РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ МОЛЕКУЛЯРНОЙ БИОЛОГИИ

им. В.А. Энгельгардта

Десе / На правах фукописи

Филиппова Екатерина Валерьевна

СТРУКТУРЫ КОМПЛЕКСОВ БАКТЕРИАЛЬНЫХ ФОРМИАТДЕГИДРОГЕНАЗ С КОФЕРМЕНТОМ И СУБСТРАТОМ

Специальность 03.00.03 - «Молекулярная биология»

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Институте молекулярной биологии им. В.А. Энгельгардта PAH

Научный руководитель:

кандидат физико-математических наук

К.М. Поляков

Научный консультант:

доктор химических наук, профессор

В.О. Попов

(Институт биохимии им. А.Н. Баха РАН)

Официальные оппоненты: доктор химических наук

Т.В. Демидкина

(Институт молекулярной биологии

им. В.А. Энгельгардта РАН)

доктор физико-математических наук

В.Р. Мелик-Аламян

(Институт кристаллографии им. А.В. Шубникова РАН)

Ведущая организация:

Институт белка РАН

Защита диссертации состоится «24» октября 2006г. в 11-00 на заседании Диссертационного Совета Д 002.235.01 при Институте молекулярной биологии им. В.А. Энгельгардта РАН по адресу: 119991 Москва, ул. Вавилова, 32

С диссертацией можно ознакомиться в библиотеке Института молекулярной биологии им. В.А. Энгельгардта РАН.

A. M. Myra

Автореферат разослан « » сентября 2006г.

Ученый секретарь диссертационного совста, кандидат химических наук Актуальность работы. NAD⁺-зависимая формиатдегидрогеназа (FDH) катализирует реакцию окисления формиат-иона до углекислого газа при сопряженном восстановлении никотинамидадениндинуклеотида (NAD⁺) до NADH. В метилотрофных организмах реакция, катализируемая FDH, является одним из основных источников энергии. FDH является хорошо изученным в биохимическом плане ферментом. Схожие по физико-химическим свойствам формиатдегидрогеназы были обнаружены в разных организмах, включая, бактерии, дрожжи, грибы, высшие растения и млекопитающих. FDH из метилотрофных бактерий является одним из наиболее интенсивно изучаемых ферментов из числа NAD⁺-зависимых дегидрогеназ и используется в качестве универсального биокатализатора для регенерации NADH в процессах ферментативного синтеза оптически активных соединений.

FDH относится к суперсемейству D-специфичных дегидрогеназ и имеет схожую структурную организацию с белками данного семейства. В силу простоты структуры субстрата (формиат-иона) и отсутствия в ходе каталитической реакции стадий переноса протонов FDH изучается как модельный фермент для выяснения основных закономерностей переноса гидрид-иона в активном центре D-специфичных дегидрогеназ.

На сегодняшний момент детально исследованы две пространственные структуры FDH из метилотрофных бактерий Pseudomonas sp. 101: свободный фермент (код PDB - 2NAC) и тройной комплекс FDH-NAD - азид-ион (код PDB - 2NAD). На основе данных структур был предложен механизм катализа FDH и, было показано, что в ходе реакции молекула фермента претерпевает значительные конформационные перестройки. Несмотря на то, что FDH является хорошо изученным объектом, многие аспекты в механизме его действия остаются непонятными. Не выясненными остаются роль некоторых каталитически важных аминокислотных остатков активного центра фермента, как происходит связывание молекулы кофермента и субстрата в двойных FDH-NAD⁺ и FDH-формиат, комплексах причины конформационных изменений структуры во время ферментативной реакции.

Цель и задачи исследования. Целью настоящей работы было определение структур двойных и тройных комплексов FDH из метилотрофных бактерий Pseudomonas sp.101 и Moraxella sp.C2 с формиатом, NAD+, аналогом NAD+ (NADH), а также изучению структур мутантных форм FDH из бактерий sp.101. Для выполнения работы Pseudomonas были сформулированы 1) получение кристаллов следующие запачи: комплексов FDH метилотрофных бактерий Pseudomonas sp.101 и Moraxella sp.C2 с формиатом, NAD+, кристаллы мутантных форм FDH из бактерий Pseudomonas sp.101 и их комплексов с NADH; 2) решение структур полученных комплексов; 3) сравнение структур активных центров и структур молекул близкородственных FDH; 4) исследование свободного фермента, двойных и тройных комплексов FDH методом малоуглового рентгеновского рассеяния.

Научная ценность и практическая значимость работы. Впервые решена и охарактеризована структура двойного комплекса фермента с субстратом (формиат-ионом). Обнаружены два места связывания субстрата в активном центре FDH. Впервые определены структуры свободного фермента и тройного комплекса с NAD+ и азид-ионом FDH из метилотрофных бактерий Moraxella sp.C2. Полученные данные позволили уточнить структуру тройного комплекса FDH-NAD⁺-азид-ион и получить новую информацию о строении активного центра фермента. Показано участие каталитически важного остатка гистидина (332) в связывании молекулы субстрата (формиат-иона) и выяснена роль Сконцевого участка молекулы FDH в связывании кофермента (NAD+). Впервые решены структуры мутантных форм FDH из бактерий Pseudomonas sp.101. содержащие замены в области активного центра и на поверхности белка. В работе проведен сравнительный анализ двух бактериальных FDH, выявлены пространственной организации закономерности и различия В близкородственных ферментов и в их взаимодействии с NAD⁺ и формиатом. Полученные результаты позволяют расширить представление о молекулярном механизме катализа и понять причины конформационных изменений структуры молекулы FDH в ходе реакции.

Полученные в данной работе три структуры были занесены в PDB (Банк Трехмерных Структур Белков) и могут быть использованы в качестве модели для решения структур FDH из других организмов и ферментов семейства D-специфичных дегидрогеназ. Структура двойного комплекса FDH из бактерий *Pseudomonas sp.101* с формиатом и структура тройного комплекса FDH из бактерий *Moraxella sp.C2* с NAD⁺ и ионом азида могут служить моделью для изучения механизма катализа и выяснения основных закономерностей переноса гидрид-иона в активном центре D-специфичных дегидрогеназ.

Апробация работы. Результаты работы были представлены на IV Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (Москва – Россия, 2003), на международной конференции «Biocatalysis-2005: Fundamentals and Applications» (Санкт-Петербург – Россия, 2005), на международной школеконференции молодых ученых по системной биологии и биоинженерии (Москва – Россия, 2005).

