Колесникова Татьяна Дмитриевна

Влияние белка SUUR на структуру политенных хромосом Drosophila melanogaster

Генетика - 03.00.15

АВТОРЕФЕРАТ

ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА БИОЛОГИЧЕСНКИХ НАУК

Работа выполнена в лаборатории молекулярной цитогенетики Института цитологии и генетики СО РАН, г. Новосибирск

Научный руководитель: чл.-кор. РАН, доктор биологических наук,

профессор Жимулёв Игорь Федорович

Институт цитологии и генетики СО РАН,

г. Новосибирск

Официальные оппоненты: доктор биологических наук

Омельянчук Леонид Владимирович

Инстигут цитологии и генетики

СО РАН, г. Новосибирск

доктор биологических наук, профессор

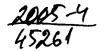
Стегиий Владимир Николаевич,

Томский Государственный Университет,

г. Томск

Ведущее учреждение: Институт биологии гена РАН, г. Москва

Защита состоится "" _______ 2005 г. на <u>утреннем</u> заседании диссертационного совета по защите диссертаций на соискание ученой степени доктора наук (\(\(\Sigma - \omega \in 3.00.01\)) при Институте цитологии и генетики СО РАН в конференц-зале Института по адресу: 630090, г.Новосибирск-90, проспект академика Лаврентъева, 10. e-mail: dissov@bionet.nsc.ru


С диссертацией можно ознакомиться в библиотеке Института цитологии и генетики СО РАН.

Автореферат разослан "<u>5" амрем</u> 2005 г.

Ученый секретарь диссертационного совета доктор биологических наук

А.Д.Груздев

2050961

ВВЕДЕНИЕ

Актуальность проблемы

Исследования последних лет показали, что общим свойством организации геномов эукариот является их разделение на дискретные структурнофункциональные домены. Важнейшей характеристикой таких доменов является стабильное эпигенетичекое состояние, определенное положение в ядре и синхронная репликация в S-фазе. Во многих случаях именно время репликации является определяющим для поддержания эпигенетического состояния домена. Пространственно-временная картина репликации генома, в свою очередь, жестко регулируется в клеточном цикле. Механизмы, лежащие в основе такой регуляции, высоко консервативны у эукариот.

В политенных тканях *D. melanogaster* временная картина репликации имеет особенности, свойственные только этим тканям. Гетерохроматиновые районы политенных хромосом слюнных желез реплицируются значительно дольше, чем эухроматиновые, не успевают закончить репликацию до конца Sфазы и остаются недопредставленными. Было показано, что эти зоны недорепликации в значительной степени совпадают с поздно реплицирующимися районами в культуре клеток дрозофилы. Это указывает на общность организации и контроля репликации в разных тканях.

Ключевым регулятором времени репликации в политенных хромосомах слюнных желез D. melanogaster является ген Suppressor of Underreplication (SuUR). Ген SuUR кодирует белок из 962 аминокислот. Большинство положительно заряженных аминокислот локализуются в средней части белка. Там же расположены две последовательности, гомологичные известным сигналам ядерной локализациии. N-концевой район SUUR отделен от положительно заряженного кластера отрицательно заряженным районом. Первые 250 N-концевых аминокислот имеют умеренную гомологию с Nконцевой частью АТФазного/геликазного домена, обнаруженного в семействе белков SNF2/SWI2 (Makunin et al., 2002, Рис. 2A). На политенных хромосомах слюнных желез белок SUUR связывается с районами прицентромерного, интеркалярного гетерохроматина (ПГХ и ИГХ), а также с районами хромосом, подверженными компактизации в результате эффекта положения мозаичного типа. У мутантов SuUR районы UITX заканчивают репликацию раньше в Sфазе, полностью политенизируются, и, как следствие, не формируют разломов. Некоторые β -гетерохроматиновые районы $\Pi\Gamma X$ также полностью политенизируются и приобретают дисковый рисунок (Belyaeva et al., 1998, Zhimulev et al., 2003).

В настоящей работе для выяснения механизмов действия SUUR мы исследовали влияние мутации гена и избыточной экспрессии белка на репликацию и структуру политенных хромосом слюнных желез. Уникальный цитологический фенотип мутации SuUR оказался удобным инструментом для

цитогенетического анализа. Поэтому первая часть работы посвящена анализу прицентромерного района X-хромосомы у мутантов SuUR. Мы исследовали, как соотносятся видимые на морфологическом уровне структуры политенной хромосомы с молекулярно-генетическими маркерами гетерохроматина митотической X-хромосомы. Вторая часть работы посвящена исследованию структуры и функции белка SUUR с использованием метода эктопической экспрессии в системе GAL4-UAS. При помощи этой системы мы экспрессировали различные фрагменты белка, что позволило выяснить функциональное значение его отдельных участков.

Цель и задачи исследования

Целью данной работы было изучение влияния белка SUUR на структуру зу- и гетерохроматиновых районов политенных хромосом и выявление функционального значения отдельных его фрагментов.

