На правах рукописи

Africa

Лапатин Николай Анатольевич

СОРБЦИЯ И ЛЮМИНЕСЦЕНТНО-СПЕКТРАЛЬНЫЕ СВОЙСТВА АЗОМЕТИНОВЫХ ОСНОВАНИЙ В ПЕРФТОРСУЛЬФОНОВОЙ МЕМБРАНЕ

02.00.04 – физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Санкт-Петербург - 2019

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский государственный педагогический университет имени А. И. Герцена»

Научный руководитель:	Пак Вячеслав Николаевич доктор химических наук, профессор, ведущий научный сотрудник НИИ Физики ФГБОУ ВО «Российский государственный педагогический университет им. А.И. Герцена»
Официальные оппоненты	Тойкка Александр Матвеевич доктор химических наук, профессор, заведующий кафедрой химической термодинамики и кинетики Института химии ФГБОУ ВО «Санкт-Петербургский государственный университет»
	Дубровенский Станислав Дмитриевич кандидат химических наук, доцент, доцент кафедры химической нанотехнологии и мате- риалов электронной техники ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»

Ведущая организация ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»

Защита состоится 22 мая 2019 г. в 15:30 часов на заседании диссертационного совета Д 212.230.07 при Федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский государственный технологический институт (технический университет) по адресу: 190013, Санкт-Петербург, Московский проспект, 26, Белоколонный зал.

С диссертацией можно ознакомиться в библиотеке СПбГТИ(ТУ) и на сайте организации по адресу

http://technolog.edu.ru/university/dissovet/autoreferats/file/6493-...html

Замечания и отзывы в 2-х экземплярах, заверенные печатью, просим направлять на имя ученого секретаря по адресу: 190013, Санкт-Петербург, Московский пр., 26, Санкт-Петербургский государственный технологический институт (технический университет).

Справки по тел.: (812)494-9375 e-mail: *dissowet@technolog.edu.ru*

Автореферат разослан 27 марта 2019 г.

Ученый секретарь диссертационного совета Д 212.230.07 доктор технических наук, профессор Пантелеев Игорь Борисович

the

Общая характеристика работы

Актуальность темы исследования

Постоянно растущее внимание к разработке материалов на основе перфторсульфоновых мембран (ПФСМ) в основном связано с возможностями их применения в качестве твердых электролитов в источниках тока. При этом в литературе накоплен и постоянно пополняется большой массив сведений о структуре ПФСМ, окончательное представление о которой все еще не сложилось.

Характерно, что на фоне основных направлений исследований не привлекла должного внимания высокая прозрачность ПФСМ в видимом и УФ диапазоне. Вместе с тем, указанное свойство в сочетании с доступностью наноструктурированного порового пространства ПФСМ для жидкостей и газов открывает широкие, но мало использованные до сих пор возможности получения пленочных материалов оптического назначения. Применение с этой целью способов направленного модифицирования в свою очередь требует знания и использования особых сорбционных свойств ПФСМ, по существу не охарактеризованных до настоящего времени. Кроме того, остаются недостаточно изученными способы синтеза и закрепления в ПФСМ гостевых веществ различной природы, специфика их состояния в наноструктурированном пространстве и связанные с этим люминесцентноспектральные свойства.

Настоящая работа выполнена по плану НИР РГПУ им. А.И. Герцена в рамках основного научного направления № 17 «Физическая химия конденсированных сред и их поверхностей» при финансовой поддержке Министерства образования и науки Российской Федерации в рамках базовой части государственного задания (№ 1.5650.2017/ВУ).

Степень её разработанности

Направленные исследования особенностей проявления люминесцентноспектральных свойств веществ органической и неорганической природы в ПФСМ развиваются главным образом на кафедре неорганической химии в РГПУ им. А.И. Герцена. Текущий этап включает расширение круга разрабатываемых систем оптического назначения и углубление понимания их особых свойств.

Цель и задачи исследования

Цель работы заключалась в определении особенностей сорбции перфторсульфоновой мембраной ряда азометиновых оснований, выявлении изменений электронного строения молекул азометиновых оснований в сорбированном состоянии, изучении и трактовке люминесцентно-спектральных свойств полученных пленочных материалов

Для достижения поставленной цели необходимо решить следующие задачи:

1. Провести оценку параметров пористой структуры и сорбционных возможностей ПФСМ. Определить степень влияния химического и размерного факторов на динамику и достигаемые значения сорбции ряда азометиновых оснований.

2. Выявить общие и индивидуальные особенности электронных спектров поглощения азометинов и специфику их сорбированного состояния в поровом пространстве ПФСМ.

3. Провести сравнительное исследование условий и степени проявления люминесценции полученных пленочных материалов.

Научная новизна

Впервые установлены количественные соотношения динамики и достигаемых значений сорбции азометиновых оснований ПФС-мембраной – с уточненными параметрами ее пористой структуры. Возмущение электронной структуры сорбированных азометинов находит закономерное отражение в характерных особенностях спектров поглощения и проявлении флуоресценции модифицированных мембран.

