ 2Θ2

0

ε2
. until

N−1∑
j=0

1
M2

j
≥ 2Θ2

0

ε2
.

Ensure x̄N :=
∑
k∈I

xkhk/
∑
k∈I

hk. x̄N :=
∑
k∈I

xkhk/
∑
k∈I

hk.

Theorem 1. let ε > 0 be a fixed positive number and the stopping criterion of
Algorithm 2 holds. Then x̄N is an ε–solution to the problem (2) in the sense of (4),
i.e

f(x̄N)− f(x∗) ≤ ε and g(x̄N) ≤ ε, (5)

and the Algorithm 2 stops after no more than

N =

⌈
2 max{M 2

f ,M
2
g }Θ2

0

ε2

⌉
(6)

iterations.

For the case when the objective function is with Lipschitz gradient, two algorithms
(Algorithm 3 and its modification Algorithm 4) were proposed by F. S. Stonyakin43.

It was proved that, Algorithm 4 (as well as Algorithm 3) stops after no more than

N =

⌈
2 max{1,M2

g }Θ2
0

ε2

⌉
(7)

43See "F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, M. A. Barinov: Adaptive mirror descent algorithms
in convex programming problems with Lipschitz constraints. Trudy Instituta Matematiki i Mekhaniki URO RAN,
24(2), pp. 266–279, 2018. http://journal.imm.uran.ru/node/287"
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Algorithm 3. Adaptive Mirror Descent: objective function with Lipschitz gradient.

Algorithm 4. The modification of Algorithm 3.

Algorithm 3 Algorithm 4
Require ε > 0, Θ0. ε > 0, Θ0.

1: x0 = arg min
x∈Q

d(x) x0 = arg min
x∈Q

d(x)

2: I =: ∅ I =: ∅
3: N ← 0 N ← 0
4: repeat repeat
5: if g(xN) ≤ ε then if g(xN) ≤ ε then
6: hN = ε

‖∇f(xN )‖∗
, hN = ε

‖∇f(xN )‖∗
,

7: xN+1 = MirrxN
(
hN∇f(xN)

)
, xN+1 = MirrxN

(
hN∇f(xN)

)
,

8: N → I N → I
9: else // (g(xN) > ε) else // (gj(N)(x

N) > ε) for some j(N) ∈ [m]
10: hN = ε

‖∇g(xN )‖2∗
, hN = ε

‖∇gj(N)(x
N )‖2∗

,

11: xN+1 = MirrxN
(
hN∇g(xN)

)
, xN+1 = MirrxN

(
hN∇gj(N)(x

N)
)
,

12: end if end if
13: N ← N + 1 N ← N + 1

14: until Θ2
0 ≤ ε2

2

(
|I|+

∑
k 6∈I

1

‖∇g(xk)‖2∗

)
. until Θ2

0 ≤ ε2

2

(
|I|+

∑
k 6∈I

1

‖∇gj(N)(x
k)‖2∗

)
.

Ensure x̄N := arg minxk, k∈I f(xk). x̄N := arg minxk, k∈I f(xk).

iterations.
Also, in order to solve the problem (2), when the objective functions with

Lipschitz gradient, in thesis, it was mentioned to the partial adaptive Mirror Descent
algorithm44 (see Algorithm 5). The difference between Algorithms 3 and 5, is that in
Algorithm 5 the step-sizes and the stopping criterion are non-adaptive, they require
the constant Mg. Note that the number of iterations for Algorithm 5 is fixed and it
is equaling

N =

⌈
2M 2

gΘ2
0

ε2

⌉
. (8)

Also in section 2.1, it was obtained specific estimates of the convergence rate for
Algorithms 4 and 5, which justify their optimality from the point of view of the theory
of lower bound of estimates. Moreover, we consider various classes (various level
of smoothness) of objective functions: Lipschitz-continuous functions and functions
with Lipschitz Hessian45.