Публикации. По материалам диссертации опубликовано четыре печатные работы. Атомные координаты трех структур депонированы в Банк Белковых Структур.

Структура и объем диссертации. Диссертационная работа состоит из введения, трех глав, выводов и списка литературы. Объем диссертации составляет 110 страниц и содержит 36 рисунков и 11 таблиц. Список цитируемой литературы содержит 102 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обсуждена актуальность темы диссертации, сформулированы цели и задачи исследования.

<u>Глава 1</u> посвящена обзору литературы по структурам ферментов семейства D-специфичных дегидрогеназ 2-гидроксикислот. В первой части литературного обзора описаны пространственные структуры и особенности структурной организации молекул ферментов семейства D-специфичных дегидрогеназ. Описано связывание молекулы кофермента (NAD^{+}) и субстратов с D-специфичными дегидрогеназами. Вторая часть литературного обзора включает в себя описание пространственных структур FDH из бактерий *Pseudomonas sp.101* и их сравнение со структурами D-специфичных дегидрогеназ. Охарактеризована структура активного центра FDH и модель связывания формиат-иона в активном центре фермента.

В <u>главе 2</u> представлены материалы и методы исследования. Описана кристаллизация комплексов FDH, сбор дифракционных данных от кристаллов, решение и уточнение структур комплексов FDH из бактерий *Pseudomonas sp.101* (FDHP) и *Moraxella sp.C2* (FDHM), мутантных форм FDHP, а также проведение съемки и обработки данных малоуглового рассеяния соответствующих холокомплексов FDH.

Кристаллизация и сбор дифракционных данных. Кристаллы FDH получали методом равновесной диффузии через газовую фазу в висячих и сидячих каплях. В таблице 1 представлены условия кристаллизации полученных кристаллов FDH. Все комплексы FDH получали методом сокристаллизации. Соотношение резервуарного раствора и раствора белка в капле было 1:1. Белок растворяли в 0,05М К фосфатном буфере (рН 7,5).

Наборы дифракционных данных были собраны с кристаллов двойных комплексов FDHP с NADH, формиатом, тройного комплекса FDHP с формиатом и NADH, двух мутантных форм FDHP T7 и GAV, двойного комплекса мутанта FDHP GAV с NADH и двух тройных комплексов FDHM-ADPR-формиат и FDHM-NAD⁺-азид-ион. Дифракционные кристаллов комплекса FDHP с NADH, формиатом, тройного комплекса FDHP с формиатом и NADH, и тройного комплекса FDHM с ADPR и формиатом были получены с использованием ССD детектора на станции X13 накопительного кольца DORIS синхротрона DESY (г. Гамбург, Германия) на длине волны 0,8019Å при температуре жидкого азота (110 К). Дифракционные данные с кристаллов двух мутантов FDHP T7 и GAV и с кристалла комплекса мутанта FDHP GAV с NADH были получены с использованием ССD детектора на станции СОМ САТ (32) накопительного кольца синхротрона Национальной Лаборатории Аргон (г. Чикаго, США) на длине волны 0,9793Å при температуре жидкого азота. Дифракционные данные с кристаллов тройного комплекса FDHM с NAD⁺ и азид-ионом были получены с использованием IMAGE PLATE

МАК 345 на источнике рентгеновского излучения ELLIOTT GX-6 с вращающимся анодом в Институте белка РАН (г. Пущино, Моск. обл.) на длине волны 1,5418Å при комнатной температуре. Данные обрабатывались программами DENZO, SCALEPACK, XSCALE. Статистические характеристики набора дифракционных данных от кристаллов полученных комплексов FDHP и FDHM представлены в таблице 2.

Таблица 1. Условия кристаллизации комплексов и мутантов FDH.

Комплекс, мутант	Температура (°С)	Концентрация белка в капле (мг/мл)	Состав противораствора в капле			
FDHP-NADH	16-17	9,6	48% (от насыщ.) сульфата аммония, 8% МПД, 5μМ NADH, 0,1М HEPES pH 7,3			
FDHP-формиат	11	9,6	17% (от насыш.) сульфата аммония, 0,85% ПЭГ, 2µM Na формиат, 0,1М HEPES pH 7,3			
FDHP-формиат- NADH	20	8,5	18,5% (от насыш.) сульфата аммония, 0,8% ПЭГ, 2µM Na формиат, 0,1M HEPES pH 7,4			
FDHP T7	20	3,35	0,2М ацетат аммония, 12,5% ПЭГ3350, 0,1М Bis-Tris pH 6,5			
FDHP GAV	20	8,82	0,2М ацетат аммония, 12,5% ПЭГ3350, 0,1М HEPES pH 7,5			
FDHP T7- NADH	20	3,35	0,2M ацетат аммония, 12,5% ПЭГ3350, 5µM NADH, 0,1M HEPES pH 7,5			
FDHP GAV- NADH	20	8,82	0,056М Na фосфат, 1,344М К фосфат			
FDHM-ADPR- формиат	20	4	0,1M ацетат аммония, 21% ПЭГ 8000, 2,5µM ADPR, 5 µM формиат, 0,1M Bis- Tris pH 5,5			
FDHM-NAD ⁺ - азид-ион	20	8,5	2,3M сульфат аммония, 5µM NAD ⁺ , 5µM азид, 0,1M Bis-Tris pH 6.5			

Решение и уточнение структур. Структуры FDHP и FDHM были решены методом молекулярного замещения по программе MOLREP. Исходной моделью для всех структур, кроме структуры комплекса FDHM с NAD⁺ и азидионом, служила структура молекулы апо-формы фермента (код PDB - 2NAC), для структуры тройного комплекса FDHM с NAD⁺ и ионом азида моделью была структура холо-формы FDHP (код PDB - 2NAD). Кристаллографическое уточнение структур проводили по программе REFMAC. Для визуального контроля над ходом уточнения, внесения существенных изменений в атомную модель структур и локализации молекул воды использовали программы О, СООТ и TURBOFRODO. Статистические характеристики уточнения структур приведены в таблице 2.

<u>Таблица 2.</u> Статистические характеристики набора дифракционных данных и уточнения структур FDH.