Теоретическая и практическая значимость

Материалы исследования развивают представления о размерных особенностях состояния и свойств гостевых веществ - модификаторов в наноструктурированном пространстве пористых носителей, служат расширению и углублению сведений о возможных взаимодействиях на межфазных границах.

Показана перспективность использования ПФСМ в качестве высокоэффективного сорбента. Сорбционное модифицирование ПФСМ расширяет арсенал принципов и методов направленного синтеза материалов с необходимыми оптическими свойствами. Пленочные материалы с включенными азометиновыми основаниями, катионами Tb³⁺ и наночастицами сульфида цинка могут быть использованы для проектирования и разработки люминесцентных, светопреобразующих и сенсорных устройств.

Методология и методы исследования построены на способах адсорбционного модифицирования поверхности и спектроскопии наноструктурированных объектов. Исследования проведены с использованием традиционных методик и оборудования (химического и фотометрического анализа, определения параметров пористой структуры, регистрации спектров поглощения и люминесценции).

Положения, выносимые на защиту

• Высокая сорбционная способность и емкость мембраны МФ–4СК определяются сочетанием развитой пористой структуры с равномерностью и плотностью распределения высокоактивных центров -SO₃H на доступной поверхности. Сорбция мембраной азометиновых оснований облегчается высокой диффузионной подвижностью молекул и протекает с образованием прочных поверхностных соединений.

• Возмущение электронной структуры азометинов в мембране проявляется в значительном длинноволновом смещении полос поглощения, связанных с *n*-*π*^{*} переходами электронов на уровни разрыхляющих состояний азометиновых и арильных частей молекул.

• Сорбционное закрепление азометинов в ПФСМ определяет их флуоресценцию при комнатной температуре в фиолетово-синей области спектра. Излучательными являются разрыхляющие состояния $\pi^*_{(N=C)}$ азометиновоых (HC=N–) фрагментов молекул. Возможность высвечивания сосуществующих в ПФСМ ионов Tb³⁺ и азометина зависит от энергии возбуждающего света.

• Наночастицы сульфида цинка в ПФСМ аморфны, обладают низкой плотностью и проявляются в коротковолновом смещении спектров поглощения и люминесценции относительно поликристаллического ZnS.

Степень достоверности и апробация результатов в обеспечены применением в экспериментах надежных аналитических методов, стандартной измерительной аппаратуры, согласованностью полученных результатов и их сопоставлением со справочными данными и литературными источниками.

Материалы диссертации доложены на IV Всероссийской научнопрактической конференции «Инновационные материалы в технологии и дизайне» (Санкт-Петербург, 2018 г.), IV Международной научной конференции «Современные тенденции развития химии и технологии полимерных материалов» (Санкт-Петербург, 2018 г.), Международном симпозиуме «Нанофизика и наноматериалы» - N&N-2018 (Санкт-Петербург, 2018 г.), XVII Всероссийской молодежной научной конференции с элементами научной школы «Функциональные материалы: синтез, свойства, применение» (Санкт-Петербург, 2018 г.).

Основное содержание работы отражено в 6 публикациях, в том числе 2 статьях в журналах списка ВАК РФ.

Во введении отражена актуальность темы исследования, его цель, задачи и положения, выносимые на защиту.

В литературном обзоре приведены общие сведения об азометиновых основаниях и их люминесцентно-спектральных свойствах, рассмотрены строение и свойства ПФСМ, анализируются материалы литературных источников, отражающие возможности модифицирования мембран и их использования в качестве носителей для получения материалов оптического назначения.

Объекты и методы исследования

Использовали отечественный аналог полимера *Nafion* – мембраны марки МФ–4СК (ОАО «Пластполимер») в виде тонких (0.25 мм) пластинок с площадью 1–5 см². Модифицирование ПФСМ осуществляли азометиновыми основаниями (рисунок 1).

N, N – дисалицилиденэтилендиамин (H₂salen)

N,*N*-дисалицилиден-1,4-бутилендиамин (H₂salbn-1,4)

N, N-дисалицилиден-1,3-пропилендиамин (H₂salpn-1,3)

N,*N*′-бис(5-хлорсалицилиден)-1,3-пропилендиамин (H₂–5Cl- *salpn*-1.3)

Рисунок 1 - Структурные формулы азометинов

N,N′-бис(5-бромсалицилиден)-1,3-пропилендиамин (H₂ –5Br-*salpn*-1.3)

Сорбцию азометинов осуществляли из $10^{-4} - 10^{-5}$ моль/л растворов в этаноле. Модифицирование ПФСМ катионами Zn²⁺ и Tb³⁺ проводили в водных растворах хлоридов. Для получения наночастиц ZnS в поровом пространстве образцы Zn²⁺замещенных мембран обрабатывали в токе влажного сернистого водорода. Содержание веществ-модификаторов в ПФСМ определяли методами химического и фотометрического анализа. Спектры поглощения растворов и модифицированных мембран в видимой и УФ области снимали в режиме пропускания на спектрометре *Shimadzu UV-2550*. Регистрацию люминесценции образцов проводили при комнатной температуре на спектрометре *Флюорат-*02*-Панорама.*

Свойства мембраны МФ-4СК

Слабо выраженный S–образный вид изотермы адсорбции воды мембраной МФ-4СК дает возможность оценки величины удельной поверхности S_{уд} ≈ 130 м²/г. Заключительная точка изотермы характеризует доступный сорбционный объём мембраны, составивший по результатам ряда измерений V_л = 0.20 ± 0.03 см³/г. Пористость $\delta(cm^3/cm^3)$, отражающая долю пустот в общем объеме, с учетом объема пор и плотности каркаса ПФСМ ($\rho = 2 \ r/cm^3$) составляет $\delta \approx 0.4$.