In the case, when the objective function is Lipschitz-continuous, for
44This algorithm was proposed by F. S. Stonyakin in "F. S. Stonyakin, A. A. Titov: One Mirror Descent Algorithm

for Convex Constrained Optimization Problems with Non-Standard Growth Properties. In Proceedings of the
School-Seminar on Optimization Problems and their Applications (OPTA-SCL 2018) Omsk, Russia, July 8-14,
2018. CEUR Workshop Proceedings, 2098, pp. 372–384, 2018."

45The case when the functions with Lipschitz gradient was studied by F. S. Stonyakin, see the article referenced
in footnote 44.
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Algorithm 5. Partial adaptive Mirror Descent version of Algorithm 3.

Algorithm 6. Modification of an adaptive stochastic Mirror Descent: objective function is
Lipschitz-continuous.

Algorithm 5 Algorithm 6
Require ε > 0, Mg > 0, Θ0. ε > 0, Θ0.

1: x0 = arg min
x∈Q

d(x) x0 = arg min
x∈Q

d(x)

2: I =: ∅ I =: ∅
3: N ← 0 N ← 0
4: repeat repeat
5: if g(xN) ≤ ε then if g(xN) ≤ ε then
6: hN = ε

Mg ·‖∇f(xN )‖∗
, MN :=

∥∥∇f(xN , ξN)
∥∥
∗ ,

7: xN+1 = MirrxN
(
hN∇f(xN)

)
, hN = Θ0

(
N∑
t=0

M2
t

)−1/2

,

8: N → I xN+1 := MirrxN
(
hN∇f(xN , ξN)

)
,

9: else // g(xN) > ε N → I
10: hN = ε

M2
g
, else // gj(N)(x

N) > ε for some j(N) ∈ [m]

11: xN+1 = MirrxN
(
hN∇g(xN)

)
, MN :=

∥∥∇gj(N)(x
N , ζN)

∥∥
∗ ,

12: end if hN = Θ0

(
N∑
t=0

M2
t

)−1/2

;

13: N ← N + 1 xN+1 := MirrxN
(
hN∇gj(N)(x

N , ζN)
)
,

14: until N ≥
⌈

2M2
gΘ2

0

ε2

⌉
. end if

15: —— N ← N + 1

16: —— until N ≥ 2Θ0

ε

(
N−1∑
t=0

M2
t

)1/2

.

Ensure x̄N := arg minxk, k∈I f(xk). x̄N := 1
NI

∑
k∈I x

k.

Algorithms 4 and 5 we have the following corollary

Corollary 1. Let f : Q → R satisfies the Lipschitz condition on Q, with constant
Mf > 0. Then

• after

N =

⌈
2 max{1,M2

g }Θ2
0

ε2

⌉
steps of the work of Algorithm 4 (as well as Algorithm 3), the following estimate
holds:

min
k∈[N ]

f(xk)− f(x∗) ≤Mf ε; (9)
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• after

N =

⌈
2M 2

gΘ2
0

ε2

⌉
steps of the work of Algorithm 5, the following estimate holds:

min
k∈[N ]

f(xk)− f(x∗) ≤ Mf

Mg
ε. (10)

Remark 1. In thesis it was clarified when the partial adaptive Algorithm 5 may
be more advantageous and more effective than adaptive Algorithm 3. But here, in
order to the brief: note that for these algorithms there are different stopping criteria.
In addition, from (7) and (8), we can see that, when Mg < 1, then the Algorithm
5 works faster than Algorithm 3 and the contrary when Mg > 1. Also, we can
see that the difference between the estimates (9) and (10), is only by the Lipschitz
constant Mg. Therefore, after achieving the stopping criteria of Algorithms 3 and 5,
we get a solution to the considered problem, with different estimates of the quality,
dependently on the value of Mg.