Структура FDH	FDHP NADH	FDНР форм	FDHP NADH форм	FDHP T7	FDHP GAV	FDHP GAV NADH	FDHM ADPR форм	FDHM NAD ⁺ азид
Разрешение, Å	2,1	2,19	2,28	2,31	2,39	3,1	2,3	1,95
Общее число измеренных рефлексов	115593	119473	110635	119943	96266	55892	107292	65949
Полнота, %	94,3	98,1	97,9	99,8	96,41	96,6	96	99,3
Пр. Гр.	P4 ₂ 2 ₁ 2	P2 ₁	P2 ₁	C2 ₁	C2 ₁	P2 ₁	P2 ₁	C2 ₁
Параметры ячейки: а, Å b, Å с, Å	93,3 93,3 103,05	117,85 57,94 132,62	117 54,98 128,91	143,33 53,65 117,01	142,63 53,83 116,66	69,06 54,71 109,24	77,9 123,5 85,3	80,45 66,5 75,55
ρ,	20.5	95,38	95,74	122,94	123,21	101,48	95,8	103,57
R _{factor} , %	20,7	22,3	20,5	16,1	17,9	20,7	23,12	14,2
R _{free} , %	25,0	27,9	27,6	22,5	24,5	30,5	32,7	18,4
RMS длин связей, Å	0,02	0,019	0,019	0,02	0,02	0,02	0,019	0,018
RMS валентных углов (°)	1,9	1,7	1,8	1,8	1,8	1,9	1,9	1,6
Число рефлексов: В уточнении В расчете R _{free}	24447 1321	85999 4083	69594 3582	31161 1583	27164 1412	13512 708	64841 3451	26730 1359
Ошибка в координатах	0,21	0,22	0,29	0,2	0,26	0,49	0,33	0,167
Число атомов в молскуле белка	2923	11566	11530	11658	11614	11661	12101	3325
Число молекул ПЭГ	-	1	8	12	4	-	-	-
Число молекул воды	181	303	359	317	276	78	480	181
Средний В-фактор, Å ² : для всех атомов атомов осн. цепи атомов бок. цепей	30,7 29,4 31,1	42 41,2 42,8	36,7 36,1 37,3	26,7 25,2 28,1	30,5 30,1 30,8	21,5 21,2 22,2	36,9 36,9 37,1	18,9 17,4 20,4
молекул воды	37,1	42,5	34,4	30,6	27,3	20,2	34,2	27,4

Съемка и обработка данных малоуглового рассеяния. Для эксперимента были приготовлены препараты гомогенного фермента FDHP концентрацией 5 и 10 мг/мл. Исследовались комплексы для каждой концентрации FDHP с NAD⁺, NAD⁺-азид-ионом, NADH, ADPR, ADPR-формиатом.

Съемку образцов проводили на станции X33 накопительного кольца DORIS синхротрона DESY (г. Гамбург, Германия). Обработку и анализ данных малоуглового рассеяния проводили по программе PRIMUS. Для расчета теоретических кривых рассеяния для свободного белка и холокомплекса с NAD⁺ и азид-ионом FDHP использовали структуры апо- и холо-форм FDHP (PDB код: 2NAC и 2NAD). Теоретические кривые рассчитывали программой CRYSOL.

<u>Глава 3</u> диссертационной работы посвящена результатам исследования полученных структур комплексов FDH из метилотрофных бактерий *Pseudomonas sp.101* и *Moraxella sp.C2*.

Структура новой кристаллической модификации апо-формы FDHP. При попытке получения комплекса FDHP с продуктом ферментативной реакции NADH была получена новая кристаллическая структура апо-формы FDHP с пространственной группой $P4_22_12$ с разрешением 2,1Å и уточнена до $R_{\text{factor}}=20,7\%$ (Таблица 2). В отличие от структур апо- и холо-форм FDHP, которые в независимой части элементарной ячейки содержат молекулу димера [1], в исследуемой структуре FDHP в независимой части элементарной ячейки содержится одна субъединица димера. Упаковка молекул FDHP в ячейке показана на рисунке 1.

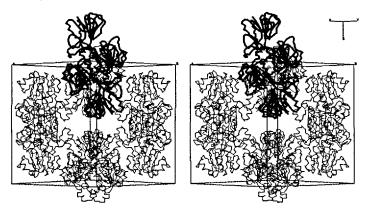


Рис. 1. Стереоизображение упаковки молекул FDHP в элементарной ячейке, молекула димера показана толстой линией.

Данная структура является первой структурой FDH, которой образуют субъединицы, активный димер связанные биологически диагональной кристаллографической осью симметрии второго порядка. Сравнительный анализ и анализ контактов с симметричным окружением молекул в кристалле показал, что структура молекул димера двух апо-форм FDHP в разных пространственных группах одинакова. Кристаллографическое окружение молекул локально влияет на конформацию отдельных участков полипептидной цепи на поверхности белка и не влияет на конформацию молекулы в целом.

Структура комплекса FDHP с формиат-ионом. Были получены две структуры комплексов FDHP с формиат-ионом, решенные при разрешении 2,19Å и 2,28Å, соответственно FDHP1 и FDHP2 (Таблица 2). Данные структуры являются первыми из числа исследованных D-специфичных дегидрогеназ в комплексе фермента с субстратом. Кристаллы FDHP1 были получены при сокристаллизации фермента с формиатом (Таблица 1). Кристаллы FDHP2 были

получены при сокристаллизации фермента с NADH и формиатом (Таблица 1). Однако молскулу NADH в этой структуре не удалось локализовать по картам электронной плотности. Обе структуры в независимой части элементарной ячейки содержат два димера (А и В) и (С и D) подобные димеру апо-формы FDHP [1].

В отличие от структуры апо-формы отдельные субъединицы в молекулах димеров не идентичны. Отличие наблюдается в положении петли, образованной аминокислотными остатками с 256 по 263. В субъединицах В и D эти остатки не локализованы по карте электронной плотности. Во всех субъединицах полученных структур FDHP1 и FDHP2 было обнаружено, что атом серы остатка Cys354 окислен до SO_3 . Данные по направленному мутагенезу остатка Cys354 показали, что он не является существенным для проявления каталитической активности. Химическая модификация или замена Cys354 на остатки Ser и Ala не влияют на величину k_{cat} , но приводят к увеличению величины Км по формиату в 1,5-2 раза и снижают его термостабильность в 1,3-2 раза.

