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GENERAL TOPICAL CHARACTERIZATION

This dissertation develops the mathematical apparatus and considers prob-

lems surrounding models of quantum (and classical) computation that minimize

Hamiltonians.

Over the last 100 years, quantum effects have played increasingly prevalent

roles in technology. The period ranging from the dawn of the transistor and the

advent of the laser up until today is referred to as ‘the first quantum revolution.’

The first quantum revolution utilized collective (a.k.a. average or mean field) quan-

tum effects. We are now entering the ‘second quantum revolution.’ Bootstrapping

precision instruments and the dramatic technological developments pioneered in

the first quantum revolution, humankind is increasingly able to control the quan-

tum states of individual and interacting particles. At this scale, matter provides

phenomena that lead to new possibilities to store and manipulate (quantum) in-

formation.

The study of quantum mechanics is deeply rooted in traditional Russian

science and underpins part of the countries mathematical physics tradition. In-

deed, the foundations of the first quantum revolution finds a long list of pioneers,

from the great Nikolay Bogolyubov to the somewhat lesser known Ludvig Faddeev

and Vladimir Fock. From the onset Russian scientists produced several extremely

important early results which paved the way for the second quantum revolu-

tion. Everyone in the Western world knows well that in the early 1980s Richard

Feynman conjectured that a quantum computer had the potential to simulate

physical processes that a classical computer could not [International Journal of

Theoretical Physics, 21(6-7):467 (1982)]. It is however lesser known in the West

that Yuri Manin independently conjectured the inherent computational power

of quantum mechanics [Vychislimoe i nevychislimoe (English: Computable and

uncomputable), Soviet Radio, (1980)].

Alexander Holevo’s 1973 bound, which establishes an upper bound to the

amount of information that can be known about a quantum state (accessible

information) is perhaps more widely known outside of Russia [Problems of Infor-

mation Transmission, 9(3):177 (1973)]. And of course Boris Tsirelson’s 1980 work

towards an upper limit to quantum mechanical correlations between distant events
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is again widely known today [Letters in Mathematical Physics, 4(2):93 (1980)].

As far as laying the foundations of quantum computation and quantum com-

putational complexity theory, Alexei Kitaev made extraordinary developments.

Several of Kitaev’s results defining quantum complexity classes (through the so

called, Local Hamiltonian problem), creating Hamiltonian gadgets and intro-

ducing the phase estimation algorithm underpin several of the chapters in this

work.

Recent developments in quantum information processing have fostered a

global research effort to understand and develop applications for noisy real-world

quantum information processors (often called NISQ: Noisy Intermediate-Scale

Quantum (NISQ). Unlike traditional textbook quantum algorithms, quantum al-

gorithms executed on NISQ devices operate in the presence of systematic and

random errors. In practice this limits the depth of the circuit that can be ex-

ecuted. Experimental developments have lead to a novel utilitarian means of

quantum computation enabled by an iterative classical-to-quantum feedback pro-

cess called, variational quantum computation. Variational quantum computation

arrives after ample progress in ground state quantum computation by quantum

annealing.

Questions related to quantum programming are no longer isolated to a small

community (as was the case until just a few years ago). The topic of quantum algo-

rithms and quantum applications has rapidly transformed from a small academic

theoretical community to one driven by major technology leaders and backed

by ample private and public investment. Dedicated programs have been initiated

around the globe devoted to solve these questions. This dissertation focuses on the

development of the mathematical framework and the use of mathematical tools

needed to address these challenges. The central theme of Hamiltonian ground

states provides several additional fruitful connections to areas of growing interest

in mathematical physics.

6



DISSERTATION GOALS

We aim to present a consistent and general framework, which conceptually

binds many of the tools used across contemporary quantum programming. The

unifying focus is on properties of ground states of Hamiltonians. Programming

ground states is required in adiabatic quantum computation and other models of

ground state annealing while Hamiltonian minimization is also central to physics

and chemistry simulation algorithms that are widely anticipated future quantum

computing applications.

The goal is then simply stated. We present a coherent view that develops

mathematical structures and connects the core ideas across the areas of:

(i) Ground state and adiabatic quantum computation.

(ii) The quantum simulation of ground state properties of physical systems.

(iii) The variational approach to effective Hamiltonian minimization.

Indeed, the variational model of quantum computation is stated by means of

a Hamiltonian minimization problem that utilizes a classical-to-quantum feedback

loop. We further model and formalize this algorithmic process.

RESEARCH METHODS AND METHODOLOGY

Methods from the theory of algebraic and strongly order structures (graded

algebras), matrix analysis, elementary group theory and algebraic graph theory

where used. Additional techniques include Boolean algebras, and Green’s func-

tion based perturbation theory as well as computational complexity theory. The

mathematical structure of quantum mechanics was further relied on.
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MAIN STATEMENTS DEFENDED

1. The formulation of the Ising and quantum kernel problem statements

and development of a mathematical apparatus to program parent Hamil-

tonian models with specific ground state properties.

2. The development of specific and improved 𝑘-body to 2-body Hamiltonian

reductions.

3. Proof that the von Neumann entropy of stochastic propagators on a graph

is subadditive.