Представление о топографии расположения сульфогрупп получено отнесением установленного содержания [-SO₃H] = 0.84 ± 0.05 ммоль/г к удельной поверхности. Величина площадки, приходящейся на одну группу, составляет ~ 25 Å², свидетельствуя о высокой плотности распределения активных центров на доступной поверхности ПФСМ.

Предельная величина сорбции Zn^{2+} достигается в течение ~ 0.5 часа и устойчиво воспроизводится на уровне Q = 0.45 ± 0.04 ммоль/г. Закрепленная форма Zn^{2+} устойчива и полностью сохраняется в условиях отмывки мембраны от порового раствора. Отношение Q/[-SO₃H], близкое 1/2, позволяет уверенно считать, что ионный обмен протекает по схеме:

$$2(-SO_{3}H) + Zn^{2+} \rightarrow (-SO_{3}-)_{2}Zn + 2H^{+}$$
(1)

с достижением по существу предельного заполнения доступной поверхности.

В результате сорбции катионов Tb³⁺ устойчиво воспроизводится предельное значение Q = 0.27 ± 0.05 ммоль/г, соответствующее практически идеальному мольному отношению Q/[-SO₃H] ≈ 1/3. Таким образом, топография распределения и высокая активность центров сорбции ПФСМ определяют предельное заполнение ее поверхности по схеме:

$$3(-SO_3H) + Tb^{3+} \rightarrow (-SO_3-)_3 Tb + 3H^+$$
 (2)

С учетом полноты использования сульфогрупп мембраны в процессах ионообменного замещения, оценка площадок, занимаемых катионами Tb³⁺ и Zn²⁺, дает значения ~75 и ~50Å², что отвечает среднему расстоянию между ними ~9 и ~7 Å, соответственно. Полученный результат согласуется с проведенной выше оценкой распределения групп –SO₃H и служит указанием на необычно высокую сорбционную активность мембраны МФ-4СК.

Особенности сорбции мембраной азометиновых оснований

Сорбция азометинов надежно определяются по убыли концентрации их спиртовых растворов в контакте с мембраной (рисунок 2). Процесс завершается в течение 1.5-2 часов. Значение сорбции $H_2salen Q \sim 1.1 \cdot 10^{-5}$ моль/г (порядок типичен для всех азометинов) надежно воспроизводится при концентрации раствора сверх 10^{-5} моль/л. Кажущееся низким значение Q не удивительно с учетом размеров H_2salen и недоступностью части узких пор ПФСМ для размещения молекул. Тем не менее, активное протекание сорбции (рисунок 2) убедительно подтверждается сопоставлением ее значения с содержанием молекул в поровом объеме ($V_n = 0.22 \text{ см}^3/\text{г}$) при условии его простого заполнения рабочим раствором (при концентрации раствора $\sim 10^{-4}$ моль/г). Сорбированное количество H_2salen прочно удерживается в ПФСМ и полностью сохраняется в ходе длительного промывания как спиртом, так и водой, подтверждая высокую устойчивость сформированных поверхностных комплексов.

Рисунок 2 - а) Спектр поглощения спиртового 2·10⁻⁴моль/л раствора H₂salen (1) и его изменение в ходе поглощения мембраной (массой 0.05 г) в течение (мин) 60(2), 90(3), 100(4), 120(5); б) динамика сорбции

Значение $Q = 1.1 \cdot 10^{-5}$ моль/г оказывается предельным, устойчиво сохраняясь при значительном повышении концентрации раствора до 10^{-3} моль/л. Вместе с тем сорбция успешно достигается на том же уровне ($Q \sim 10^{-5}$ моль/г) и при снижении концентрации раствора H_2 salen до 10^{-5} моль/л. В условиях эксперимента (масса ПФСМ 0.05 г, объем раствора 50 мл) полученный результат соответствует глубо-кой очистке раствора (абсолютное значение сорбции ~ $5 \cdot 10^{-7}$ моль оказывается сопоставимым с содержанием (~ $5 \cdot 10^{-7}$ моль) молекул в растворе). Приведенные доводы в совокупности позволяют считать, что процесс сорбции сильно смещен в сторону образования прочного поверхностного соединения H_2 salen с мембраной.