По карте электронной плотности в районе активного центра была обнаружена молекула формиата в четырех субъединицах структуры FDHP1 и в трех субъединицах FDHP2. В структурах FDHP1 и FDHP2 молекула формиата связывается различным образом в районе активного центра фермента. Расстояние между атомами углеродов формиат-ионов в активном центре структуры FDHP равно 5Å.

В структуре FDHP1 формиат-ион был локализован в области петли, образованной остатками с 200 по 203, расположенной в кофермент-связывающем канале. На рисунке 2а показано место связывания молекулы формиата в структуре FDHP1. В структуре тройного комплекса холо-формы FDHP-NAD $^+$ -азид-ион этот участок контактирует с пирофосфатной частью молекулы NAD $^+$ [1].

Молекула формиата во всех субъединицах FDHP1 связывается одинаково. Схема связывания формиата в активном центре FDHP1 представлена на рисунке 2b. Атом O1 формиат-иона образует водородные связи с атомами азота основной цепи остатков Gly200 и Gly203. Атом O2 молекулы формиата образует водородную связь с атомом N остатка Ile202.

В отличие от FDHP1 в структуре FDHP2 молекула формиата была обнаружена в каталитическом центре вблизи короткой петли, образованной 123-125 остатками. На рисунке 3а показано положение формиата в структуре FDHP2.

Положение формиата в структуре FDHP2 почти идентично положению азидиона в тройном комплексе холо-формы FDHP [1]. Схема связывания формиата в активном центре FDHP2 представлена на рисунке 3b. Во всех трех субъединицах (A, B, C) белка формиат связывается одинаково. Атом кислорода О2 образует водородные связи с атомом азота остатка Asp146 и азотом

основной цепи IIe122. Атом O1 формиата через молекулу воды образует водородную связь с остатком His332.

При сравнении структур активных центров в FDHP1 и FDHP2 и ранее исследованных FDHP не были обнаружены изменения конформации остатков активного центра, существенных для катализа FDHP.

Все субъединицы FDHP в структурах комплексов с формиат-ионом имеют открытую конформацию, аналогичную конформации молекул в структурах апоформ FDHP. Связывание формиат-иона не приводит к изменению конформации фермента. Полученные структуры показывают, что в отсутствие кофермента (NAD^{+}) формиат-ион может связываться как продуктивно (аналогично связыванию молекулы азид-иона в структуре тройного комплекса FDHP), так и в другом месте (FDHP1) активного центра фермента.

Структура мутантных форм FDHP. Методом направленного мутагенеза в группе генетической инженерии и белкового дизайна профессора В.И. Тишкова (МГУ им. М.В. Ломоносова) было получено более 60 мутантов FDHP и изучены их кинетические и термодинамические характеристики [2]. На основе анализа этих данных были сделаны два мутанта бактериальной FDHP с множественными аминокислотными заменами, содержащимися в области активного центра и на поверхности фермента: FDHP T7, FDHP GAV. Были получены структуры этих мутантов и структура двойного комплекса мутанта GAV FDHP c NADH.

Структуры мутантов FDHP T7 и GAV были решены с разрешением 2,3Å и 2,39Å, соответственно (Таблица 2). Структура комплекса мутанта FDHP GAV с NADH была решена с разрешением 3,1Å (Таблица 2). Структуры мутантов FDHP T7 и GAV и двойного комплекса FDHP GAV с NADH в независимой части элементарной ячейки содержат две субъединицы, которые образуют димер. Обе субъединицы в димере имеют открытую конформацию и похожи на структуру таковых в димере апо-формы FDHP [1]. Сравнительный анализ структур мутантов со структурами апо- и холо-формы FDHP показал, что замены не приводят к изменению конформации структуры в мутантах FDHP.

В структуре двойного комплекса FDHP GAV с NADH были локализованы пирофосфат и рибоза никотиновой части молекулы NADH в одной из субъединиц димера (В) и пирофосфат в другой субъединице (А). Основания и рибоза аденина не локализованы на карте электронной плотности из-за того, что эта часть молекулы NADH имеет несколько конформаций. Положение пирофосфата и рибозы никотиновой части молекулы NADH в структуре комплекса показано на рисунке 4. Атом кислорода О2 пирофосфата адениновой части NADH образует водородную связь с атомом NH1 Arg201, атом О1 никотиновой части образует водородные связи с атомами азота основной цепи остатков Arg201, Gly202, атом О2 с атомом кислорода остатка Ser147 ОG. Рибоза не образует в структуре ни одной водородной связи. Положение пирофосфата и рибозы в структуре комплекса FDHP GAV с NADH аналогично

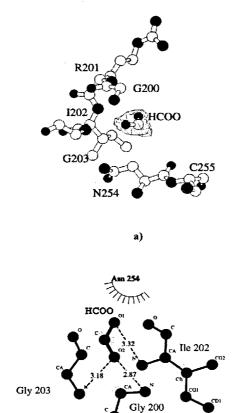
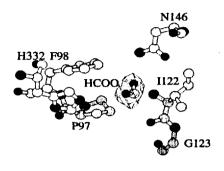



Рис. 2. а) Положение формиат-иона в активном центре FDHP1. Карта электронной плотности $2F_o$ - F_c дана с уровнем срезки 1σ . b) Схема связывания формиата в активном центре FDHP1.

b)

a)

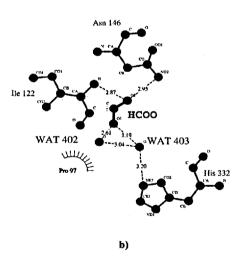


Рис. 3. а) Связывание формиат-иона в активном центре FDHP2. Карта электронной плотности $2F_o$ - F_c дана с уровнем срезки 1σ . b) Схема связывания формиат-иона в активном центре FDHP2.

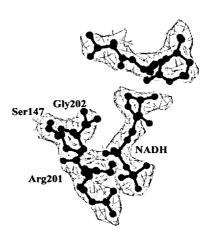


Рис. 4. Положение молекулы NADH в структуре мутанта FDHP GAV. Карта электронной плотности $2F_o$ - F_c показана с уровнем срезки 1σ .

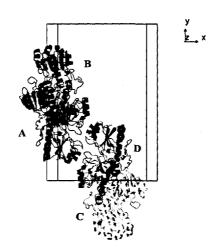


Рис. 5. Упаковка молекул FDHM в независимой части элементарной ячейки.