В связи с этим были поставлены следующие конкретные задачи:

- 1. Провести цитогенетический анализ β -гетерохроматина политенной X-хромосомы и исследовать влияние мутации SuUR на его структуру.
- 2. Проанализировать доминантные фенотипы, возникающие при эктопической экспрессии SUUR в разных тканях в системе GAL4-UAS.
- 3. Получить мутации в трансгене UAS-SuUR при помощи EMS мутагенеза.
- 4. Получить трансгенные линии, экспрессирующие С-концевые фрагменты SUUR.
- Исследовать функциональную значимость отдельных участков SUUR на основании цитогенетического анализа фенотипов, возникающих под влиянием эктопической экспрессии мутантных трансгенов.

Научная новизна

Впервые построена цитологическая карта района 20 политенной Ххромосомы, позволяющая локализовать наиболее проксимальные гены этого района. Впервые показано, что для района 20 характерны значительные межлинейные различия морфологии, связанные как с транс-модификаторами, так и с цис-факторами. Установлено, что в политенной Х-хромосоме значительная **ВІГО**Д β -гетерохроматина относится к митотическому эухроматину. Впервые получены доминантные фенотипы эктопической экспрессии SUUR в системе GALA-UAS. Впервые показано, что SUUR имеет как минимум два отдельных района связывания с хромосомами и что его Сконцевая контролирует недорепликацию В интеркалярном прицентромерном гетерохроматине. Эктопическая экспрессия N-концевых фрагментов SUUR удаляет эндогенный SUUR из политенных хромосом, вызывая фенотип SuUR-, и индуцирует специфические морфологические изменения в гетерохроматине.

Практическая ценность

Впервые построенная цитологическая карта проксимального района политенной X-хромосомы вплоть до районов, соответствующих границе митотического гетерохроматина X-хромосомы, что позволяет производить тонкое картирование многочисленных цитогенетических маркеров, относимых к району 20. Показано, что для этого района характерна высокая межлинейная вариабельность морфологии, что снимает противоречия между литературными данными относительно картирования этого района. Характеристика доминантных фенотипов при эктопической экспрессии SUUR и его фрагментов является базой для дальнейших исследований структуры и функции гена SuUR D. melanogaster.

Апробация работы

Результаты работы представлены на международных конференциях в докладах и стендовых сообщениях: на 5-ой международной конференции по гетерохроматину (Кортона, Италия, 2001), 6-ой международной конференции по гетерохроматину (Равелло, Италия, 2003), 14-ой международной хромосомной конференции (Вюрцбург, Германия 2001), международной конференции «Хроматин и регуляция транскрипшии» (Москва, 2003), Лаврентьевской конференции молодых ученых (Новосибирск, 2003), 44-ой и 45-ой конференциях по дрозофиле (Нью-Йорк, США, 2003, 2004).

Публикации

По теме диссертации опубликовано 10 работ.

Объем работы

Диссертация состоит из введения, обзора литературы, описания материалов и методов, результатов, обсуждения, а также выводов и списка цитируемой литературы, в которые входит 212 ссылок. Работа изложена на 136 страницах машинописного текста, содержит 4 таблицы и 35 рисунков.

Вклад автора

Основные результаты получены автором самостоятельно. Электронномикроскопический анализ политенных хромосом проводился совместно с д. б. н. В.Ф. Семешиным. Анализ влияния SUUR и его фрагментов на распределение HP1 на политенных хромосомах проводился совместно с Л. В. Болдыревой.

Благодарности

Автор выражает глубокую признательность член-корр. РАН И.Ф. Жимулеву, д.б.н. Е. С. Беляевой, к.б.н. Е. И. Волковой, к. б. н. И. В. Макунину, к. б. н. Д. Е. Корякову, д. б. н. В. Ф. Семешину и к. б. н. А. А. Горчакову за помощь в работе и обсуждение результатов. Автор также благодарен всем сотрудникам лаборатории молекулярной цитогенетики за постоянную поддержку.

материалы и методы

<u>Линии D. melanogaster</u> описаны в справочнике (Lindsley, Zimm, 1992), базе данных FlyBase (http://www.Flybasc.org/), а также в статьях (Belyaeva et al., 1998, Колесникова и др., 2001, Volkova et al., 2003).

Приготовление цитологических препаратов

Давленные препараты слюнных желез получали, как описано в статье (Belyaeva et al., 1986). Процедура приготовления препаратов для гибридизации in situ и электронно-микроскопического анализа описана в статье (Колесникова и др., 2001), препаратов для иммунофлюоресцентного окрашивания - в статье (Zhimulev et al., 2003).

<u>Процедуру гибридизации in situ</u> выполняли по методу, описанному в статье (Zhang, Spradling, 1995) с небольшими модификациями с использованием набора для гибридизации фирмы Vector Laboratories.

<u>Непрямое иммунофлуоресцентное окрашивание политенных хромосом</u> выполняли по методике, описанной в статье (Zhimulev et al., 2003), с небольшими модификациями.