4. Showing that (i) |𝑦+⟩ = |0⟩+ 𝚤|1⟩, (ii, iii) cups and caps, (iv) Hadamard

and (v) COPY generate any Clifford tensor network and hence that the

ZX tensor rewrite system admits a poly-time terminating rewrite se-

quence establishing the Gottesman–Knill theorem.

5. The combinatorial quantum circuit area law bounds the maximum possi-

ble entanglement across any bipartition of qubits acted on by a quantum

circuit comprised of local unitaries and CNOT gates.

6. Utilization of the parent Hamiltonian mathematical apparatus and gad-

gets to embed quantum and classical circuits into the low energy sector of

Hamiltonians, thereby contributing mappings of MA- and QMA-hard

problem instances to MA- and QMA-hard Hamiltonian ground state

energy decision problems.

7. Utilization of the mathematical apparatus to embed quantum and clas-

sical circuits into the lowest energy state of Hamiltonians thereby map-

ping MA- and QMA-hard problem instances to MA- and QMA-hard

Hamiltonian ground state energy decision problems.

8. Proving that physically relevant Hamiltonians—including the tunable

Ising model with additional XX-interactions—can embed universal quan-

tum computational resources for ground state quantum computation.

9. The development of the mathematical model to describe variational quan-

tum computation and the establishment of the computational universal-

ity of the variational model of quantum computation.
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SCIENTIFIC NOVELTY

The primary results defended in this dissertation have appeared in peer

reviewed journals. I hope the dissertation itself culminates to produce an emergent

type of novelty for its readers!

We devised a structured (ordered) algebraic approach to understand quan-

tum states and to derive and engineer properties of generalized Ising Hamiltonian

penalty functions. Penalty functions were developed to embed logic operations

(gates) into the low-energy sector of Ising spins. Likewise, three (and higher)

body interaction Ising terms were mimicked through the minimisation of 2- and

1-body Ising terms.

We contrast stochastic and quantum mechanics through the language of

walks on graphs. Any finite dimensional quantum (or stochastic) process can be

viewed as a walk on the graph defined by the support of its generators. This

framework aids in understanding the differences between quantum and stochastic

mechanics by better defining the mathematical similarities and differences of the

theories. For example, this enabled the development of a spectral graph function

which provably satisfies both (i) the definition of an entropy and (ii) subadditivity.

By a merger of techniques appearing in the theory of tensor networks, cat-

egorical quantum mechanics and Boolean circuit theory, we employ a tensor net-

work/quantum circuit variant which corresponds to the known ZX graphical cal-

culus. We recall simplistic generators for the class of Clifford tensor networks.

We further use this system to recover the Gottesman–Knill theorem by graphical

rewrites.

Using ideas related to the area law in tensor network theory, we develop

a combinatorial quantum circuit area law. This bounds the maximum possible

entanglement across any bipartion of qubits acted on by a quantum circuit com-

prised of local unitaries and CNOT gates. It has practical significance in that

it provides a lowerbound on the depth of circuits needed to maximize bipartite

entanglement across all possible partitions.

Using ideas from the theory of computational phase transitions, particularly

those found in 3-SAT, we studied the performance of the quantum approximate

optimization algorithm. We found and quantified how increasing a problems con-
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straint to variable ratio can induce under parameterization and cause quantum

approximate optimization (QAOA) algorithms to fail.

Building ideas from Hamiltonian complexity theory, the contemporary varia-

tional approach to quantum-enhanced algorithms was proven to enable a universal

model of quantum computation. Hence, any quantum algorithm can in principle

be executed as a variational algorithm.

By considering infinite series and tailoring them to cancel errors, several

constructions related to Hamiltonian gadgets are improved. These and other

techniques are used to prove that physically relevant two-body model Hamilto-

nians have QMA-complete ground state energy decision problems. They hence

provide a universal resource for ground state quantum computation.

PRACTICAL AND THEORETICAL SIGNIFICANCE

The practical significance of this work is justified due to this rapid increase

in experimental demonstrations of quantum information processing. Indeed, there

is now a global effort to understand the computational capacity and the scope of

applications possible on NISQ-era quantum processors. Recent state of the art

demonstrations include the following:

1. QAOA. The Google team has used transmon qubits to show QAOA results

for up to 17 qubits with depth-3 ansatz levels [Nature Physics 17, 332-

336 (2021)]. As the authors scaled the number of qubits to produce their

dataplot, we believe that they avoided reachability deficits. A numerical

study that places their findings as a cross section of a larger analysis

will show the region of their instances, which appear to be statistically

representative.

2. VQE (chemistry). The Google team has used transmon qubits to show

a VQE approach to create a Hartree-Fock approximation to the ground

state of hydrogen chains using 12 qubits in [Science 369 (6507), 1084

(2020)]. Their ansatz was of modified checkerboard form.

3. VQE (lattice simulation). Self-verifying variational algorithms as pro-

posed in [Nature 569, 355 (2019)] and elsewhere have vanishing objec-
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Experiment Organization Qubits Ansatz Depth year
Ising model Cornell/IBM 20 Alternating 25 2021
QAOA Google 23 Split operator 4 2021
High en-
ergy model

MSU/SkT 2 Checkerboard 3 2021

Supremacy Google 53 HEA 20 2019
Lattice
model

Innsbruck 20 Split operator 6 2019

Chemistry IBM 6 HEA 2 2017

Table 1 — Justification of the qubit model in terms of ansatz demonstrations of

specified depth/qubit counts.

tive functions when the solution is reached. Such an approach was used

in [Nature 569, 355 (2019)] to simulate the ground state of the lattice

Schwinger model using 8 qubits realized by trapped ions.