Отмеченные особенности проявляются и в том, что сорбция протекает и завершается неожиданно быстро; необычной при этом оказывается и ее динамика, близкая линейной на основном участке (рисунок 2, б). Отчетливо слабому проявлению торможения вхождению крупных молекул в узкое пространство ПФСМ должно отвечать высокое значение коэффициента диффузии *D*. Диффузионный поток H₂salen в мембрану описывается уравнением

$$dQ/d\tau = D \cdot s \cdot \delta \cdot c/h \tag{3}$$

где $s \cdot \delta$ - свободное сечение ПФСМ (геометрическая площадь с поправкой на величину пористости), c/h – градиент концентрации. Расчет по данным рисунка 2, δ приводит к большому значению $D = 3.3 \cdot 10^{--5}$ см²/с, порядок которого характеризует близкую свободной диффузию в растворах (или внешнюю, не лимитируемую наличием пор, стадию сорбции). Полагаем, что высокая подвижность крупных молекул H₂salen в узком поровом пространстве определяется их ярко выраженным сродством к мембране, проявляющей отмеченную выше необычно высокую сорбционную активность. Мощной движущей силой сорбции является образование прочного поверхностного комплекса - по существу трудно растворимого химического соединения молекулы H₂salen с ПФСМ.

Проявление азометинов как тетрадентантных оснований состоит в их способности донировать электронную плотность. Соответственно, закрепление молекул в ПФСМ имеет «многоточечный» характер. Переносом электронной плотности атомов азота и кислорода H₂salpn-1,3 на сильно протонированные атомы водорода сульфогрупп может быть обеспечено образование четырех «якорных» связей азометина с мембраной

$$4 (-SO_3H) + H_2 salen \rightarrow 4(-SO_3-) \cdots 4H^+ \cdots H_2 salen$$
(4)

Диффузионные ограничения сорбции должны проявиться при удлинении метиленового мостика (рисунок 1) в ряду $H_2salen - H_2salpn-1,3 - H_2salbn-1,4$. Оказалось, однако, что предельные значения и скорость сорбции практически не отличаются в указанном ряду: коэффициенты диффузии составляют близкие значения $3.3 \cdot 10^{-5}$, $3.1 \cdot 10^{-5}$ и $3.0 \cdot 10^{-5}$ см²/с, соответственно. Установленное сходство определяется не только ярко выраженной сорбционной активностью ПФСМ, но и характерным свойством молекул. - Гибкость метиленовых мостиков $H_2salpn-1,3$ и $H_2salbn-1,4$ обеспечивает их «соразмерность» с H_2salen благодаря способности сжиматься, позволяя молекулам диффундировать с равной скоростью и закрепляться в одинаковом количестве на одних и тех же центрах [–SO₃H].

Скорость сорбции галогенсодержащих азометинов (рис. 1) из спиртовых растворов заметно понижена в сравнении с незамещенной формой: почти втрое уменьшаются коэффициенты диффузии молекул в мембрану – от значения $3.3 \cdot 10^{-5}$ до ~ $1.4 \cdot 10^{-5}$ и ~ $1 \cdot 10^{-5}$ см²/с в случае H₂–5Cl-*salpn*-1,3 и H₂–5Br-*salpn*-1,3, соответственно. Достигаемые значения сорбции при этом снижаются более чем вдвое в случае H₂.-5Cl-*salpn*-1,3 (Q ~ $4.5 \cdot 10^{-6}$ моль/г) и еще заметнее для H₂–5Br-*salpn*-1,3 (Q ~ $3.1 \cdot 10^{-6}$ моль/г). Наблюдаемое ослабление сорбции лишь отчасти связано с увеличением размера и массы молекул. Присутствием атомов галогенов определяется значительное снижение отрицательного заряда и донорной способности кислорода арильной части азометинов и, в целом, их сродства к мембране. Тем не менее, следует подчеркнуть общее подобие протекания быстрых процессов сорбции и высокую устойчивость закрепления молекул H₂–5Cl-*salpn*-1,3 и H₂–5Br-*salpn*-1,3 и H₂–5Br-*salpn*-1,3 и H₂–5Br-*salpn*-1,3 и H₂–5Br-*salpn*-1,3 и H₂–5Br-

Люминесцентно-спектральные свойства модифицированных мембран

<u>Уточнение происхождения полос в спектрах поглощения азометинов</u> проведено по результатам квантово-химического расчета положения и состава (заселенности) молекулярных орбиталей (МО) H₂salpn-1,3. Использован программный пакет *GAMESS*–9.0, реализующий метод Хартри–Фока с включением полного набора *G6*–31 базисных атомных функций гаусовского типа.

В блоке верхних заполненных МО (рисунок 3) в порядке увеличения энергии четко выделяются различные по характеру пары. Так, 70-я и 71-я МО составлены преимущественно несвязывающими 2*p*-орбиталями азота - $2p^{H}_{(N)}$. Далее следует пара МО (72 и 73), включающая 2*p*-орбитали атомов углерода сопряженных колец H₂salpn-1,3 ($\pi^{H}_{c=c}$). Завершается «расселение» электронов молекулы на 74-й и 75-й МО, в составе которых присутствуют 2*p*-орбитали атомов кислорода и углерода арильных фрагментов молекулы - $\pi^{H}_{c=c}, 2p^{H}_{(o)}$. Что касается разрыхляющих состояний (рисунок 3), то близкие по энергии нижние вакантные 76-я и 77-я МО включают существенную долю разрыхляющих состояний $\pi^{*}_{C=C}$ характер, а в следующей 79-й МО присутствуют состояния σ^{*}_{C-H} (рисунок 3).