Now, suppose that, the objective function f : Q → R is twice differentiable at
each x ∈ Q and its Hessian is Lipschitz-continuous with constant LH > 0, i.e.∥∥∇2f(x)−∇2f(y)

∥∥ ≤ LH‖x− y‖ ∀ x, y ∈ Q, (11)

where the norm ‖ · ‖ in (11), denotes the standard Euclidean norm; when applied
to matrices it denotes the l2-operator norm. In the case, when the Hessian of the
function f is Lipschitz-continuous, we have the following result

Corollary 2. Let f : Q → R ba a twice differentiable function in Q and have the
Lipschitz Hessian, i.e. (11) holds. Then

• after

N =

⌈
2 max{1,M2

g }Θ2
0

ε2

⌉
steps of the work of Algorithm 4 (as well as Algorithm 3), we have the following
estimate

min
k∈I

f(xk)− f(x∗) ≤ ε · ‖∇f(x∗)‖∗ +
ε2

2

∥∥∇2f(x∗)
∥∥+

LH
6
ε3; (12)

• after

N =

⌈
2M 2

gΘ2
0

ε2

⌉
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steps of the work of Algorithm 5, we have the following estimate

min
k∈I

f(xk)− f(x∗) ≤ ε

Mg
· ‖∇f(x∗)‖∗ +

1

2
·
∥∥∇2f(x∗)

∥∥ · ε2
M 2

g

+
LH
6

ε3

M 3
g

. (13)

Remark 2. We can formulate the analogue of the previous estimates for the class of
non-smooth functions, every one has the form f(x) = max

i∈[r]
fi(x), where fi is twice

differentiable at each x ∈ Q and∥∥∇2fi(x)−∇2fi(y)
∥∥ ≤ Li‖x− y‖ ∀ x, y ∈ Q,

where Li > 0, ∀ i ∈ [r]. Then we have the same two items in Corollary 2, with
LH = max

i∈[r]
Li.

Remark 3. At the end of the first section of chapter 2, in order to show
the advantages of the proposed modified Algorithm 2, some numerical tests were
carried out, and compared Algorithms 1– 4 for some examples. From the performed
experiments, we saw that, the proposed modified Algorithm can significantly reduce
both the number of iterations necessary to achieve the desired quality of the solution
and the running time of the algorithms, for the considered problem (2), with different
forms of the functional constraints. Additionally, although one of Algorithms 3 and
5 works faster than another (dependently on the value of Mg, see Remark 1), but
maybe the fastest algorithm give a worse quality of the solution. In order to show
this, also some numerical experiments were carried out.

In section 2.2, it was considered the problem (2) with assumption of strong
convexity of f and g with the same parameter µ > 0. By using the technique of
restart another algorithm, some adaptive (restart Algorithms 1 and 3) and partially
adaptive (restart Algorithm 5) optimal algorithms were mentioned for the problem
under consideration. Some numerical experiments were carried out, in order to show
that the technique of restarts justifies a higher convergence rate of the Mirror Descent
algorithms for strongly convex constrained optimization problems.

Section 2.3 is devoted to a new modification of a recently proposed adaptive
stochastic Mirror Descent algorithm46, for the stochastic setting of the problem (2), in
the case when the objective function is Lipschitz-continuous (the modified algorithm
is listed as Algorithm 6). This means that we can still use the value of the objective
function and functional constraints, but instead of their (sub)gradient, we use their
stochastic (sub)gradient. For the stochastic setup of the problem (2), we introduce

46See Algorithm 4 in the article referenced in footnote 25.
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the following assumptions. Given a point x ∈ Q, we can calculate the stochastic
(sub)gradients ∇f(x, ξ) and ∇g(x, ζ), where ξ and ζ are random vectors. These
stochastic (sub)gradients satisfy

E[∇f(x, ξ)] = ∇f(x) ∈ ∂f(x) and E[∇g(x, ζ)] = ∇g(x) ∈ ∂g(x), (14)

where E denote to the expectation, and

‖∇f(x, ξ)‖∗ ≤Mf and ‖∇g(x, ζ)‖∗ ≤Mg, a.s. in ξ, ζ. (15)