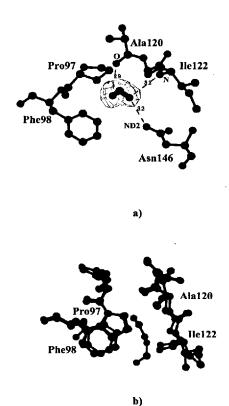


Рис. 6. а) Связывание формиат-иона в субъединице (В) структуры FDHM. Карта электронной плотности $2F_0$ - F_c показана с уровнем срезки 1σ . b) Положение формиат-иона в структуре FDHM (в модели цвета соответствуют типу атомов) и в структуре FDHP2 (зеленая).

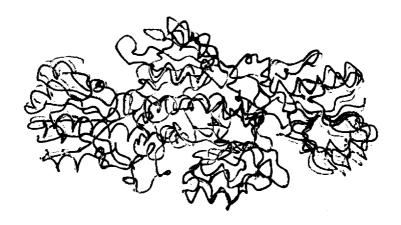


Рис. 7. Сравнение молекул димеров апо-формы FDHP (желтый) и апо-формы FDHM (синий).

Рис. 8. Ход полипептидной цепи структуры димера тройного комплекса FDHM. Поворотная ось симметрии второго порядка димера направлена перпендикулярно плоскости рисунка. Остатки с 392 по 399 (дополнительные С-концевые остатки) в молекуле FDHM показаны синим цветом. Молекула NAD^+ и азид-иона в структуре показаны атомной моделью фиолетового цвета.

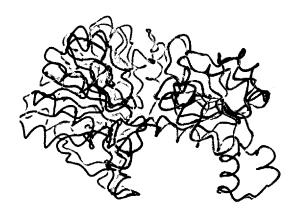


Рис. 9. Сравнение структуры апо- (синий) и холо-формы (желтый) FDHM. Направление оси, вокруг которой осуществляется поворот на 8^0 каталитического домена FDHM перпендикулярно плоскости рисунка. Субъединицы апо- и холо-формы сравнивали по \mathbf{C}_{α} атомам кофермент-связывающих доменов.

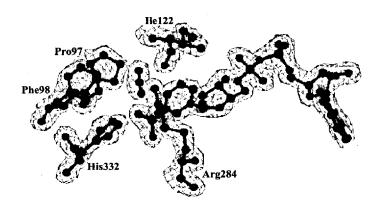


Рис. 10. Положение молекул ${\rm NAD}^+$ и азид-иона в активном центре FDHM. Карта электронной плотности ${\rm 2F_o-F_c}$ приведена с уровнем срезки 1σ в структуре.

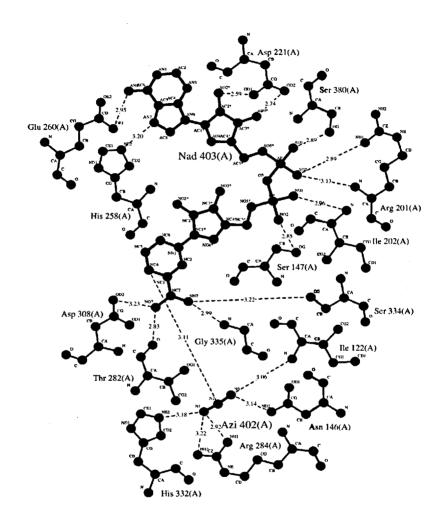


Рис. 11. Схема связывания NAD^+ и азид-иона в структуре холо-формы FDHM.

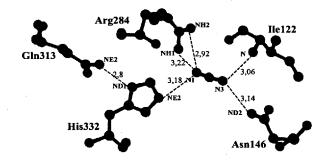


Рис. 12. Положение азид-иона в структуре FDHM.

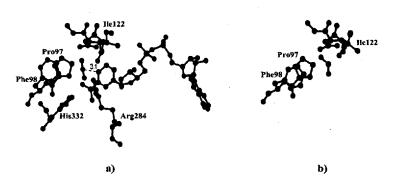


Рис. 13. a) Положение азид-иона в структуре тройного комплекса FDHM. b) Положение формиат-иона в структуре FDHP2.

положению пирофосфата и рибозы никотиновой части молекулы NAD^+ в структуре холо-формы FDHP [1].

Кристаллическая структура комплекса формиатдегидрогеназы метилотрофных бактерий Moraxella sp.C2 с формиатом. При попытке структуры тройного комплекса FDHM-ADPR-формиат была получена структура двойного комплекса **FDHM** формиатом. Пространственная структура комплекса FDHM была решена с разрешением 2,3Å и уточнена до R_{factor}=23,1% (Таблица 2). FDHM отличается от FDHP по первичной структуре 53 остатками [EMBL accession Y13245]. Все остатки в FDHM, участвующие в катализе и в формировании активного центра, являются консервативными. Биохимические свойства FDHM рассмотрены в работе [4].

Подобно структуре FDHP полипептидная цепь субъединицы FDHM организована в глобулярную двухдоменную структуру [5]. Коферментсвязывающий домен FDHM образован остатками с 147 по 333, каталитический сформирован остатками с 1 по 147 и с 333 по 374 (369 для субъединиц В и С). Оба домена в FDHM имеют схожую структурную организацию и состоят из параллельного левозакрученного β-листа, окружённого α-спиралями.

В независимой части элементарной ячейки полученная структура FDHM содержит два димера, которые образуют между собой субъединицы A, B и C, D. Упаковка субъединиц FDHM в ячейке показана на рисунке 5. Подобная структурная организация фермента была обнаружена в структурах комплексов FDHP с формиатом (см. выше). В одной из субъединиц (В) в районе активного центра была обнаружена молскула формиата. Молекулу ADPR не удалось обнаружить в структуре комплекса FDHM.

В димере субъединицы (А (синий цвет) и В (фиолетовый цвет)) связаны некристаллографической осью симметрии второго порядка (Рисунок 5) которая проходит вдоль кофермент-связывающего домена, подобно димерам апо- и холо-форм FDHP [1]. Упаковка субъединиц FDHM в ячейке такова, что димеры (показаны на рисунке разными цветами) являются симметричными и связаны ещё одной некристаллографической поворотной осью симметрии второго порядка, которая параллельна оси «у» кристаллической решетки (Рисунок 5).