Антитела

Для детекции белка SUUR и его фрагментов использовали антитела F81 против N-концевой (Kolesnikova et al., 2005) и E45 против средней части белка SUUR (Makunin et al., 2002). Для детекции С-концевых фрагментов SUUR использовали антитела против НА-эпитопа, любезно предоставленные В. Пирротой (Швейцария). Антитела против белка НР1 были любезно предоставлены С. Элгин (США). В качестве вторых антител использовали коньюгаты иммуноглобулина G (goat anti rabbit) с флюорохромом FITC и (goat anti mouse) с родамином (Sigma).

<u>Детекция апоптоза</u> проводилась по методике, описанной в статье (Abrams et al. 1993).

EMS мутагенез проводили согласно методике, описанной в сборнике (Grigliatti, 1998).

Для **трансформации** эмбрионов D. melanogaster использовали стандартный протокол (Spradling, Rubin, 1982).

Вестерн-блот анализ проводили согласно методике, описанной в статье (Poux et al. 2001)

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Построение карты района 20 в линиях, несущих мутацию SuUR

Постоянство рисунка поперечной исчерченности считается фундаментальным свойством политенных хромосом, однако для прицентромерных районов характерно варьирование морфологии. В линиях дикого типа в районе 20 виден лишь один четкий диск 20A1-2, а также относительно тонкий и не очень четкий диск 20 B1-2 (Рис. 1Б). В линиях с

мутацией SuUR район 20 "эухроматинизирован": часто выявляются тонкие диски, постоянно присутствуют до пяти крупных дисков, по которым район был разделен на секции A-F (Рис. 1В). Оказалось, что из-за значительных межлинейных различий построить обобщенную карту района на уровне тонких дисков нельзя. Мы построили карты для восьми линий, несущих мутацию SuUR. На Рис.1В приведены примеры характерной морфологии и карты района 20 для четырех линий. Для установления соответствия дисков друг другу в хромосомах разных линий использовали гибридизацию *in situ* клона su(f), который мы локализовали на границе секций 20 E и F.

Варьирование дискового рисунка в районе 20 определяется несколькими факторами. Во-первых, существенную роль играет уровень политенизации района. Во-вторых, на морфологию района влияют хромосомные перестройки. Кроме того, морфологические особенности, характерные для каждой линии, сохраняются в хромосомах межлинейных гибридов. Такое поведение гомологов в гетерозиготе говорит о том, что различия дискового рисунка связаны с внутренними свойствами самого района. Мы предположили, что межлинейные различия в морфологии района 20 могут быть частично обусловлены присутствием или отсутствием длинных трактов повторенных элементов.

β-гетерохроматин политенной X-хромосомы соответствует зоне зугетерохроматинового перехода в митотической хромосоме

При помощи гибридизации in situ с политенными хромосомами мы прокартировали ген su(f), который принято считать самым проксимальным маркером эухроматина X-хромосомы D. melanogaster, на границе районов 20E и F. Цитологический анализ хромосомных перестроек показал, хромосомный материал, расположенный проксимальнее точки разрыва инверсии $In(1)sc^4$ (наиболее дистального известного маркера митотического гетерохроматина X-хромосомы), не политенизируется даже у мутанта SuUR. Следовательно, митотический гетерохроматин, расположенный проксимальнее точки разрыва этой перестройки (Рис. 1А), не представлен в дисковой области района 20 даже на фоне мутации SuUR. Весь представленный в политенной Х-хромосоме митотический гетерохроматин соответствует небольшому фрагменту политенной хромосомы - району 20F. Тем самым мы подтвердили гипотезу, согласно которой значительная доля β гетерохроматина политенной X-хромосомы, в отличие от β -гетерохроматина и 3, соответствует переходной зоне между 2 гетерохроматином.

В настоящее время прицентромерные районы рассматривают как особые хроматиновые домены, объединяющие черты эу- и гетерохроматина. Как и эухроматин, эти районы содержат гены; в 10 же время эти гены требуют для

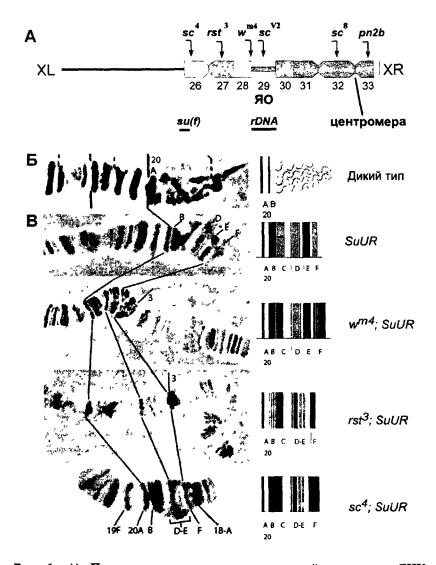


Рис. 1. А) Положение точек разрыва инверсий и клонов ДНК в митотическом гетерохроматине *X*-хромосомы. ЯО-ядрышковый организатор. Б) Морфология района в хромосоме линии дикого типа (Lefevre, 1976). В) Район 20 X-хромосомы в различных линиях, несущих мутацию *SuUR*. Справа даны схематичные рисунки типичной для линии морфологии.