While there is a practical outlet for these results, development of the theory

and foundations of the subject is centrally aligned with the present dissertation.

For example, by presenting a new provably universal model of quantum compu-

tation, the thesis elevates the standing of variational quantum computation to

the same standing as the other universal models. The dissertation also presents

several new tools. For instance, new gadget constructions are given, showing for

example that 𝑌 𝑌 terms can be emulated (low energy effective Hamiltonian) using

only 𝑍, 𝑍𝑍 and 𝑋𝑋.

CONSISTENCY OF RESULTS

This thesis considers qubits. For short (non-error corrected) circuits this

model is physically justified as follows (see the experimental summary in Table

1):

1. NISQ Era variational quantum algorithms consider a fixed error tolerance

and tune a short quantum circuit to minimize an objective function.

2. Circuits with dozens of gates can now be realized with negligible accu-

mulated total error:
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The validity of the results are confirmed by consistency with prior art and

rigorous mathematical proofs wherever appropriate. Numerical experiments were

sometimes also employed which reconfirm analytical findings.

Results forming this dissertation date back several years and appeared in

peer reviewed journal articles. Several of these results now comprise parts of the

accepted literature on the topic. This includes work on Ising model embeddings,

work on stochastic versus quantum walks, developing more general perturbation

gadgets as well as results on using phase estimation for quantum simulation.

This so-called variational approach to quantum computation was formally

proven (in the noise free setting) to represent a universal model of quantum com-

putation by this thesis. This extended and built on several known results appear-

ing in the related topic of Hamiltonian complexity theory. Many recent studies

have not quantified the number of terms needed in the penalty function to imple-

ment a variational algorithm. We hence define a cardinality measure and quantify

the number of Pauli terms in the sigma basis. This is consistent with past findings

but presents a new focus to quantify penalty functions.

In addition, many studies have presented various penalty functions to illus-

trate that variational algorithms are capable of algorithmic tasks. A universality

proof shows that penalty functions in principle are more general. This is again

consistent with the state of the art. The original published papers which present

these results have become accepted parts of the literature, some over a decade

old.

PRESENTATION OF THE RESULTS

Contents and results from this dissertation were presented by the author

to peers as follows (talks entirely dedicated to the presentation of the DSc thesis

are denoted with ‘[Thesis presentation]’ preceding the title of the thesis):

1. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

I.E. Tamm Theory Department, P.N. Lebedev Institute of Physics, the
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Russian Academy of Sciences, Moscow, Russian Federation, 22 Septem-

ber 2021

2. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Laboratory of Quantum Optics and Quantum Information, Center for

Advanced Studies, Peter the Great St. Petersburg Polytechnic Univer-

sity, St. Petersburg, Russian Federation, 15 September 2021

3. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Department of Supercomputers and Quantum Informatics, The Faculty

of Computational Mathematics and Cybernetics, Lomonosov Moscow

State University, Moscow, Russian Federation, 14 September 2021

4. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Department of Higher Mathematics, Moscow Institute of Physics and

Technology, Moscow, Russian Federation, 8 September 2021

5. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Skolkovo Institute of Science and Technology, Moscow, Russian Federa-

tion, 7 September 2021

6. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Kazan Quantum Center, Kazan National Research Technical University

named after A.N. Tupolev, Kazan, Russian Federation, 4 September 2021

7. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1 85748

Garching, 21 July 2021

8. On variational quantum computation

(General Institutional Seminar), P.N. Lebedev Institute of Physics, the

Russian Academy of Sciences, Moscow, Russian Federation, 17 March

2021

9. [Thesis presentation] On quantum computation by variation of

a quantum circuits parameters to minimise an effective Hamil-
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tonian iteratively realised by local measurements

Department of Mathematical Methods for Quantum Technologies,

Steklov Mathematical Institute of the Russian Academy of Sciences,

Moscow, Russian Federation, 25 March 2021

10. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

Skolkovo Institute of Science and Technology, Skolkovo, Russian Federa-

tion, 25 September 2020

11. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

The Russian Quantum Center, Skolkovo, Russian Federation, 26 Aug

2020

12. [Thesis presentation] On the mathematical structure of quan-

tum models of computation based on Hamiltonian minimisation

M.V. Lomonosov Moscow State University Quantum Technologies Cen-

ter, Moscow, Russian Federation, 14 July 2020

13. Variational Models of Quantum Computation

Episode IX, Google Research Series on Quantum Computing

Google Poland, Warsaw Poland, 10 October 2019

14. A Universal Model of Variational Quantum Computation

Quantum Machine Learning and Data Analytics Workshop

Purdue University, Discovery Park, West Lafayette Indiana

United States, September 2019

15. Quantum Enhanced Machine Learning

Physics Challenges in Machine Learning for Network Science

Queen Mary University of London

London, United Kingdom, September 2019

16. Quantum Machine Learning for Quantum Simulation

Machine Learning for Quantum Matter

Nodita, Stockholm, Sweden, August 2019

17. Recent Results in the Theory of Variational Quantum Compu-

tation

the 5th International Conference on Quantum Technologies

The Russian Quantum Center, Moscow Russia 2019

14



18. Variational Quantum Computation in Photonics

The 28th Annual International Laser Physics Workshop

Gyeongju, South Korea, July 2019

19. Trends in Variational Quantum Algorithms

Overview style talk given (multiple times) at

(a) Riken Institute (Japan)