We say that a (random) point x̂ ∈ Q is an expected ε–solution to the problem
(2), in stochastic setup, if

E[f(x̂)]− f(x∗) ≤ ε and g(x̂) ≤ ε. (16)

For the modified Algorithm 6, in thesis it was proved the following theorem, which
shows that this algorithm is optimal

Theorem 2. Let equalities (14) and inequalities (15) hold. Assume that a known
constant Θ0 > 0 is such that sup

x,y∈Q
Vx(y) ≤ Θ2

0. Then Algorithm 6 stops after no

more than

N =

⌈
4 max{M 2

f ,M
2
g }Θ2

0

ε2

⌉
(17)

iterations and x̄N is an expected ε–solution in the sense of (16).

In order to show the advantages of the proposed modified Algorithm 6, some
numerical tests were carried out for some examples with different values of the
accuracy and the dimension of the problem. From the performed experiments we
can see that the proposed Algorithm 6 can significantly reduce both the number of
iterations necessary to achieve the desired quality of the solution and the running
time of the algorithm, for the considered problem (2) in the stochastic setting.

The third chapter was under the title "Mirror Descent and Constrained Online
Optimization Problems". In problems of online convex optimization (OCO), it is
required to minimize the sum (or the arithmetic mean) of several convex functionals
fi (i ∈ [N ]) given on some closed convex setQ ⊂ Rn, with several convex non-smooth
functional constraints, i.e. the following type of problems

1

N

N∑
i=1

fi(x)→ min
x∈Q, g(x)≤0

. (18)

We assume that fi (for all i ∈ [N ]) and g are Lipschitz-continuous functionals,
with constant M > 0.
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This chapter is devoted to some deterministic and stochastic Mirror Descent
algorithms for the problem(18). In section 3.1, it was mentioned to some algorithms,
for the deterministic setting47 of (18), with an arbitrary proximal structure. The
first one of these algorithms is a non-adaptive, while the second is adaptive with one
modification. In the thesis, it was proved a theorem, which shows the optimality of
the proposed non-adaptive algorithm.

Section 2.3, is devoted to a stochastic setting of the problem (18). This means
that we can still use the value of the function g, but instead of (sub)gradient of fi (for
all i ∈ [N ]) and g, we use their stochastic (sub)gradients ∇fi(x, ξ),∇g(x, ζ), where
ξ, ζ are random vectors. It was proposed two algorithms, non-adaptive (Algorithm
7) and adaptive (Algorithm 8), for an arbitrary prox-structure. Each one of these
Algorithms, produces N productive steps and in each step, the (sub)gradient of
exactly one functional of the objectives is calculated. Denote the number of non-
productive steps by NJ . As a result, we get a sequence {xk}k∈I (on productive
steps), which can be considered as a solution to the problem (18) with accuracy δ.

Algorithm 7. Non-adaptive stochastic online Mirror Descent algorithm.

Algorithm 8. Adaptive stochastic online Mirror Descent algorithm.

Algorithm 7 Algorithm 8
Require ε, N, Θ0, Q, d(·), x0. ε, N, Θ0, Q, d(·), x0.

1: i := 1, k := 0, i := 1, k := 0,
2: repeat repeat
3: if g(xk) ≤ ε then if g(xk) ≤ ε then
4: h = ε

M2 , Mk :=
∥∥∇fi(xk, ξk)∥∥∗ ,

5: xk+1 := Mirrxk
(
h∇fi(xk, ξk)

)
, hk = Θ0

(
k∑
t=0

M2
t

)−1/2

,

6: i := i+ 1, xk+1 := Mirrxk
(
hk∇fi(xk, ξk)