своей экспрессии присутствия гетерохроматиновых белков, HP1 и Su(var)3-9, и по молекулярным характеристикам соответствуют гетерохроматиновым генам. Мы показали, что SUUR действует именно на эти районы и практически не влияет на митотический гетерохроматин.

Система GAL4-UAS для исследования SUUR

Система GAL4-UAS используется для направленной экспрессии исследуемого гена в той или иной ткани (Brand, Perrimon, 1993). Для эктопической экспрессии SUUR в этой системе были получены линии мух, несущих встройку транспозона UAS-SuUR (Zhimulev et al., 2003) в различные локусы генома. В таблице 1 приведено краткое описание фенотипов, вызванных эктопической экспрессией трансгенов UAS-SuUR.

Таблипа1.

Место экспрессии	Фенотип		
Слюнная железа с начала эмбриогенеза (AB1-GALA)	У личинок третьего возраста маленькие слюнные железы		
Слюнная железа в третьем личиночном возрасте (Sgs3-GAL4)	«Пузыри» в районах прицентромерного интеркалярного гетерохроматина политенных хромосом слюнных желез (Zhimulev et al., 2003)		
Крыловой имагинальный диск	Нарушения развития крыла		
Остальные имагинальные диски, нервные ганглии	Нет видимых изменений		
Повсеместная экспрессия (da-GAL4)	Все полиплоидные ткани значительно меньших размеров, гибель личинок		
Фолликулярные клетки яичников	Стерильность самок		

Можно видеть, что полиплоидные и диплоидные ткани по-разному реагируют на эктопическую экспрессию SUUR, что может отражать различное функциональное значение белка в этих тканях.

Полученные при помощи эктопической экспрессии доминантные фенотипы оказались удобным инструментом для получения функциональных мутаций в трансгене UAS-SuUR.

Анализ функциональной значимости отдельных участков SUUR

Для исследования функций различных участков SUUR были созданы линии мух, экспрессирующие различные фрагменты белка в системе GAL4–UAS. Для этого мы использовали два подхода: 1) мухи, экспрессирующие N-концевую часть белка, были получены посредством EMS-мутагенеза линии UAS-SuUR; 2) были созданы линии мух, несущие новые P-элементные конструкции, экспрессирующие C-концевые фрагменты SUUR (Puc.2).

Для проверки экспрессии трансгенных белков мы провели Вестерн-блот анализ. На Вестерн-блотах антитела E45, полученные прогив средней части

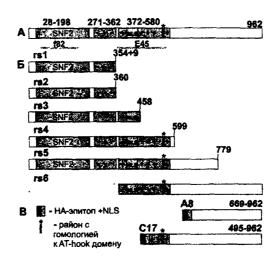


Рис. 2. A) Теоретически предсказанные домены белка SUUR и участки белка, распознаваемые соответствующими антителами (Е45 и F81). SNF2 - домен с умеренной гомологией к АТФ-связывающему домену группы белков SWI2/SNF2. +++ часть белка, обогащенная положительно заряженными основаниями, отрицательно заряженный участок белка, NLS - предсказанный сигнал ядерной локализации. Б) Фрагменты SUUR, полученные мутагенезом трансгена UAS-SuUR. В) С-концевые фрагменты SUUR. Числа соответствуют номерам аминокислот.

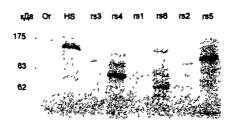


Рис. 3. Вестерн-блот тотального экстракта взрослых мух, экспрессирующих мутированные фрагменты SUUR под контролем драйвера da-GAL4. Детекция антителами E45. ОR и HS — контрольные экстракты мух Oregon R и hsp70-SuUR, подвергнутых тепловому шоку.

Таблица 2. Фенотипы мух и личинок, вызванные эктопической

экспрессией фрагментов SUUR

	Повсеместная экспрессия (da -GAL4)	Слюнная железа с раннего эмбриогенеза (AB1-GAL4)	Фолликуляр- ные клетки янчников	Крыловой имагиналь- ный диск		
SUUR	Леталь	Маленькие слюнные железы	Самки стерильны	Загнутые крылья		
rs1-SUUR ₁₋₃₅₄₊₉	Нормальная	Слюнные железы нормального размера	Самки фертильны	Нормальные крылья		
rs2-SUUR ₁₋₃₆₈ rs3-SUUR ₁₋₄₅₈ rs4-SUUR ₁₋₅₉₉	жизнеспособ- ность	Слюн-ные железы				
rs5-SUUR ₁₋₇₇₉	Снижение жизнеспособ- ности	нормального размера, изменения струтуры хромосом слюнных		Слегка загнутые крылья		
A8-SUUR ₆₆₉₋₉₆₂	Нормальная жизнеспособ- ность	желез (см. текст)		Нормальные		
C17-SUUR ₄₉₅₋₉₆₂	Леталь	Маленькие слюнные железы	Самки стерильны	крылья		