(b) NTT laboratories (Tokyo, Japan)

(c) CIIRC Institute (Prague)

20. Quantum Machine Learning Matrix Product States

Keynote talk at the Workshop on Quantum Information

Harvard, USA, April 23-24, 2018

21. Quantum Complex Networks

Keynote Lighting Talk at International school and conference on network

science (NetSci)

Paris, France 2018

PUBLICATIONS

The author has 62 papers listed in Scopus [September 2021]. The thesis

compiles results from 20 primary research articles, 1 book and two review articles.

A list of 20 publications is given at the end of this synopsis.

AUTHOR CONTRIBUTION

The author has had many successful collaborations. The main results of

the dissertation were published in small teams or as single author manuscripts.

Results derived with collaborators are clearly indicated as such, either in the

body of the text or in reference to the result/theorem. The focus has been on the

authors own contribution to these joint works.
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DISSERTATION STRUCTURE

The dissertation consists of an introduction, 6 chapters, a conclusion, a list

of symbols, a list of abbreviations, a glossary of terms, a bibliography, a list of

figures, a list of tables and finally an alphabetical index.

DISSERTATION CONTENTS

To present the most central portions of the theory underpinning contem-

porary quantum algorithms, we focus on Hamiltonian ground states. The rudi-

mentary though still non-trivial starting point is understanding how to program

ground states of Ising type models.

We state the following properties of quantum theory stated in terms of

quantum bits (qubits).

Definition 1 (Complex Euclidean space).

𝑉𝑛 = [C2]⊗𝑛 ∼= [C]2𝑛 (1)

We will equivalently write [C2]⊗𝑛, C⊗𝑛
2 .

Remark 1. ℒ(C⊗𝑛
2 ) denotes the space of linear maps from C⊗𝑛

2 to itself.

The dissertation considers the following linear maps:

Remark 2 (Linear qubit maps).

1. States: 𝜓 ∈ 𝑉𝑛

2. Effects: 𝜓† ∈ 𝑉 ⋆
𝑛 = (𝑉𝑛 → C).

3. Hamiltonians 𝐴 in hermC(2
𝑛) ≡ {𝐴 ∈ ℒ(𝑉𝑛) | 𝐴 = 𝐴†}.

4. Propagators 𝑈 in UC(2
𝑛) ≡ {𝑈 ∈ ℒ(𝑉𝑛) | 𝑈 †𝑈 = 1}.

Remark 3 (Inner product). The standard inner product is used:

⟨·| ·⟩ : 𝑉 *
𝑛 ⊗ 𝑉𝑛 → C, (𝜑,𝜓) → ⟨𝜑|𝜓⟩ =

∑︁
𝑗

𝜑𝑗𝜓
𝑗 ∈ C.
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States/effects are unit ℓ2 vectors.

Remark 4 (Computational basis). The dissertation tends to fix the so called,

computational basis:

1. 𝑛-qubit basis: ℬ𝑛 = {|0⟩ , |1⟩}⊗𝑛 with 2𝑛 orthonormal basis vectors

2. Single qubit basis: |0⟩ , |1⟩ ∈ ℬ1

3. spanC{ℬ𝑛} ∼= 𝑉𝑛 = [C2]⊗𝑛

Remark 5 (Properties of Sigma matrices). This thesis makes use of the following

properties of Sigma matrices:

1. 𝜎𝑙𝜎𝑚 = 𝚤𝜀𝑙𝑚𝑛𝜎
𝑛 + 𝛿𝑙𝑚1

2. 𝑅𝑛(𝜃) = 𝑒−𝚤𝜃(𝑛.𝜎) = cos 𝜃− 𝚤(𝑛.𝜎) sin 𝜃, where 𝑛.𝜎 ≡ 𝑛1𝜎
1 + 𝑛2𝜎

2 + 𝑛3𝜎
3

3. hermC(2
𝑛) = spanR {

⨂︀𝑛
𝑙=1 𝜎

𝛼𝑙

𝑙 | 𝛼𝑙 = 0,1,2,3}
4. 𝜎𝑎𝑘 ≡ 11 ⊗ . . .⊗ 1𝑘−1 ⊗ 𝜎𝑎𝑘 ⊗ 1𝑘+1 ⊗ . . .⊗ 1𝑛

Definition 2 (Pauli group). P𝑛 =
{︁
𝑒𝚤𝜃𝜋/2

⨂︀𝑛
𝑗=1 𝜎

𝛼𝑗 | 𝜃, 𝛼𝑗 = 0,1,2,3
}︁
.

Remark 6. span{Re( P𝑛)} = spanR {
⨂︀𝑛

𝑙=1 𝜎
𝛼𝑙

𝑙 | 𝛼𝑙 = 0,1,2,3}.