В субъединице (В) в структуре FDHM молекула формиата была обнаружена в каталитическом центре вблизи короткой петли, образованной 123-125 остатками. Положение формиат-иона в структуре FDHM показано на рисунке ба. Атом кислорода О1 молекулы формиат-иона в FDHM образуст водородные связи с атомом азота основной цепи Ile122 и атомом ND2 боковой цепи Asn146. Атом О2 формиата образует H-связь с атомом кислорода основной цепи остатка Ala120.

Положение формиата в структуре FDHM почти аналогично положению формиата в двойном комплексе FDHP2 (Рисунок 6b). Структуры совмещали по их каталитическим доменам. Конформация остатков активного центра

существенных для катализа FDH, при сравнении структур активных центров в FDHM и FDHP, не изменилась.

При сравнении двух апо-форм FDH, оказалось, что структура молекулы FDHM имеет более открытую конформацию. Сравнение исследуемой структуры молекулы FDHM со структурой молекулы апо-формы FDHP приведено на рисунке 7 (структуры совмещены по C_{α} атомам коферментсвязывающих доменов).

Анализ контактов структур димеров двух апо-форм показал, что контакт для субъединиц, формирующих димер FDHM, значительно сильнее контакта между субъединицами, формирующими димеры в апо- и холо-формах FDHP. В этой области субъединицы димера образуют между собой 54 водородные связи. В случае FDHP число водородных связей между субъединицами димера равно 46. Наличие более прочного взаимодействия субъединиц в димере FDHM вызвано присутствием 20 остатков, которыми отличаются структуры FDHM и FDHP в этой области.

Таким образом, субъединицы FDHM имеют более «открытую» структуру по сравнению с ранее исследованными структурами апо-формы FDHP. Такие изменения в структуре свободного фермента не связаны с различным кристаллографическим окружением субъединиц FDHM в кристалле.

Кристаллическая структура комплекса FDH из метилотрофных бактерий Moraxella sp.C2 с NAD⁺ и азид-ионом. Структура тройного комплекса FDH из метилотрофных бактерий Moraxella sp.C2 с NAD⁺ и азид-ином была решена методом молекулярного замещения и уточнена до R_{factor}=14,2% при разрешении 1,95Å (Таблица 2). Структура комплекса FDHM содержит в независимой части элементарной ячейки одну субъединицу димера, подобно структуре апо-формы FDHP с тетрагональной решеткой (см. выше). Молекулу димера исследуемой структуры FDHM образуют субъединицы, связанные кристаллографической поворотной осью симметрии второго порядка, аналогично димеру FDHP с тетрагональной решеткой. На рисунке 8 показана структура димера тройного комплекса FDHM с NAD⁺ и азид-ионом.

В структуре тройного комплекса были локализованы 399 аминокислотных остатков. На С-конце исследуемой структуры FDHM были локализованы 8 дополнительных остатков, которые не удавалось локализовать по картам электронной плотности в структуре холо-формы FDHP [1]. Атомная модель молекулы тройного комплекса FDHM не содержит только двух последних остатков (в соответствии с первичной структурой фермента). Остатки с 388 по 395 структуры тройного комплекса FDHM образуют дополнительный элемент вторичной структуры - α-спираль (α10, в соответствие с номенклатурой элементов вторичной структуры описанной в работе [5]). Положение С-конца с 392 по 399 остаток стабилизировано в основном гидрофобными контактами с 316 по 319 остатки (β-поворот) кофермент-связывающего домена FDHM. Кроме того, боковые цепи остатков Glu397 и Asn317 образуют между собой солевой

мостик. Остатки с 392 по 399 в кристалле образуют контакты с остатками со 174 по 178 (β -поворот) соседней субъединицы димера. В структуре холо-формы FDH остатки 374-391 фиксируют положение кофермента в активном центре, образуя четыре водородных связи с молекулой NAD $^{+}$, и закрывают активный центр от растворителя.

Сравнение структуры апо- и холо-формы FDHM представлено на рисунке 9. RMS отклонения координат C_{α} атомов 373 остатков холо-формы FDHM и апоформы FDHM равно 1,48Å. При связывании молекул NAD $^{+}$ и азид-иона молекула FDHM приобретает закрытую конформацию, аналогично структуре холо-формы FDHP [1]. Изменение конформации от апо- к холо-форме FDHM можно описать поворотом каталитического домена к кофермент-связывающему домену вокруг C_{α} атомов контактных остатков 147 и 334 на угол \sim 8 0 (Рисунок 9).

В активном центре исследуемого тройного комплекса FDHM были локализованы молекула NAD^+ и азид-иона. Положение молекул NAD^+ и азид-иона на карте электронной плотности $2F_o$ - F_c с уровнем срезки 1 σ в структуре FDHM показано на рисунке 10.

Положение молекулы NAD^{\dagger} в структуре холо-формы FDHM показано на рисунке 8. Молекула NAD^{\dagger} имеет открытую конформацию, как и в структуре комплекса FDHP с NAD^{\dagger} и азид-ионом [1]. Схема связывания NAD^{\dagger} и азид-иона показана на рисунке 11. Молекула NAD^{\dagger} в структуре холо-формы FDHM связывается аналогично связыванию NAD^{\dagger} в структуре холо-формы FDHP.

Адениновая часть NAD связывается между остатками Arg241 и Cys255 и находится в гидрофобной области, образованной боковыми цепями остатков: Val197, Leu253, Cys255, Thr261, Met264 и Leu287, аналогично связыванию NAD+ в структуре холо-формы FDHP [1]. Атом AN7 аденина образует водородную связь с NE2 атомом His258, а атом AN6 с OE1 атомом Glu260. Положение аденинрибозы NAD+ стабилизировано двумя водородными связями атомов O2 и O3 с карбоксильной группой Asp221, Пирофосфатная группа NAD[†] связывается в районе остатков Ala198 и Gly203. Атом AO2 пирофосфата образует водородные связи с атомами N и NH1 остатка Arg201, AO1 атом образует водородную связь с атомом боковой цепи ОG остатка Ser380, а атомы NO2 и NO1 образуют водородные связи с атомами OG Ser147 и N Ile202, соответственно. Все взаимодействия с рибозой никотинамида осуществляются в структуре Карбоксамидная через молекулы воды FDHM. никотинового кольца молекулы NAD⁺ стабилизируется водородными связями с остатками Thr282, Asp308, Ser334 и Gly335. При этом NO7 атом образует водородные связи с атомами О Thr282, OD1 и OD2 Asp308, а атом NN7 с атомами OG Ser334 и N Gly335. Положение карбоксамидной группы никотинового кольца молскулы NAD+ имеет «транс» конформацию (атом N7 направлен в сторону NC4 атома). Качество данных полученной структуры позволяет уверено различить положение атомов азота и кислорода в боковых

цепях остатков Gln, Asn, и молекулы NAD⁺ (по анализу значений атомных температурных факторов). Следует отметить, что в данной структуре положение атомов NN7, NO7 карбоксамидной группы никотинамида меняется на противоположное по сравнению со структурой холо-формы FDHP.