Таблица 3. Хромосомные фенотипы, вызванные эктопической экспрессией

фрагментов SUUR НД – нет данных

	Специфичес кое связы- вание с рай- онами ИГХ	Индукция недореп- ликации	Исчезновение слябых точек на фоне SuUR ⁺	Удаление эндогенного SUUR с хромосом	Форми- рование пузырей
SUUR	+	+	_	_	+
rs1-SUUR ₁₋₃₅₄₊₉	_			-	_
rs2-SUUR ₁₋₃₆₀	-		+	+	_
rs3-SUUR ₁₋₄₅₈	+	_	+	+	_
rs4-SUUR ₁₋₅₉₉	+	_	+	нд	+
rs5-SUUR ₁₋₇₇₉	+	-	+	нд	+
rs6-SUUR ₂₋₉₆₂	нд	+	_	_	T -
A8-SUUR ₆₆₉₋₉₆₂		_	_		_
C17-SUUR ₄₉₅₋₉₆₂	+	+	_	нд	_

белка SUUR (Рис. 2A), позволяют выявлять только большой избыток SUUR (Макипіп et al., 2002). Поэтому мы использовали в качестве положительного контроля экстракты из мух hsp70-SuUR, предварительно подвергнув их тепловому шоку. Мух, несущих производные трансгена UAS-SuUR, скрещивали с драйверной линией da-GAL4 для индукции повсеместной экспрессии SUUR. Как можно видеть на Рис. 3, на Вестерн-блотах с помощью

антител E45 выявляется по одному сигналу в экстрактах мух da-GAL4>UAS-rs4 и da-GAL4>UAS-rs5.

В UAS-*rs6* мутация произошла в стартовом кодоне. В экстракте *da*-GAL4>UAS-*rs6* выявляются множественные белковые полосы (Рис. 3), соответствующие, по-видимому, продуктам с альтернативных сайтов инициации трансляции.

В таблицах 2 и 3 суммированы результаты анализа фенотипов, вызванных эктопической экспрессией фрагментов SUUR.

Связывание фрагментов SUUR с хромосомами СЖ

Для того, чтобы исследовать паттерн хромосомной локализации фрагментов SUUR, мы использовали драйвер Sgs3-GAL4, специфично индуцирующий экспрессию в слюнных железах в середине третьего личиночного возраста. Чтобы исключить вклад эндогенного SUUR в исследуемые линии ввели мутацию SuUR.

Все фрагменты SUUR, как имеющие в своем составе предсказанный эндогенный сигнал ядерной локализации, так и «пришитые» к синтетическому NLS, способны связываться с хромосомами. Однако характер связывания различен. Фрагменты rs4-SUUR₁₋₅₉₉ и rs5-SUUR₁₋₇₇₉ связываются со всеми дисками политенных хромосом. Аналогичная картина наблюдается при эктопической экспрессии полноразмерного SUUR в тех же условиях (Makunin et al., 2002). Белки C17-SUUR₄₉₅₋₉₆₂ и A8-SuUR₆₆₉₋₉₆₂ повсеместно связываются с хромосомами. Белок rs3-SUUR₁₋₄₅₈ связывается с хромосомами слабо, сигнал имеет форму гранул, в то же время локализация сигнала специфична: белок связывается с районами прицентромерного и интеркалярного гетерохроматина (ПГХ и ИГХ) (Рис. 4 A).

Фрагменты A8-SUUR $_{669-962}$ и rs4-SUUR $_{1-599}$ не перекрываются (Рис. 2). Не перекрываются и фрагменты C17-SUUR $_{495-962}$ и rs3-SUUR $_{1-458}$. Следовательно, в белке SUUR присутствуют независимые районы, способные по-разному связываться с политенными хромосомами.

Фрагменты SUUR специфично узнают районы ПГХ и ИГХ

Для ответа на вопрос, способны ли различные фрагменты SUUR связываться преимущественно с определенными районами хромосом, мы использовали драйвер *arm*-GAL4. Этот драйвер индуцирует слабую мозаичную экспрессию в слюнных железах, что позволило нам экспрессировать SUUR и его фрагменты в различных ядрах одной слюнной железы с разной интенсивностью.