)
,

7: k := k + 1, i := i+ 1,
8: else k := k + 1,
9: h = ε

M2 , else
10: xk+1 := Mirrxk

(
h∇g(xk, ζk)

)
, Mk :=

∥∥∇g(xk, ζk)
∥∥
∗ ,

11: k := k + 1, hk = Θ0

(
k∑
t=0

M2
t

)−1/2

,

12: end if xk+1 := Mirrxk
(
hk∇g(xk, ζk)

)
,

13: until i = N + 1 k := k + 1,
14: Guaranteed accuracy: end if
15: δ := ε

2
+

M2Θ2
0

εN
− εNJ

2N
. until i = N + 1

16: Guaranteed accuracy:

δ := 2Θ0

N

(
N+NJ−1∑

i=0

M2
i

)1/2

− ε · NJ

N
.

47These algorithms proposed by F. S. Stonyakin in "A. A. Titov, F. S. Stonyakin, A. V. Gasnikov, M. S. Alkousa:
Mirror Descent and Constrained Online Optimization Problems// Optimization and Applications. 9th International
Conference OPTIMA-2018. Communications in Computer and Information Science, 974, pp. 64–78, 2019."
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In order to Algorithms 7 and 8, it was proved the following result, which shows
that the proposed algorithms are optimal48.

Theorem 3. Suppose Algorithm 7 (or Algorithm 8) works exactly N productive
steps. After the stopping of the Algorithm 7 (or Algorithm 8), the following inequality
holds

E

[
1

N

N∑
i=1

fi(x
k)

]
−min

x∈Q

1

N

N∑
i=1

fi(x) ≤ δ.

For the case δ ≤ ε = C√
N
, for some C > 0, and

E

[
1

N

N∑
i=1

fi(x
k)

]
−min

x∈Q

1

N

N∑
i=1

fi(x) ≥ 0,

there will be no more than O(N) non-productive steps.

Remark 4. At the end of each section in chapter 3, in order to compare the proposed
algorithms, some numerical experiments were carried out. From all performed
experiments, it was shown that the adaptive variant of algorithms, in both settings,
deterministic and stochastic, works better than non-adaptive algorithms, with respect
to the number of iterations, the running time of algorithms and the guaranteed
accuracy δ, where the number of the non-productive steps and the value of δ obtained
by adaptive algorithms are very small compared to the non-adaptive algorithms, in
both settings of the proposed problem.

The forth chapter was under the title "Accelerated Methods for Saddle Point
Problems". In section 4.1, it was considered the following more general class of the
saddle point problems

min
x∈Qx

max
y∈Qy

{S(x, y) := r(x) + F (x, y)− h(y)}. (19)

where, Qx ⊆ Rm, Qy ⊆ Rn are non-empty, convex and compact sets. r : Qx →
R and h : Qy → R are µx–strongly convex and µy–strongly concave functions,
respectively. The functional F : Qx × Qy → R is convex by x, concave by y and
given in some neighborhood of the set Qx × Qy. Moreover, we consider F to be
sufficiently smooth on Qx ×Qy, i.e. for any x, x′ ∈ Qx and y, y′ ∈ Qy, the following
inequalities are satisfied

‖∇xF (x, y)−∇xF (x′, y)‖2 ≤ Lxx‖x−x′‖2, ‖∇xF (x, y)−∇xF (x, y′)‖2 ≤ Lxy‖y−y′‖2,
48For the concept of the optimality, see "E. Hazan, S. Kale: Beyond the regret minimization barrier: Optimal

algorithms for stochastic strongly-convex optimization. JMLR. 15, pp. 2489–2512, 2014."
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‖∇yF (x, y)−∇yF (x′, y)‖2 ≤ Lxy‖x−x′‖2, ‖∇yF (x, y)−∇yF (x, y′)‖2 ≤ Lyy‖y−y′‖2,
where Lxx, Lxy, Lyy ≥ 0.