Definition 3 (Clifford group). C𝑛 = {𝐶 ∈ U(2𝑛) | 𝐶P𝑛𝐶
† = P𝑛}.

Remark 7. For 𝐶 ∈ C𝑛,

𝐶

(︃
𝑛⨂︁
𝑗=1

𝜎𝛼𝑗

)︃
𝐶† = ±

𝑛⨂︁
𝑗=1

𝜎𝛾𝑗 (2)

for 𝛼𝑗, 𝛾𝑗 ∈ {0,1,2,3}.

Remark 8 (The expected value of a Hamiltonian relative a state). The disserta-

tion will consider the expected value as:

(𝐴,𝜓, 𝜓†) → ⟨𝜓|𝐴 |𝜓⟩ =
∑︁
𝑙,𝑚

𝐴𝑙,𝑚𝜓𝑚𝜓𝑙 ∈ C

for 𝐴 ∈ hermC(2
𝑛).

The dissertation works with Hamiltonian operators. The simplest case is

the generalized Ising model.
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Remark 9 (Generalized Ising model). A generalized Ising model is an energy

function of a symmetric graph 𝐺 = (𝐸, 𝑉 ). The energy (Hamiltonian) function

is given as:

𝐻Ising =
∑︁
𝑗∈𝑉

ℎ𝑗𝑠𝑗 +
1

2

∑︁
𝑙,𝑚∈𝐸

𝐽𝑙𝑚𝑠𝑙𝑠𝑚. (3)

where 𝑠𝑗 ∈ {±1}

The dissertation relies on connections between problems in mathematical

physics and the theory of complexity.

Remark 10. We assume all numbers are defined to some fixed but arbitrary finite

precision to avoid pathologies.

Definition 4 (The class NP). A problem class Γ is said to be inside NP if

candidate solutions to instances 𝜔 ∈ Γ can be verified in time 𝒪(poly(|𝜔|)).

The concept of minimisation problems where the inputs are easy to evaluate

is one of the concepts motivating the dissertation. For example: one can determine

the energy of a given spin configuration with respect to the following Hamiltonian

using an algorithm that is polynomial in the number of Hamiltonian terms/size

of the input.

𝐻Ising =
∑︁
𝑖

ℎ𝑖𝑠𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗. (4)

Remark 11. The minimisation of generalized Ising Hamiltonians is NP-hard.

Definition 5. A problem is NP-hard if all problems inside NP can be reduced

to it (Karp reduction).

Definition 6. A problem is NP-complete when it is in NP and also NP-hard.

Definition 7. A language 𝐿 ∈ MA[a,b] if there exists a probabilistic polynomial

time verifier 𝑉 , such that:

1. ∀𝑥 ∈ 𝐿 ∃𝑦 : |𝑦| = 𝑝𝑜𝑙𝑦(|𝑥|), 𝑃 (𝑉 (𝑥, 𝑦) = 1) > 𝑎

2. ∀𝑥 ̸∈ 𝐿 ∀𝑦 : |𝑦| = 𝑝𝑜𝑙𝑦(|𝑥|), 𝑃 (𝑉 (𝑥, 𝑦) = 1) 6 𝑏

Remark 12.

1. The numbers 𝑎,𝑏 ∈ [0,1] are such that 𝑎− 𝑏 > poly(|𝑥|−1)

2. One would consider instance 𝑥 to be the description of a probabilistic

circuit taking input 𝑦 and outputting 𝑉 (𝑥,𝑦) ∈ [0,1]
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3. NP = MA[1,0]

Definition 8. A language 𝐿 ∈ QMA[𝑎,𝑏] if there exists a polynomial time quan-

tum verifier 𝑉 such that:

1. ∀𝑥 ∈ 𝐿 ∃ |𝜉⟩ ∈ [C2]⊗poly(|𝑥|) : 𝑃 (𝑉 (𝑥, |𝜉⟩) = 1) > 𝑎

2. ∀𝑥 ̸∈ 𝐿 ∀ |𝜉⟩ ∈ [C2]⊗poly(|𝑥|) 𝑃 (𝑉 (𝑥, |𝜉⟩) = 1) 6 𝑏

Remark 13.

1. The numbers 𝑎,𝑏 ∈ [0,1] are such that 𝑎− 𝑏 > poly(|𝑥|−1)

2. One would consider instance 𝑥 to be the description of a quantum circuit

taking input state |𝜉⟩ and outputting on the first qubit 𝑉 (𝑥,𝑦) ∈ [0,1]

3. It is assumed that the verifier has access to a slack register initially in

the state |0⟩⊗poly(|𝑥|)

4. The quantity poly(|𝑥|−1) is often called, the promise gap and should not

be confused with the spectral gap of a Hamiltonian

Chapter 1

The dissertation begins by recalling several established results related to

programming the ground states of generalised Ising systems. This presents and

builds on my own work as well as the work of others—see the dissertation for

citations.

The first chapter begins by considering the relationship between qubit quan-

tum states and Ising penalty functions.