В структуре тройного комплекса FDHM N1 атом азид-иона образует водородные связи с атомами NH1 и NH2 остатка Arg284, атомом NE2 His332 и атомом О основной цепи остатка Ile122. Атом N3 азид-иона образует водородные связи с атомами N и O основной цепи Ile122 и атомом ND2 остатка Asn146 (Рисунок 12). Аналогично молекуле NAD⁺, в данной структуре полученного комплекса FDHM положение атомов OD1, ND2 боковой цепи остатка Asn146 меняется на противоположное по сравнению со структурой холо-формы FDHP.

Положение азид-иона в структуре исследованного комплекса FDHM практически совпадает с его положением в структуре холо-формы FDHP, однако он связывается по-другому. Основное отличие состоит в том, что обнаружена водородная связь иона азида с остатком His332. В структуре тройного комплекса FDHP ион азида не образует водородной связи с His332, хотя данные направленного мутагенеза FDHP показали, что остаток His332 является существенным для связывания формиат-иона [7]. Расстояние между N1 атомом азид-иона и NE2 His332 в структуре холо-формы FDHP равно 3,6Å [1]. В белках семейства D-специфичных дегидрогеназ остаток Ніз входит в триаду каталитически важных остатков (Arg, His, Glu) и образует цепь переноса протона с остатком глютаминовой кислоты (в структурах FDH на месте данного остатка находится глютамин), связывается с карбоксильной группой субстрата и стабилизирует переходное состояние. В структуре FDHM остаток His332 имеет частично протонированное состояние за счет образования связи между атомом ND2 His332 и атомом NE2 Gln313 (Рисунок 12). Длина водородной связи в структуре FDH для этой пары атомов равна 2,8Å. Частичный перенос протона от глютамина на гистидин положительный заряд на имидазольном кольце гистидина и облегчает связывание отрицательно заряженного формиат-иона.

Если принять место связывание азид-иона за место связывания субстрата (формиат-иона), при котором N1 атом азид-иона соответствует O1 атому формиат-иона, а N3 атому O2 формиата, то формиат-ион в структуре исследованного комплекса FDHM образует водородные связи с остатками Arg284, His332, Ile122 и Asn146. Остатки Arg284 и His332 принадлежат кофермент-связывающему домену, а остатки Ile122 и Asn146 принадлежат каталитическому домену. Такое связывание молекулы азид-иона (формиатиона) может являться причиной изменения конформации фермента при образовании тройного комплекса (FDH-кофермент-субстрат). В структуре двойного комплекса (FDH-формиат) формиат-ион образует водородные связи с остатками Ile122 и Asn146 каталитического домена, при этом структура имеет

открытую конформацию. Положение формиат-иона в структуре двойного комплекса FDHP2 совпадает с положением иона азида в структуре FDHM при совмещении структур по координатам C_{α} атомов их каталитических доменов (Рисунок 13).

Структура тройного комплекса (FDHM-NAD⁺-азид-ион) является первой для формиатдегидрогеназ, в которой было получено кристаллографическое доказательство участия остатка His332 в связывании формиата в активном центре. Она подтвердила данные направленного мутагснеза [7] и позволила уточнить роль каталитически важного His332 в связывании субстрата (формиат-иона) ферментом. Более прочное связывания азид-иона в структуре полученного комплекса FDHM позволило предположить, что изменение конформации фермента при образовании тройного комплекса вызвано связыванием азид-иона (формиата). Кроме того, полученная структура позволила определить роль С-концевого фрагмента (391-399), который не был локализован в ранее полученных структурах FDHP, в связывании кофермента.

Исследование свободного фермента, двойных и тройных комплексов FDH методом малоуглового рентгеновского рассеяния. Метод малоуглового рассеяния исследовать геометрические рентгеновского позволяет характеристики свободных белков и их комплексов в растворе. В случае FDH ферментативная реакция сопровождается большими конформационными перестройками, которые надежно детектируются этим методом [6]. На данный момент не удалось решить пространственные структуры комплексов FDH с коферментом (NAD⁺), его аналогами (ADPR, NADH) и ADPR-формиатом. Для установления пространственного строения этих комплексов и для сравнения структурных характеристик свободного фермента и его двойных и тройных комплексов в кристалле и в растворе были проведены эксперименты по их исследованию методом малоуглового рентгеновского рассеяния.

Результаты малоуглового рентгеновского рассеяния хорошо согласуются с данными рентгеноструктурного анализа. Кривые малоуглового рассеяния для комплексов FDHP с NAD⁺, ADPR, ADPR-формиатом практически совпадают с кривой для свободного фермента. В случае тройного комплекса FDHP с NAD⁺ и азид-ионом и двойного комплекса FDHP с NADH происходит изменение структуры FDH и кривая рассеяния для этих комплексов заметно изменяется. Таким образом, молекула FDHP имеет два конформационных состояния: открытую форму (апо-форма), которую имеет свободный фермент и его двойные комплексы с субстратами или их аналогами и закрытую форму (холоформа), которую имеет тройной комплекс FDHP с NAD⁺ и азид-ионом.

По данным малоуглового рентгеновского рассеяния молекула FDHP в комплексе с NADH также должна претерпевать конформационные изменения, однако попытка получения структуры комплекса FDHP с NADH были не успешными из-за того, что кристаллы комплексов получались методом

сокристаллизации при временах образования кристаллов более одной недели, что могло привести к превращению молекулы NADH в ${\rm NAD}^+$.