N-концевые фрагменты rs4-SUUR₁₋₅₉₉ и rs5-SUUR₁₋₇₇₉ специфично узнают районы ИГХ и ПГХ (Рис. 4Б), при этом не наблюдается существенных различий в характере связывания с хромосомами полноразмерного белка и этих фрагментов. Картина распределения белка на хромосомах



Рис. 4. N-концевые фрагменты SUUR специфично узнают районы ИГХ и ПГХ. Иммунолокализация на политенных хромосомах белков A) rs3-SUUR₁₋₄₅₈ Б) rs5-SUUR₁₋₇₉₉ В) C17-SUUR₄₉₅₋₉₆₂. Все отмеченные районы относятся к ИГХ. ХЦ-хромоцентр.

arm-GAL4>UAS-C17; SuUR значительно варьирует. В редких случаях мы наблюдали специфическое связывание белка с районами прицентромерного и интеркалярного гетерохроматина (Рис. 4В). Итак, мы показали, что, подобно гs3-SUUR₁₋₄₅₈, фрагменты rs4-SUUR₁₋₅₉₉, rs5-SUUR₁₋₇₇₉ и C17-SUUR₄₉₅₋₉₆₂ могут специфично связываться с хромосомами. При окраске антителами против НАэпитопа на политенных хромосомах личинок arm-GAL4>UAS-A8 специфического или дискового паттерна не наблюдается.

Два неперекрывающихся фрагмента - C17-SUUR₄₉₅₋₉₆₂ и rs3-SUUR₁₋₄₅₈ -, включающие часть положительно заряженного участка, демонстрируют способность специфично узнавать районы ПГХ и ИГХ. Можно предположить, что в белке SUUR есть два независимых участка специфичного связывания с этими районами. Однако интенсивность наблюдаемого специфичного сигнала связывания для этих фрагментов очень низкая. Лишь rs4-SuUR₁₋₅₉₉, rs5-SuUR₁₋₇₇₉ демонстрируют картину связывания, полностью идентичную таковой для полноразмерного белка. Мы предполагаем, что именно средняя часть белка (примерно соответствующая положительно заряженному кластеру) отвечает за это связывание, и его фрагментов у C17-SUUR₄₉₅₋₉₆₂ и rs3-SUUR₁₋₄₅₈ достаточно для слабого, но специфичного, связывания.

В районе положительно заряженного кластера расположен домен, гомологичный домену АТ-hook, который in vitro связывается с ДНК независимо от ее последовательности, но в зависимости от ее конформации (Bianchi and Beltrame, 2000). Можно предположить, что именно этот домен определяет специфичность связывания SUUR с политенными хромосомами. Мы знаем, что белок SUUR специфично связывается со всеми молчащими

районами хромосом, в том числе с эухроматиновыми районами, подверженными эффекту положения мозаичного типа. Это указывает на то, что специфичность связывания не должна определяться непосредственно последовательностью ДНК. Общими свойствами молчащих районов являются набор модификаций гистонов, белков-сайленсеров и конденсированная структура хроматина. Особая структура хроматина, в свою очередь, определяет особую топологию ДНК, которая может быть важна для связывания SUUR.

Эктопическая экспрессия N-концевых фрагментов SUUR вызывает доминант-негативный фенотип

Оказалось, что постоянная эктопическая экспрессия в слюнных железах с ранних стадий развития всех N-концевых фрагментов SUUR (rs2-SUUR₁₋₃₆₀, rs3-SUUR₁₋₄₅₈, rs4-SUUR₁₋₅₉₉ и rs5-SUUR₁₋₇₇₉) на фоне нормального аллеля SuUR приводит к формированию хромосом, лишенных слабых точек (разломов) (Рис. 5). Такой фенотип характерен для линий $SuUR^-$, в которых отсутствует продукт гена SuUR (Belyaeva et al., 1998; Makunin et al., 2002). Таким образом, фрагменты белка, несущие N-концевую часть SUUR, могут вызывать доминант-негативный фенотип.

Рис. 5. Политенные хромосомы слюнных желез личинок AB1-GAL4>UASrs2. Отмечены районы, в которых в норме с высокой частотой наблюдаются разломы.

Мы показали, что N-концевые фрагменты SUUR, в том числе самый короткий, rs2-SUUR₁₋₃₆₀, при эктопической экспрессии обладают способностью удалять эндогенный белок SUUR с политенных хромосом. Обратим внимание на то, что rs2-SUUR₁₋₃₆₀ сам не может связываться с хромосомами. Это может указывать на физическое взаимодействие N-концевого района или непосредственно с эндогенным белком SUUR, или же с другими белками, необходимыми для нормального связывания SUUR с хромосомами. Можно предположить, что SUUR действует как гомо- или гетеромультимерный комплекс, формирование которого зависит от N-

концевого района. В пользу такого предположения говорит и форма сигнала (крупные гранулы), наблюдаемая при иммунолокализации rs3-SUUR₁₋₄₅₈ на политенных хромосомах.

Влияние фрагментов SUUR на недорепликацию в политенных хромосомах слюнных желез

В отсутствие белка SUUR районы ИГХ политенных хромосом слюнных желез полностью политенизированы и не формируют разломов. Кроме того, дополнительной политенизации подвержены и некоторые районы ПГХ (Belyaeva et al., 1998).

При оверэкспрессии N-концевые фрагменты SUUR (rs1-SUUR₁₋₃₅₄₊₉, rs2-SUUR₁₋₃₆₀, rs3-SUUR₁₋₄₅₈, rs4-SUUR₁₋₅₉₉ и rs5-SUUR₁₋₇₇₉) не способны индуцировать разломы (недорепликацию ИГХ).