Note that, the problem (19) is equivalent to the following optimization problem

f(x) := r(x) + max
y∈Qy

{F (x, y)− h(y)}︸ ︷︷ ︸
g(x):=F (x,y∗(x))−h(y∗(x))

→ min
x∈Qx

, (20)

where y∗(x) = arg maxy∈Qy
{F (x, y)− h(y)}.

From the point of view of accelerated methods, the class of problems (19) has been
sufficiently studied in some details, mainly in the case when F (x, y) is bilinear49,
i.e. F (x, y) = 〈Ax, y〉 for some linear operator A. In this case Lxx = Lyy = 0,
Lxy = Lyx =

√
λmax(ATA).

In thesis, it was proposed to reduce the considered saddle problem (19) to a
combination of auxiliary smooth strongly convex optimization problems of separately
for each group of variables. Therefore, the application of acceleration Nesterov’s
gradient method lead to improve the estimates of convergence. We got an analogue
of the Lan’s results and showed that the best-known bounds for the bilinear convex-
concave smooth composite saddle point problems keep true for the non-bilinear
problems.

Definition 1. We say that the function r : Qx → R is proximal-friendly, if the
problem of the form

min
x∈Qx

{
〈c1, x〉+ r(x) + c2‖x‖22

}
, (21)

where c1 ∈ Qx and c2 > 0, can be solved explicitly.
Similarly, h : Qy → R is proximal-friendly function, if the problem of the form

min
y∈Qy

{
〈c3, y〉+ h(y) + c4‖y‖22

}
, (22)

where c3 ∈ Qy and c4 > 0, can be solved explicitly.

In order to review the best-known results50 51, regarding the complexity of solving
the problem (19), we distinguish several cases, according to some assumptions on the
functions r and h. We mention to these best-known results in Table 1, below.

By the special case, in Table 1, we mean that F (x, y) = 〈Ax, y〉 and by the
general case when the function F (x, y) is non-bilinear.

49See "G. Lan: Lectures on Optimization Methods for Machine Learning. H. Milton Stewart School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, GA. 2019."

50L. T. K. Hien, R. Zhao, W. B. Haskell: An Inexact Primal-Dual Smoothing Framework for Large-Scale Non-
Bilinear Saddle Point Problems. 2019. https://arxiv.org/pdf/1711.03669v3.pdf

51See the work referenced in footnote 49
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Таблица 1: The best-known results regarding the complexity of solving the problem (19).

State (1): both functions r and h are proximal-friendly.
special case Õ

(
Lxy√
µxµy

)
calculations of (21), ∇xF (x, y) and (22), ∇yF (x, y).

general case Õ
(

max{Lxx,Lxy ,Lyy}
min{µx,µy}

)
calculations of (21), ∇xF (x, y) and (22), ∇yF (x, y).

State (2): the function r is Lx–smooth and it is not proximal-friendly.
Õ
(√

Lx

µx

)
calculations of ∇r(x)

special case Õ

(√
Lxx

µx
+

L2
xy

µxµy

)
calculations of ∇xF (x, y)

Õ

(√
Lxx

µx
+

L2
xy

µxµy

√
max

{
Lyy

µy
, 1
})

calculations of (22), ∇yF (x, y)

State (3): the function h is Ly–smooth and it is not proximal-friendly.

Õ

(√
Lxx

µx
+

L2
xy

µxµy

√
Ly

µy

)
calculations of ∇h(y)

special case Õ

(√
Lxx

µx
+

L2
xy

µxµy

)
calculations of (21), ∇xF (x, y)

Õ

(√
Lxx

µx
+

L2
xy

µxµy

√
max

{
Lyy

µy
, 1
})

calculations of ∇yF (x, y)

State (4): r is Lx–smooth, h is Ly–smooth and both they are not proximal-friendly.
Õ
(√

Lx

µx

)
calculations of ∇r(x)

special case Õ

(√
Lxx

µx
+

L2
xy

µxµy

)
calculations of ∇xF (x, y)

Õ

(√
Lxx

µx
+

L2
xy

µxµy

√
Ly

µy

)
calculations of ∇h(y)

Õ

(√
Lxx

µx
+

L2
xy

µxµy

√
max

{
Lyy

µy
, 1
})

calculations of ∇yF (x, y)

From this table, we can say that an ε–solution of the problem (19) can be achieved in Õ()
calculations, which placed in the second column, of placed items in the third column.