The dissertation begins by defining the quotient ring extension:

C[𝑥1, 𝑥2, . . . , 𝑥𝑛]
⧸︁
𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0,1} (5)

where 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0,1} the quotient constraint is equivalent to 𝑥𝑖𝑥𝑖 = 𝑥𝑖

(idempotence). We arrive at the ring of (qubit) polynomials of type:

{0, 1}𝑛 → C (6)
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by means of the following mapping

𝑓(x) =
∑︁

𝐼∈{0,1}𝑛
𝑎𝐼x

𝐼 (7)

where

x𝐼
def

= (𝑥1)
𝑖1(𝑥2)

𝑖2 · · · (𝑥𝑛)𝑖𝑛 (8)

and we abuse notation as

(𝑥)0
def

= (1− 𝑥)

with 𝑥1 = 𝑥.

It goes on to state the following propositions.

Proposition 1 (Biamonte (2008)). The ring C[𝑥1, 𝑥2, . . . , 𝑥𝑛]
⧸︁
∀𝑖, 𝑥2𝑖 = 𝑥𝑖 is

graded as

C⊕C[𝑥1]⊕· · ·⊕C[𝑥𝑛]⊕C[𝑥1, 𝑥2]⊕· · ·⊕C[𝑥𝑛−1, 𝑥𝑛]⊕· · ·⊕C[𝑥1, 𝑥2, . . . , 𝑥𝑛] (9)

where the quotients are omitted for brevity of notation.

We call an expansion canonical when it is unique up to labeling variables.

Proposition 2. The expansion

𝑓(x) = 𝑎0 +
∑︁

𝑎𝑖𝑥𝑖 +
∑︁

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + · · ·+
∑︁

𝑎𝑖𝑗...𝑛𝑥𝑖𝑥𝑗 . . . 𝑥𝑛 (10)

is canonical.

More generally, the early chapter presents the following:

Lemma 1. The follow isomorphisms hold.

C[𝑥1, 𝑥2, . . . , 𝑥𝑛]
⧸︁
∀𝑖, 𝑥2𝑖 = 𝑥𝑖 ≃ C⊗𝑛

2 ≃ diagMatC(2
𝑛) (11)

By considering the real valued restriction from Proposition 1 and hence

Lemma 1, this concept formally connects pseudo Boolean and Ising minimization

problems:
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Proposition 3 (Operator embedding of Pseudo Boolean forms). Any Pseudo

Boolean function

𝑓(x) =
∑︁
𝐼

𝑎𝐼x
𝐼 (12)

gives rise to an operator embedding

[𝑓 ] =
∑︁
𝐼

𝑎𝐼 |𝐼⟩⟨𝐼|
def

= 𝑓 (13)

by Lemma 1. The minimisation problems are evidently related as:

min
𝑥∈{0,1}𝑛

𝑓(𝑥) = 𝑥′, (14)

then

min
𝜓∈𝒜

⟨𝜓| 𝑓 |𝜓⟩ = ⟨𝑥′| 𝑓 |𝑥′⟩ (15)

for the appropriate vector space 𝒜.

The dissertation then details the practical codomain extension of Karnaugh

maps. This is used to derive penalty functions for logical operations. In particular,

a deductive method is presented based on Karnaugh maps to derive the following

penalty functions. The method to derive these appears novel whereas various

penalty functions exist in the literature.

Theorem 1. The following penalty functions embed the logical product −𝑥1𝑥2𝑥3
into their lowest energy sector as:

− 𝑥1𝑥2𝑥3 = min
𝑧∈{0,1}

𝑧(2− 𝑥1 − 𝑥2 − 𝑥3), (16)

and

− 𝑥1𝑥2𝑥3 = min
𝑧∈{0,1}

𝑧(−𝑥1 + 𝑥2 + 𝑥3)− 𝑥1𝑥2 − 𝑥1𝑥3 + 𝑥1. (17)

Theorem 2 (Boolean function embedding, Biamonte (2008)). Any Boolean func-

tion 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) expressed over the basis {∨,∧,¬} embeds into the spectrum

of a Hermitian operator formed by the linear extension of {𝑃0, 𝑃1,1} by means of
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the following maps (18) and (19).

∧ −→ ⊗ (18)

∨ −→ + (19)

For every (positive polarity, a.k.a. non-negated) Boolean variable 𝑥𝑗 we apply

𝑥𝑗 −→ 𝑃 𝑗
1 . (20)

For negated variable ¬𝑥𝑗 we apply

¬𝑥𝑗 −→ 𝑃 𝑗
0 . (21)

In both cases (20) and (21), 1 6 𝑗 6 𝑛 becomes a spin label index which 𝑃 𝑗 acts

on. Moreover the above mapping induces an operator ℋ such that

ℋ |x⟩ = 𝑓(x) |x⟩ (22)

for Boolean function 𝑓(x) and bit string x.

Theorem 3 (Kernel embedding). A Boolean function 𝑓(𝑥) embeds into the kernel

of a non-negative Ising penalty function by applying the map from Theorem 2 to

the function 𝑔(𝑥, 𝑓(𝑥)) = 0, 𝑔(𝑥, 1− 𝑓(𝑥)) = 1.

Remark 14. The condition 𝑔(𝑥, 1−𝑓(𝑥)) = 1 can readily be modified to 𝑔(𝑥, 1−
𝑓(𝑥)) > 1 leaving the operators constructed by Theorem 2 non-negative with

identical kernals.