Набор белков, синтезирующихся при индукции экспрессии конструкции UAS-rs6 драйвером AB1-GAL4, имеют интактный С-конец. Исследование политенных хромосом AB1-GAL4>UAS-rs6 на фоне мутации SuUR показывает, что эти фрагменты способны вызывать появление многочисленных разломов в районах ИГХ (Рис. 6), то есть могут вызывать недорепликацию и «спасение» фенотипа мутации SuUR. Фрагменты C17-

Рис. 6. Разломы и эктопический контакт (стрелка) в политенных хромосомах AB1-GAL4>UAS-rs6; SuUR.

SUUR₄₉₅₋₉₆₂ и A8-SUUR₆₆₉₋₉₆₂ также способны влиять на недорепликацию. В хромосомах *arm*-GAL4>UAS-C17; *SuUR* наблюдаются редкие разломы и нет характерной для мутантов *SuUR* дополнительной репликации в хромоцентре. Таким образом, за индукцию недорепликации отвечает, по-видимому, С-конец белка SUUR.

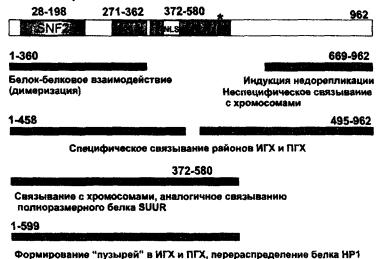
Фрагменты SUUR вызывают реорганизацию структуры политенных хромосом

Связывание SUUR и его фрагментов с разными районами политенных хромосом влияет на их морфологию. Эктопическая экспрессия

полноразмерного белка SUUR при индукции экспрессии драйвером Sgs3-GAL4 вызывает специфические обратимые нарушения морфологии, так называемые «пузыри», в районах ИГХ и ПГХ (Zhimulev et al., 2003b).

Рис. 7. Влияние эктопической экспрессии rs5-SuUR₁₋₇₇₉ на морфологию политенных хромосом. «Пузыри» в районах ПГХ и ИГХ. ХЦ-хромоцентр.

«Пузыри», котя менее выраженные, чем при экспрессии полноразмерного белка. наблюдались при экспрессии **N-концевых** длинных фрагментов SUUR. С-концевые **SUUR** фрагменты индуцировали формирования «пузырей», что указывает на роль N-конца SUUR для индукции этого феномена. Короткие Nконцевые фрагменты почти не связываются с политенными хромосомами, вследствие чего практически не влияют на их структуру.


Влияние эктопической экспрессии фрагментов SUUR на распределение белка HP1 на политенных хромосомах слюнных желез

Л. В. Болдыревой было показано, что избыточная экспрессия гена SuUR приводит к перераспределению белка HP1 на политенных хромосомах. На препаратах из личинок, несущих Sgs3-GAL4>UAS-SuUR и hs-SuUR, (после теплового шока) антитела, полученные против белка HP1, связываются со всеми дисками политенных хромосом, в то время как в контроле сигнал локализуется только в хромоцентре, хромосоме 4, районе 31 и теломерах.

Оказалось, что при избыточной экспрессии длинных N-концевых фрагментов, rs4-SUUR₁₋₅₉₉ и rs5-SUUR₁₋₇₇₉, происходит перераспределение HP1, аналогичное наблюдаемому при избыточной экспрессии полноразмерного SUUR. При экспрессии С-концевых фрагментов, C17-SUUR₄₉₅₋₉₆₂ и, более короткого, A8-SUUR₆₆₉₋₉₆₂, распределение HP1 соответствует таковому в линиях дикого типа. Таким образом, именно N-концевая часть белка SUUR отвечает за перераспределение HP1.

На Рис. 8 суммированы данные по исследованию функциональной значимости отдельных фрагментов SUUR. Мы показали, что за индукцию недорепликации — основную функцию белка SUUR - отвечает С-концевая часть белка. В этом участке не обнаружено гомологии к известным белковым доменам. Белок SUUR имеет несколько независимых участков связывания с

хромосомой. С N-концевой частью связана функция фунция белок-белкового взаимодействия; кроме того, эта часть белка способна влиять на структуру политенных хромосом.

при эктопической экспрессии
Рис. 8. Функциональное значение различных участков белка SUUR

Выводы

- Цитогенетический анализ прицентромерного района политенной Ххромосомы позволил установить, что β-гетерохроматин политенной Ххромосомы соответствует специфической переходной зоне между зу- и гетерохроматином митотической хромосомы. Построена карта района 20 для восьми линий, несущих мутацию SuUR. Обнаружена межлинейная вариабельность морфологии этого района.
- 2. Получены доминантные фенотипы при эктопической экспрессии *SuUR* в системе GAL4-UAS. Показано, что полиплоидные и диплоидные ткани поразному реагируют на эктопическую экспрессию SUUR.
 - а) Эктопическая экспрессия SUUR в слюнной железе значительно ингибирует политенизацию.
 - б) Повсеместная экспрессия SUUR приводит к гибели личинок.
 - в) Эктопическая экспрессия SUUR в крыловом имагинальном диске вызывает апоптоз и, как следствие, нарушения развития крыла.