Для строгого отнесения и, тем более, оценки энергии возможных электронных переходов требуется расчет возбужденных состояний молекулы. Тем не менее, есть основания считать, что длинноволновое поглощение в спектре «свободных» азометинов должно быть связано с электронным возбуждением $\pi^{H}_{c=c}, 2p^{H}_{(o)}$ $\rightarrow \pi^{*}_{N=C}$ (рисунок 3). Полученный результат отражает единство электронной структуры молекулы (в отличие от принятого в литературе рассмотрения спектральных проявлений ее азометиновых и арильных фрагментов). В свою очередь, коротковолновые полосы поглощения можно отнести электронным переходам $\pi^{H}_{c=c}, 2p^{H}_{(o)} \rightarrow \pi^{*}_{c=c}$ и $\pi^{H}_{c=c}, 2p^{H}_{(o)} \rightarrow \sigma^{*}_{c-H}$.

Рисунок 3 - Положение верхних заполненных и нижних вакантных МО молекул азометинов

Возмущение электронной структуры азометинов в ПФСМ приводит к значительным длинноволновым смещениям полос поглощения относительно спектров растворов (рисунки 4, 5).

Рисунок 4 - Спектры поглощения H₂salpn-1,3 в спиртовом 2,4·10⁻⁴ моль/л растворе (1) (кювета 0,2 см) и влажной мембране (2)

Рисунок 5 - Длинноволновая часть спектров оснований в растворах (1-3) и ПФСМ (1'-3'): 1,1' - H₂salpn-1,3; 2,2' - H₂ -5Cl-salpn-1,3; 3,3' - H₂ -5Br-salpn-1,3

Присутствие галогенов способствует частичному ослаблению *п*взаимодействий в сопряженных кольцах молекул, с чем связано более яркое проявление смещений в случае H₂-5Cl-*salpn*-1,3 и H₂-5Br-*salpn*-1,3 (рисунок 5).

Значительная интенсивность полос поглощения (рис. 4,5) при малой толщине модифицированных ПФСМ определяется высокой концентрацией в них молекул азометинов. Так, в случае пластинки с массой 0.0667 г, толщиной 0.025 см и внешней поверхностью 1 см² при содержании H₂-5Cl-*salpn*-1,3 Q = $4.5 \cdot 10^{-6}$ моль/г его эффективная концентрация в мембране составляет ~ $1.2 \cdot 10^{-2}$ моль/л, что на два порядка выше, чем в растворе ($2,4 \cdot 10^{-4}$ моль/л). При этом оптической плотности (D = 1) в максимуме 370 нм соответствует коэффициент экстинкции ~ $3.3 \cdot 10^{3}$ л/(см·моль), сопоставимый с величиной $9.77 \cdot 10^{3}$ л/(см·моль) для спиртового раствора азометина.

При удлинении метиленового «мостика» в ряду H₂salen – H₂salpn-1,3 – H₂salbn-1,4, как и следовало ожидать, положение максимумов и интенсивность полос поглощения молекул близки, что определяется присутствием в них одина-ковых сопряженных участков, определяющих спектральное проявление.

Необычным свойством спектров поглощения, характерным для состояния азометинов в ПФСМ, является их <u>ярко выраженная зависимость от содержания</u> <u>адсорбированной воды</u>. Пример соответствующих изменений, наблюдаемых в случае мембраны, модифицированной H₂salbn-1,4, показан на рисунок 6.

Хорошо разрешенный спектр, регистрируемый после сорбции молекул и отмывки ПФСМ водой, быстро деградирует при вынесении образца на воздух. Происходящее при этом подавление полос приводит к общему увеличению прозрачности мембраны во всем спектральном диапазоне с формированием сплошной бесструктурной полосы. Незначительное повышение влажности воздуха до уровня p/p₀ ~ 0.7 сопровождается ростом интенсивности полосы при сохранении ее размытого характера, а в ходе дальнейшего заполнении порового пространства происходит практически полное восстановление разрешенного спектра (рисунок 6). Сплошное поглощение формируется при низком содержании воды, когда электронакцепторное действие мембраны проявляется в полной мере. Необычный характер и низкая интенсивность бесструктурных полос связаны с возмущением электронной структуры азометинов вследствие их прочного «многоточечного» закрепления, сильной поляризации и искажения структурных параметров в наноразмерных полостях с высоким градиентом электрического поля. Увеличение содержания молекул воды при $p/p_0 > 0.7$, благодаря их донорным свойствам приводит к увеличению подвижности протонов сульфогрупп, снижению их акцепторной способности и общему ослаблению поляризующего действия поверхности ПФСМ, что способствует восстановлению геометрических параметров и электронной структуры сорбированных азометинов. Указанные состояния молекул азометинов, определяемые содержанием воды в ПФСМ, можно характеризовать как протонированное (при $p/p_0 < 0.7$) и частично протонированное (при $p/p_0 > 0.7$).