Definition 9. The set of all two-body Ising Hamiltonians on 𝑛 spins is defined

as: Ω𝑛 = {𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + · · ·+ 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 + . . .

𝑎𝑛−1,𝑛𝑥𝑛−1𝑥𝑛|∀𝑗, 𝑘, 𝑎𝑗𝑘 ∈ [−𝑙, 𝑙] ⊂ R}.

Remark 15.

Proposition 4. @𝐻 ∈ Ω3 |, 𝐻 > 0, Ker{𝐻} = span{𝑥, 𝑦, 𝑧 ∈ B|𝑧 = 𝑥⊕ 𝑦}.

We will also show that the orbits of embedded functions in Ker{𝐻} separate

under conjugation of 𝐻 by 𝜎𝑥 into equivalency classes: (AND ∼ OR ∼ NAND ∼
NOR) ∈ Ω3 and (XOR ∼ EQV) ∈ Ω4.
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bits probabilistic bits qubits

state (single
unit)

bit ∈ {0,1}
real vector
𝑎, 𝑏 ∈ R+ 𝑎+ 𝑏 = 1
𝑝 = 𝑎0⃗+𝑏1 or 𝑎 |0⟩+𝑏 |1⟩

complex vector
𝛼, 𝛽 ∈ C |𝛼|2 + |𝛽|2 = 1

�⃗� = 𝛼0⃗ + 𝛽1⃗ or 𝛼 |0⟩ +
𝛽 |1⟩

state
(multi-unit)

bitstring
𝑥 ∈ {0,1}𝑛

prob.distribution
(stochastic vector)
𝑝 =

∑︀
𝑥∈{0,1}𝑛 𝑎𝑥 |𝑥⟩ ∈

[R2
+]

⊗𝑛

wavefunction (complex
vector)

�⃗� =
∑︀

𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥⟩ ∈
[C2]⊗𝑛

operations
Boolean
logic

stochastic matrices∑︀
𝑗 𝑃𝑖𝑗 = 1, 𝑃𝑖𝑗 > 0

unitary matrices
𝑈 †𝑈 = 1

component
ops

Boolean
gates

tensor product of matri-
ces

tensor product of matri-
ces

Table 2 — Summary of deterministic, probabilistic and quantum bits. We use

the standard notation that R2
+ denotes the two-dimensional real vector space

with non-negative entries. Likewise, C2 is the two-dimensional complex vector

space. The space of 𝑛 pbits, 𝑛 qubits are respectively given by the tensor

product of spaces, [R2
+]

⊗𝑛 and [C2]⊗𝑛.

Chapter 2

The second chapter presents a detailed mathematical (structural) compari-

son between quantum and stochastic mechanics. Table 2 is presented. Then the

contents of Table 2 are developed.

Remark 16. Every finite dimensional quantum or stochastic process can be

viewed as a (spinless single particle) walk on a graph given by the support of

the corresponding time propagator.

For the purpose of comparison, the following definitions are all given in the

dissertation.

Remark 17 (Summary of stochastic versus quantum walks). 𝐺 is a simple graph.

Labeling the nodes of 𝐺 lifts to specify:

1. 𝐴 the adjacency matrix (generator of a quantum walk).

2. 𝐷 the diagonal matrix of the degrees.

3. ℒ the symmetric Laplacian (generator of stochastic and quantum walks),

which when normalized by 𝐷 returns both:
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quantum mechanics stochastic mechan-
ics

state vector 𝜓 ∈ C𝑛 with∑︁
𝑖

|𝜓𝑖|2 = 1

vector 𝜓 ∈ R𝑛 with∑︁
𝑖

𝜓𝑖 = 1

and we typically insist
that,

𝜓𝑖 ≥ 0

observable 𝑛× 𝑛 matrix 𝒪 with

𝒪† = 𝒪

where (𝒪†)𝑖𝑗
def

= 𝒪𝑗𝑖

vector 𝒪 ∈ R𝑛

expected
value

⟨𝜓|𝒪|𝜓⟩ def

=
∑︁
𝑖,𝑗

𝜓𝑖𝒪𝑖𝑗𝜓𝑗 ⟨𝒪𝜓⟩ def

=
∑︁
𝑖

𝒪𝑖𝜓𝑖

symmetry
(linear map
sending states
to states)

unitary 𝑛× 𝑛 matrix:

𝑈𝑈 † = 𝑈 †𝑈 = 1

stochastic 𝑛×𝑛 matrix:∑︁
𝑖

𝑈𝑖𝑗 = 1, 𝑈𝑖𝑗 ≥ 0

symmetry
generator

self-adjoint 𝑛 × 𝑛 ma-
trix:

ℋ = ℋ†

infinitesimal
stochastic 𝑛 × 𝑛
matrix:∑︁

𝑖

ℋ𝑖𝑗 = 0, 𝑖 ̸= 𝑗

⇒ ℋ𝑖𝑗 ≤ 0

symmetries
from sym-
metry
generators

𝑈(𝑡) = exp(−𝚤𝑡ℋ) 𝑈(𝑡) = exp(−𝑡ℋ)

equation of
motion

𝚤
𝑑

𝑑𝑡
𝜓(𝑡) = ℋ𝜓(𝑡)

with solution

𝜓(𝑡) = exp(−𝚤𝑡ℋ)𝜓(0)

𝑑

𝑑𝑡
𝜓(𝑡) = −ℋ𝜓(𝑡)

with solution

𝜓(𝑡) = exp(−𝑡ℋ)𝜓(0)

Table 3 — Summary of quantum versus statistical mechanics.
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3.1 𝑆 the generator of the uniform escape stochastic walk and

3.2 𝑄 the quantum walk generator to which ℒ is similar.