In order to the accelerated methods for problem (19), the main result in the
thesis was the justification of the results for states (2), (3) and (4) in Table 1, when
F (x, y) = 〈Ax, y〉, for the general case, in which the function F (x, y) is non-bilinear.

Another result was the refinement of the results in the case when F (x, y) =

〈Ax, y〉, for some linear operator A, Qy = Rm, h is Ly–smooth and
λmin(ATA)

Ly
� µx.

In this case, in all formulas, we can replace µx with
λmin(ATA)

Ly
.

In the case of non-smooth problems, the application of accelerated gradient
method does not improve the estimates of complexity, it gives the same estimate
as the non-accelerated method, which is O

(
1/ε2

)
. Therefore, we try to highlight

some other classes of problems. In section 4.2, for the non-smooth case of saddle
point problems, as a special case, we consider the classical optimization problem of
minimizing a strongly convex function with one non-smooth functional constraint

f(x)→ min
x∈Q, g(x)≤0

. (23)
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where f : Q → R is a Lipschitz-continuous with constant Mf > 0 and µf–strongly
convex function, the functional constraint g is Lipschitz-continuous with constant
Mg > 0. In the case of several strongly convex non-smooth constraints, we consider
one max-type constraint which is also strongly convex. Note that the dual problem
to the problem (23) has the following form

ϕ(λ) = f(x(λ)) + λg(x(λ))→ max
λ≥0

, (24)

where
x(λ) = arg min

x∈Q
{f(x) + λg(x)} . (25)

In order to solve the problem (23), an analogue of an adaptive Algorithm 9, which
was proposed by F. S. Stonyakin52, was proposed in thesis (see Algorithm 10). The
difference between Algorithms 9 and 10, is represented only on the stooping criterion.

The approach in these algorithms is based on the transition to a strongly convex
dual problem, in this case, the dual function depends on one dual variable, which
allows us to use the dichotomy method and solving an auxiliary one-dimensional
problem at each iteration.

Algorithm 9. In Require, the interval [λ0
min, λ

0
max] is the initial localization interval of the dual

variable.

Algorithm 10. Also, as in Algorithm 9, δ is an accuracy for the auxiliary problem, see item 4 in
each algorithm.

Algorithm 9 Algorithm 10
Require [λ0

min, λ
0
max]; δ; ε. [λ0

min, λ
0
max]; δ; ε.

1: N := 0 N := 0
2: repeat repeat
3: λN :=

λNmin+λNmax

2
, λN :=

λNmin+λNmax

2
,

4: xδ(λ
N) = arg minδx∈Q{f(x) + λNg(x)}, xδ(λ

N) = arg minδx∈Q{f(x) + λNg(x)},
5: ϕ′(λN) = g(xδ(λ

N)), ϕ′(λN) = g(xδ(λ
N)),

6: if ϕ′(λN) < 0 then λN+1
max :=

λNmin+λNmax

2
, if ϕ′(λN) < 0 then λN+1

max :=
λNmin+λNmax

2
,

7: if ϕ′(λN) > 0 then λN+1
min :=

λNmin+λNmax

2
, if ϕ′(λN) > 0 then λN+1

min :=
λNmin+λNmax

2
,

8: N := N + 1; N := N + 1;
9: until λN |g(xδ(λ

N))| ≤ ε. until |g(xδ(λ
N))| ≤ ε.