Отражением поляризации азометинов в мембране служат значительные смещения спектров поглощения относительно состояния молекул в растворах (рисунки 4,5,7). Именно этим обстоятельством определяется надежная регистрация флуоресценции пленочных композитов: несмотря на сверхмалое содержание гостевых молекул, при комнатной температуре надежно регистрируются хорошо выраженные широкие полосы в области 400-500 нм.

Примером трактовки спектральных проявлений служат характерные изменения спектров поглощения и флуоресценции в результате сорбции молекул H₂-5Br-salpn-1,3 в ПФСМ (рисунок 7).

Рисунок 7 - Спектры поглощения и флуоресценции H₂-5Br-*salpn*-1,3 в спиртовом растворе (1,1') и мембране (2,2').

Принимая во внимание значительное длинноволновое смещение полос поглощения азометина в мембране относительно ее положения в спектре раствора (рисунок 7), следовало допустить, что аналогичное по характеру смещение должно наблюдаться и в спектре флуоресценции. Однако регистрируется обратное ожидаемому, а именно, гипсохромный сдвиг полосы высвечивания молекулы в результате ее сорбции (рисунок 7). Для устранения обозначенного «противоречия» необходимо уточнение природы наблюдаемых полос. - При описании спектров флуоресценции азометинов остается не установленным конкретное возбужденное состояние, ответственное за флуоресценцию. Вместе с тем, объяснение результатов (рисунок 7) возможно на том основании, что роль уровней высвечивания выполняют разрыхляющие состояния $\pi^*_{(N=C)}$ азометиновых (HC=N–) фрагментов молекулы (что полностью соответствует их положению в диаграмме МО «свободного» состояния азометина в растворе - рисунок 8, *a*).

Вызываемый сорбцией перенос электронной плотности неподеленных пар атомов азота и кислорода азометина приводит к упрочнению связей N=C и частичному ослаблению π -взаимодействий в арильной части азометина. Результатом поляризации сорбированной молекулы в итоге является инверсия разрыхляющих уровней (рисунок 8, б). Указанное возмущение проявляется в сближении связывающих и разрыхляющих состояний $\pi_{C=C}$, с чем связано наблюдаемое длинноволновое смещение спектра поглощения сорбированной молекулы относительно ее состояния в растворе (рисунки 7; 8, б). Вместе с тем, усиление взаимодействий в ее азометиновой части (HC=N-) приводит к увеличению энергетического зазора, отделяющего разрыхляющие состояния связей C=N $\pi_{N=C}$ от верхней заполненной МО $\pi^{H}_{C=C}$, $2p^{H}_{(O)}$ (рисунок 8, б). Гипсохромный сдвиг полосы флуоресценции молекулы в результате ее сорбционного закрепления в мембране (рисунок 7) определяется, таким образом, дополнительным удалением высвечивающих уровней $\pi^{*}_{(N=C)}$ от уровней основного состояния (рисунок 8).

Рисунок 8 - Положение верхних заполненных и нижних вакантных МО молекул азометинов в растворе (*a*) и мембране (*б*)

При заселении разрыхляющих МО $\pi^{r}_{N=C}$ происходит локальное ослабление связей N=C, временем релаксации которых определяется задержка электронов в возбужденном состоянии. Таким образом, акты возбуждения и высвечивания азометинов разделены конечным временем, необходимым для снятия структурного возмущения, вызываемого облучением. В этом смысле π^{*} -состояния арильной части азометина оказываются слишком короткоживущими и не дают вклада в наблюдаемую флуоресценцию, поскольку энергия возбуждения, распределяясь по кольцу сопряжения, не вызывает серьезных структурных последствий.

При общем подобии спектральных последствий сорбции степень вовлечения электронов неподеленных пар азота и кислорода молекулы в образование координационных связей с атомами цинка мембраны ниже, чем в случае закрепления на протонах сульфогрупп. Следствием этого является относительно слабое возмущение электронной структуры азометина в составе поверхностных комплексов с цинком и, соответственно, менее заметные согласованные смещения спектров поглощения и флуоресценции.

Отчетливое проявление длинноволновых сдвигов полос поглощения H₂salpn-1,3, H₂-5Cl-salpn-1,3 и H₂-5Br-salpn-1,3 при их сорбционном закреплении (рисунок 5) служит указанием на значительную роль кислорода арильных фрагментов молекул в образовании связей с мембраной. С присутствием атомов галогенов, соответственно, связаны дополнительные батохромные смещения полос флуоресценции (рисунок 9).

При этом в случаях H₂salpn-1,3 и H₂-5Cl-salpn-1,3 наблюдается близкая интенсивность свечения, несмотря на значительное различие содержания молекул в мембране. Менее яркое спектральное проявление H₂-5Br-salpn-1,3 в мембране может быть связано с тем, что присутствие тяжелого атома брома повышает вероятность конверсии возбужденных состояний молекулы в триплетную систему уровней, конкурирующую с флуоресценцией.

Поляризация молекул в ПФСМ в значительной степени определяется реакционной способностью азометиновых (HC=N–) фрагментов, ответственных за наблюдаемую флуоресценцию. Показательно в связи с этим, что форма полос высвечивания и положение их максимумов не зависят от энергии возбуждающего света, тогда как интенсивность флуоресценции возрастает при возбуждении в области коротких волн; на рисунке 10 это показано на примере мембраны, модифицированной H₂-5CI-salpn-1,3.