- 3. Анализ функциональной значимости отдельных участков SUUR показал. что:
 - а) С-концевая часть белка контролирует недорепликацию в интеркалярном и прицентромерном гетерохроматине, а при эктопической экспрессии супрессирует эндорепликацию;
 - б) в белке SUUR есть как минимум два независимых района связывания с хромосомами, способных специфически узнавать интеркалярный и прицентромерный гетерохроматин;
 - в) эктопическая экспрессия N-концевых фрагментов SUUR приводит к удалению эндогенного SUUR с политенных хромосом, вызывая фенотип SuUR:
 - г) связывание фрагментов SUUR вызывает реорганизацию структуры политенных хромосом. Эктопическая экспрессия N-терминальных фрагментов SUUR индуцирует специфические «пузыри» в гетерохроматине;
 - д) эктопическая экспрессия N-концевых фрагментов SUUR перераспределяет белок HP1 на политенных хромосомах слюнных желез.

Публикации

- 1. Колесникова Т.Д., Коряков Д.Е., Семешин В.Ф., Беляева Е.С., Жимулев И.Ф. Межлинейные различия в морфологии прицентромерного района политенной X-хромосомы в слюнных железах Drosophila melanogaster// Генетика. 2001. Т.37. N.12. С. 1632-1641.
- Volkova, E.I., Yurlova, A.A., <u>Kolesnikova, T.D.</u>, Makunin, I.V., Zhimulev, I.F. Ectopic expression of the *Suppressor of Underreplication* gene inhibits endocycles but not the mitotic cell cycle in *Drosophila melanogaster*// Molec. Genet. Genomics, 2003. V.270(5). P.387—393.
- Zhimulev, I.F., Belyaeva, E.S., Makunin, I.V., Pirrotta, V., Semeshin, V.F., Alekseyenko, A.A., Belyakin, S.N., Volkova, E.I., Koryakov, D.E., Andreyeva, E.N., Demakova, O.V., Kotlikova, I.V., Kolesnikova, T.D., Boldyreva, L.V., Nanayev, R.A. Intercalary heterochromatin in *Drosophila* melanogaster polytene chromosomes and the problem of genetic silencing// Genetica. 2003. V.117(2-3). P.259—270.
- 4. Жимулёв И.Ф., Беляева Е.С., <u>Колесникова Т.Д.</u>, Волкова Е.И. (2004). Интеркалярный гетерохроматин и проблема сайленсинга// Вестник ВОГиС. Т.8(2). С.81-85.
- Kolesnikova T.D., Makunin I.V., Volkova E.I., Pirrotta V., Belyaeva E.S.,
 Zhimulev I.F. Functional dissection of the Suppressor of UnderReplication

- protein of *Drosophila melanogaster*: identification of domains influencing chromosome binding and DNA replication// Genetica. 2005. (in press).
- 6. <u>Троценко (Колесникова) Т.Д.</u> Коряков Д.Е., Жимулев И.Ф. Цитогенетический анализ прицентромерного района политенной X-хромомсомы дрозофилы *Drosophila melanogaster*// Цитология. 2000. т. 42. С. 312.
- Koryakov D.E., Domanitskaya E.V., <u>Kolesnikova T.D.</u>, Belyakin S.N., Belyaeva E.S., Semeshin V.F., Zhimulev I.F. Genetic control of heterochromatin differential polytenization in *Drosophila*// Chrom. Res. 2001. V.9 (suppl. 1). P.122-123.
- 8. Kolesnikova, T.D., Volkova, E.I., Makunin, I.V., Pirrotta, V., Zhimulev, I.F. Isolation of mutations in UAS-SuUR transgene// A Dros. Res. Conf. 44. 2003. P.321C.
- Yurlova A.A., <u>Kolesníkova T.D.</u>, Volkova E.I., Makunin I.V., Zhimulev I.F. Mutation of ATP-binding domein of the SuUR protein// A Dros. Res. Conf. 45. 2004. P.328A.
- 10. Белякин С.Н., Колесникова Т.Д., Макунин И.В., Волкова Е.И., Алексеенко А.А., Нанаев Р.А., Болдырева Л.В., Беляева Е.С., Жимулёв И.Ф. Интекалярный гетерохромаатин в политенных хромосомах *D. melanogaster* и проблема гентического сайленсинга// Съезд ВОГиС. Москва. 2004. Т. 2. С. 238.

Подписано к печати 25.03.2005 Формат бумаги 60 х 90. Печ. л. 1. Уч. изд. л. 0,7 Тираж 100 экз. Заказ 46

Ротапринт Института цитологии и генетики СО РАН 630090, Новосибирск, пр. ак. Лаврентьева, 10.

РНБ Русский фонд

 $\frac{2005-4}{45261}$