Ensure λN , with λN |g(xδ(λ
N))| ≤ ε; xδ(λ

N). λN , with |g(xδ(λ
N))| ≤ ε; xδ(λ

N).

In order to estimate the accuracy of the solution of the considered problem by
Algorithm 10, the following lemma was concluded in thesis

52See "F. S. Stonyakin, M. S. Alkousa, A. A. Titov, V. V. Piskunova: On Some Methods for Strongly
Convex Optimization Problems with One Functional Constraint. In book: Mathematical Optimization Theory
and Operations Research, 18th International Conference, MOTOR 2019, LNCS 11548, pp. 82–96, 2019."
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Lemma 1. Suppose the stopping criterion of Algorithm 10 holds for λ = λN . Then
the following inequalities hold

f(xδ(λ))− f(x∗) ≤ λε+ δ and g(xδ(λ)) ≤ ε. (26)

where x∗ = x(λ∗). For the case δ = ε we get

f(xδ(λ))− f(x∗) ≤ (λ+ 1)ε and g(xδ(λ)) ≤ ε.

Remark 5. Lemma 1, is the analogue of a lemma, proposed by F. S. Stonyakin,
for Algorithm 9, where in this lemma, instead of the inequalities (26), we have the
following estimates

f(xδ(λ))− f(x∗) ≤ ε+ δ and g(xδ(λ)) ≤ ε

λ
, (27)

Remark 6. By analyzing (26) and (27) we can see that, Algorithm 9 guarantees the
desired accuracy of the solution with respect to the objective function, but, possibly,
unsatisfactory accuracy of the solution with respect to the constraint, as the estimate
is huge in case λ is small. Algorithm 10 provides the desired accuracy of the solution
with respect to the constraint and, possibly, unsatisfactory accuracy of the solution
with respect to the objective function in a case λ is huge. So one of the Algorithms 9
and 10 surely guarantees the desired accuracy with respect to both objective function
and constraint.

To estimate the convergence rate of the proposed Algorithm 10, in the case when
the objective function is Lipschitz-continuous, it was obtained that, the Algorithm
10 stops after no more than

O

(
log2

M 2
gλmax

εµf

)

iterations. Where, λmax =
1

γ

(
f(x) − min

x∈Q
f(x)

)
, and x ∈ Q is an arbitrary point,

such that g(x) = −γ < 0. Also, in thesis it was proved that the general complexity
of algorithm 10 will be

O

(
1

δ2
log2

1

ε

)
. (28)

Remark 7. If δ = O(ε) then the general complexity (28) of Algorithm 10 will be
O
(
1
ε2 log2

1
ε

)
, which is generally not optimal. However, due to the adaptivity of the

stopping criteria of Algorithms 9 and 10, these algorithms can work faster than
optimal algorithms, such as Mirror Descent algorithms. Note that we require, in
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Algorithms 9 and 10, the strong convexity only of the objective function f . In this
case, the functional g, in general, may not be strongly convex. Also, there is no need
to know the value of the strong convexity parameter of the objective function, which
is not available in some optimal methods, such as Mirror Descent, wherein these
methods require the strong convexity and knowing the value of the strong convexity
parameter of both objective function and functional constraints.

Remark 8. At the end of the last section 4.2, some numerical experiments were
carried out, in order to the comparison between Algorithms 9 and 10. Also, in order
to compare these algorithms with an optimal adaptive Mirror Descent algorithm.
It was compared the running time of Algorithms and the quality of a solution,
produced by these algorithms, with respect to the objective function and the functional
constraints. It was shown that in some examples, the Algorithm 9 can work faster
than the proposed Algorithm 10, but although Algorithm 10 works slower than
Algorithm 9, it gives better quality of a solution with respect to the objective function
f. The contrary was shown in other examples. Also, It was shown, in some examples,
that Algorithms 9 and 10 work better than the adaptive Mirror Descent Algorithm,
which is based on the technique of restart Algorithm 1.
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