Рисунок 10 - 1 - Спектр возбуждения флуоресценции H₂-5Cl-*salpn*-1,3 в мембране; 2,3 – флуоресценция при возбуждении светом с длиной волны 278 и 378 нм соответственно

В результате повышения интенсивности полос в спектрах поглощения азометинов при повышении содержания воды в ПФСМ (рисунок 6), можно ожидать усиления флуоресценции. С другой стороны, адсорбция воды вызывает прогрессирующее ее тушение, и этот фактор оказывается преобладающим: интенсивность высвечивания значительно снижается при повышении влажности (рисунок 11).

<u>Люминесцентно-спектральные свойства пленочных композитов на основе</u> <u>Tb³⁺-замещенной мембраны с включенными молекулами H₂salpn-1,3</u>.

Сенсибилизация люминесценции тербия(III) азометинами затруднена высоким положением его высвечивающих уровней относительно возбужденных состояний присоединенных молекул. Вместе с тем, интересными представляются люминесцентные свойства пленочных композитов, включающих два взаимосвязанных центра свечения – зеленого, присущего катионам Tb^{3+,} и синего в случае азометина.

В спектре люминесценции мембраны, модифицированной Tb³⁺ (рисунок 12), отчетливо проявляются 4 из семи полос, связанных с излучательными переходами из возбужденного ${}^{5}D_{4}$ в основные состояния тербия ${}^{7}F_{j}$ (j = 6,5,4,3); максимум 219 нм полосы возбуждения Tb³⁺ в точности совпадает с его положением в спектре поглощения катиона в растворе. При увеличении длины волны возбуждения λ > 250 нм люминесценция не регистрируется. В свою очередь, спектр флуоресценции сорбированного H₂salpn-1.3 и длинноволновая полоса ее возбуждения показаны на рисунке 13.

Рисунок 12 - Спектр возбуждения (1) и люминесценции Tb^{3+} в ПФСМ (2); (3 – отсутствие люминесценции при облучении светом $\lambda > 250$ нм)

Рисунок 13 - Спектр флуоресценции (1) и ее возбуждения (2) ПФСМ, модифицированной H₂salpn-1.3

В случае же мембраны с молекулами H₂salpn-1.3, закрепленными на катионах тербия, возбуждение в полосе $\lambda_{\text{макс}}$ = 219 нм вызывает единственно зеленую люминесценцию Tb³⁺, тогда как облучение светом $\lambda > 250$ нм – исключительно синюю флуоресценцию азометина (рисунок 14). Таким образом, проявление сосуществующих в мембране центров высвечивания четко разделено энергией возбуждающего света.

Рисунок 14 - Люминесцентные свойства композита (ПФСМ-Тb³⁺-H₂salpn-1.3) при возбуждении светом λ = 219 нм (1) и 370 нм (2)

Спектрально-люминесцентные свойства наночастиц сульфида цинка в мембране. Формирование наночастиц сульфида цинка в мембране подтверждается результатами весовых измерений и приводит к уверенно регистрируемому сокращению порового пространства. Оценка средней плотности частиц путем отнесения их массового содержания к занимаемому объему приводит к значению [ZnS]/ΔV_п ~ 2 г/см³, вдвое меньшему плотности кристаллических форм. Полученный результат, несмотря его ориентировочный характер, служит указанием на особую структуру частиц, аморфная природа которых подтверждается отсутствием рефлексов в рентгенограмме.

Полосы поглощения (рисунок 15) и люминесценции частиц (рисунок 16) смещены в коротковолновую область относительно их положения в случае массивного сульфида цинка.

Рисунок 16 - Люминесценция частиц ZnS в ПФСМ при возбуждении светом длиной волны (нм) 300 (1), 310 (2) и 320 (3)

Наблюдаемое связано с тем, что в наночастицах число заполненных и вакантных (акцепторных) уровней резко ограничено и энергетический зазор между ними существенно превышает значение запрещенной зоны, разделяющей множественные состояния в кристаллическом сульфиде цинка. Ширина полосы высвечивания (рисунок 16) связана с присутствием в ПФСМ частиц различного размера, что отвечает особенностям их зарождения и роста в ограниченном объеме. Интенсивность и положение максимума полосы практически сохраняются при изменении длины волны возбуждения в интервале 220–290 нм, тогда как возбуждение на краю поглощения (300–320 нм) сопровождается незначительным смещением спектра люминесценции и закономерным снижением ее интенсивности до уровня фона.

Люминесценцию малых частиц ZnS можно провести с привлечением представлений молекулярной химии. При этом необходим учет особенности электронной структуры ZnS, а именно, заполненной, глубоко лежащей $3d^{10}$ —оболочки цинка. Для всех других переходных металлов (за исключением, конечно, кадмия и ртути) в составе их соединений валентные (*n*-1)*d*-оболочки частично заполнены либо вакантны, и именно на них осуществляются переходы электронов с донорных уровней лигандов (с полным основанием называемые переходами с переносом заряда). Таким образом, при облучении наночастиц ZnS происходят переходы электронов с исстояния $(Zn-S)^*$ - рисунок 17.