выводы:

- Разработана методика кристаллизации формиатдегидрогеназы из метилотрофных бактерий *Pseudomonas sp.101* (FDHP) и бактерий *Moraxella sp.C2* (FDHM) в свободном состоянии и комплексов ферментов с коферментом (NAD⁺), субстратом (формиат-ионом) и его аналогом (азид-ионом), а также мутантных форм и их комплексов с NADH.
- 2. Решена и уточнена до R_{factor}=20,7% при разрешении 2,1Å структура новой кристаллической модификации апо-формы FDHP.
- 3. Решены две структуры комплекса FDHP с формиат-ионом (R_{factor}=22,3% при разрешении 2,19Å, R_{factor}=20,5% при разрешении 2,28Å). Найдено два места связывания формиат-иона в активном центре фермента.
- 4. Решены структуры двух мутантных форм, содержащие замены в области активного центра и на поверхности белка, FDHP T7 (R_{factor} =16,1% при разрешении 2,31Å) и FDHP GAV (R_{factor} =17,9% при разрешении 2,39Å) и структура двойного комплекса мутанта FDHP GAV с NADH (R_{factor} =20,7% при разрешении 3,1Å).
- 5. Решены структуры двойного комплекса с формиатом (R_{factor} =23,1% при разрешении 2,3Å) и тройного комплекса с NAD и азид-ионом (R_{factor} =14,2% при разрешении 1,95Å) FDH из бактерий *Moraxella sp.C2*. Сравнение полученных структур между собой и со структурами апо- и холо-форм FDHP позволило понять причины конформационных изменений структуры в процессе катализа. Выявлена роль каталитически важного гистидина (332) в связывании субстрата (формиат-иона) и роль С-коцевого участка цепи в связывании кофермента (NAD).

Цитируемая литература:

- 1. Lamzin V.S., Dauter Z., Popov V.O., Harutyunyan E.H., Wilson K.S. High resolution structures of holo and apo formate dehydrogenase. (1994) J.Mol. Biol., 236, 759-785
- 2. Tishkov, V.I., Popov, V.O. Protein engineering of formate dehydrogenase. (2006) Biomolecular Engineering, 23, №2-3, 89-110
- Wierenga R.K., Terpstra P., Hol W.G.J. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. (1986) J. Mol. Biol., 187, 101-107
- 4. Тишков В.И., Попов В.О. Механизм действия формиатдегидрогеназы и её практическое применение. (2004) Биохимия, 69, 1537-1554
- Kutzenko A.S., Lamzin V.S., Popov V.O. Conserved supersecondary structure motif in NAD-dependent dehydrogenases. (1998) FEBS Let., 423, 105-109

- Asadchikov V.E., Dickov M.M., Egorov A.M., L'vov Yu.M., Mogilevsky L.Yu., Malashkevich V.N., Osipov A.P., Feigin L.A. X-ray small-angle scattering of formate dehydrogenase as a function of saturation with nicotinamide adenine denucleotide. (1980) Studia Biophysica, 79, №1, 157-158
- Tishkov V.I., Matorin A.D., Rojkova A.M., Fedorchuk V.V., Savitsky A.P., Dementieva L.A., Lamzin V.S., Mezentzev A.V., Popov V.O. Site-directed mutagenesis of formate dehydrogenase active centre: role of the His³³²-Gln³¹³ pair in enzyme catalysis. (1996) FEBS Letters, 390. №1, 104-108

Публикации по материалам диссертации

Журнальные статьи

- 1. Е.В. Филиппова, К.М. Поляков, Т.В. Тихонова, Т.Н. Стеханова, К.М. Бойко, В.О. Попов // Кристаллография, 2005, Том 50, №5, стр. 823-827
- 2. Е.В. Филиппова, К.М. Поляков, Т.В. Тихонова, Т.Н. Стеханова, К.М. Бойко, И.Г. Садыхов, В.И. Тишков, Н.Лабру, В.О. Попов // Кристаллография, 2006, Том 51, №4, стр. 663-667
- 3. K.M. Boyko, T.V. Tikhonova, K.M. Polyakov, E.V. Filippova, E.G. Sadikhov, P.V. Konarev, D.I. Svergun, V.I. Tishkov, V.O. Popov // HASYLAB Annual Report, 2005, №2, p.411-412
- 4. K.M. Polyakov, T.V. Tikhonova, E.V. Filippova, V.S. Lamzin, V.O. Popov // HASYLAB Annual Report, 2005, №2, p.113-114

Тезисы докладов

- E.V. Filippova, K.M. Polyakov, T.V. Tikhonova, E.G. Sadikhov, T.N. Stehanova, K.M. Boiko, V.I. Tishkov, V.S. Lamzin, V.O. Popov // International Conference "Biocatalysis-2005: Fundamentals and Applications", p.78
- 2. Е.В. Филиппова, К.М. Поляков, Т.В. Тихонова, К.М. Бойко, И.Г. Садыхов, В.И. Тишков, В.О. Попов // Материалы международной школыконференции молодых ученых «Системная биология и биоинженерия». Москва, 2005, стр. 69
- 3. К.М. Бойко, К.М. Поляков, В.О. Попов, Т.Н. Стеханова, Т.В. Тихонова, Е.В. Филиппова, В.С. Ламзин // IV Национальная конференция по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (РСНЭ-2003), стр. 44

Представление атомных координат в PDB (База Трёхмерных Структур Белков)

1. www.rcsb.org/pdb Filippova E.V., Polyakov K.M., Tikhonova T.V., Stekhanova T.N., Boiko K.M., Popov V.O. Structure of a new crystal

- modification of the bacterial NAD-dependent formate dehydrogenase with a resolution of 2.1 A. (код 2GO1)
- 2. www.rcsb.org/pdb Filippova E.V., Polyakov K.M., Tikhonova T.V., Shabalin I.G., Sadykhov E.G., Tishkov V.I., Popov V.O. NAD-dependent formate dehydrogenase from bacterium Moraxella sp.C2 in complex with NAD and azide. (код 2GSD)
- 3. www.rcsb.org/pdb Filippova E.V., Polyakov K.M., Tikhonova T.V., Stekhanova T.N., Boiko K.M., Sadykhov E.G., Tishkov V.I., Popov V.O. NAD-dependent formate dehydrogenase from bacterium Pseudomonas sp.101 in complex with formate. (код 2GUG)

			ţ.	
			₽ °	