Рисунок 17 - Схема люминесценции наночастиц ZnS в мембране

Вызываемое таким образом неизбежное ослабление связей Zn–S приводит к значительному снижению энергии уровней (Zn–S)^{*}, переходами электронов с которых на 3*p*-орбитали серы определяется длинноволновое смещение полосы люминесценции относительно спектра поглощения частиц ZnS (рисунок 17). Таким образом, в качестве реальной причины задержки электронов в возбужденном состоянии можно считать промежуток времени, необходимый для релаксации связей Zn– S, ослабленных под действием облучения.

ЗАКЛЮЧЕНИЕ

1. Высокая сорбционная способность и емкость мембраны МФ–4СК определяются сочетанием развитой пористой структуры с равномерностью и плотностью распределения высокоактивных центров -SO₃H на доступной поверхности. Сорбция ароматических азометиновых оснований имеет «многоточечный» характер и протекает с образованием прочных поверхностных соединений. Высокая диффузионная подвижность крупных молекул определяется их ярко выраженным сродством к мембране.

3. В спектрах поглощения оснований проявляются $n-\pi^*$ переходы с переносом электронов на уровни разрыхляющих состояний азометиновых и арильных фрагментов молекул. Полосы поглощения сохраняются при удлинении метиленового «мостика» оснований и закономерно смещаются в красную область в случае их галогенпроизводных. Возмущение электронной структуры азометинов в мембране проявляется в значительном длинноволновом смещении полос поглощения относительно спектров молекул в растворе. Содержанием воды в поровом пространстве мембраны определяется возможность формирования в спектрах азометинов разрешенных полос или бесструктурного поглощения.

4. Сорбционное закрепление молекул азометинов в мембране определяет их флуоресценцию при комнатной температуре в фиолетово- синей области спектра. Возможности регулирования положения полос высвечивания обеспечиваются выбором гостевых молекул оснований и способа их закрепления в мембране. Излучательными являются разрыхляющие состояния $\pi_{(N=C)}^{*}$ азометиновых (HC=N–) фрагментов молекул.

5. В мембране, модифицированной катионами Tb³⁺с последующим присоединением азометина, проявляются сосуществующие центры высвечивания, разделенные энергией возбуждающего света. - Возбуждение в полосе $\lambda_{\text{макс}}$ = 219 нм вызывает зеленую люминесценцию Tb³⁺, тогда как облучение светом λ > 250 нм – исключительно синюю флуоресценцию азометина.

6. Синтез наночастиц сульфида цинка осуществлен путем обработки мембраны, модифицированной катионами Zn²⁺, газообразным сернистым водородом. Частицы ZnS рентгеноаморфны, обладают низкой плотностью и отчетливо проявляются в спектрах поглощения и люминесценции. Спектры наночастиц рассмотрены на основе учета фотовозбуждения электронов на разрыхляющие орбитали (Zn–S)*.

Основное содержание работы изложено в следующих публикациях

- Пак, В.Н. Особенности состояния и флуоресценция N,N'-бис(5-бромсалицилиден)-1,3-пропиледиамина в перфторсульфоновой мембране / В.Н. Пак, Н.А. Лапатин, А.Н. Борисов // Журнал общей химии. – 2018. – Т. 88, №7 -С. 1194-1197
- Лапатин, Н.А. Синтез и спектрально-люминесцентные свойства нано-частиц ZnS в перфторсульфоновой мембране / Н.А. Лапатин, М.В. Пузык, В.Н. Пак // Журнал общей химии. – 2018. – Т. 88, № 6 – С. 1033-1036
- Лапатин, Н.А. Флуоресценция азометиновых оснований в мембране Nafion / Лапатин Н.А., Борисов А.Н., Пак В.Н. // Тезисы докладов IV Международной научной конференции «Современные тенденции развития химии и технологии полимерных материалов» – СПб: Изд-во СПбГУПТиД. – 2018. – С. 36-39
- Лапатин, Н.А. Наноструктурированное пространство и сорбционная емкость полимерной мембраны МФ-4СК / Н.А. Лапатин, А.Н. Борисов, В.Н. Пак // Сборник трудов, посвященный 15-летию работы Международного симпозиума

«Нанофизика и наноматериалы» - Спб: Изд-во Политех-Пресс. – 2018. – С. 114-118.

- 5. Лапатин, Н.А. Спектрально-люминесцентные свойства малых частиц сульфида цинка в мембране Nafion // В книге: «Инновационные материалы и технологии в дизайне» Тезисы докладов IV Всероссийской научно-практической конференции с участием молодых ученых. – 2018. – С. 48-49.
- Лапатин, Н.А. Сорбция азометиновых оснований в мембране Nafion // Тезисы XVII Всероссийской молодежной научной конференции с элементами научной школы «функциональные материалы; синтез, свойства, применение», посвященной 110-летию со дня рождения член.-корр. АН СССР Н.А. Торопова. – 2018. – С. 188.