Several results are derived, leading to the subadditivity of entropy of stochas-

tic generators:

Remark 18. A simple undirected graph with edges weighted by real numbers

gives rise to a generalized symmetric adjacency matrix. For edges labeled 𝑙 and 𝑚

weighted by 𝑤 ∈ R, the 𝑙-𝑚tℎ entry of the corresponding adjacency matrix is 𝑤.

Definition 10. A generalized Laplacian arises as

ℒ = 𝒟 −𝒜 (23)

where 𝐴 is a generalized symmetric adjacency matrix and 𝐷 stores on its diagonal

entries the sums of the corresponding rows of 𝐴.

Theorem 4 (Biamonte-DeDomenico 2016). Given two generalized Laplacians

and their sum ℒ𝐶 = ℒ𝐴 + ℒ𝐵, and corresponding Gibbs state density matrices

𝜌𝒞 = 𝑒𝛽(ℒ𝒜+ℒℬ)/𝒵, the von Neumann entropy 𝑆(𝜌) = 𝑇𝑟{𝜌 ln2 𝜌} is subadditive

as,

𝑆(𝜌C) 6 𝑆(𝜌A) + 𝑆(𝜌B). (24)

Remark 19. We adopt the notation that 𝑆(𝜌𝐴) ≡ 𝑆𝐴, 𝑆(𝜌𝐵) ≡ 𝑆𝐵, etc.

The second chapter concludes by presenting several methods to find minimal

graph properties on a quantum processor.

Chapter 3

Techniques from the theory of tensor networks can apply to quantum cir-

cuits. In chapter 3 the following theorem on generating families of tensor networks

is proven.

Theorem 5 (Minimal Stabilizer Tensor Generators). The following generating

tensors are sufficient to simulate any stabilizer quantum circuit:
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(a) a vector |𝑡⟩ def

= |0⟩+ 𝚤 |1⟩,
(b) the Hadamard gate and

(c) the XOR- and COPY tensors and

(d) a covector ⟨+| def

= ⟨0|+ ⟨1|.

Remark 20. The Gottesman–Knill theorem states that stabilizer circuits—

circuits that only consist of gates from the normalizer of the qubit Pauli group,

a.k.a. Clifford group—can be simulated in polynomial time on a probabilistic

classical computer.

The dissertation constructs a sequence of graphical rewrites to establish this

theorem by algebraic properties of tensor contraction, namely:

Theorem 6 (Graphical Proof of the Gottesman–Knill Theorem). For 𝑛-qubits

acted on by 𝐿 Clifford gates, there exists a confluent sequence of rewrites, that

establishes the Gottesman–Knill theorem in 𝒪(poly(𝑛, 𝐿)) steps.

Chapter 4

We then consider the minimisation of Hamiltonians by parameterised quan-

tum circuits. This provides an illustrative connection between computational and

physical complexity, stated and defined in the early chapter step wise. The vari-

ational model contains the following ingredients which will be further defined:

1. States. A vector of real parameters 𝜃 sets a circuit to produce |𝜓(𝜃)⟩.
2. Measurements. Expected values of a Pauli strings,

⨂︀𝑛
𝑗=1 𝜎

𝛼𝑗

𝑗 for 𝛼𝑗 ∈
{0,1,2,3} can be computed for each |𝜓(𝜃)⟩.

3. Compute cost function. A cost function defined by a weighted sum

of expected values is computed for each |𝜓(𝜃)⟩.
4. Outer-loop optimization. Classical optimization routines update pa-

rameters 𝜃 → 𝜃⋆.

Definition 11 (Variational Statespace—Biamonte (2021)). The variational

statespace of a 𝑝-parameterized 𝑛-qubit state preparation process is the union
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of |𝜓(𝜃)⟩ over all possible assignments of real numbers 𝜃:

Γ =
⋃︁

𝜃∈(0,2𝜋]×𝑝

|𝜓(𝜃)⟩ . (25)

Definition 12 (Variational Sequence). A variational sequence specifies parame-

ters to prepare a state in a variational statespace. It can be given by defining a

specific sequence of gates or by specifying control parameter values.

Definition 13 (Variational principle). A variational principle is a problem spe-

cific reduction to that of finding extrema of an objective function. Variational

quantum computation considers the normalized minimization:

min
|𝜓(𝜃)⟩∈Γ⊂𝑉𝑛

⟨𝜓(𝜃)|𝐻 |𝜓(𝜃)⟩ > min
|𝜓⟩∈𝑉𝑛

⟨𝜓|𝐻 |𝜓⟩ . (26)

Remark 21. Alternative NISQ approaches might minimise the variance

min(⟨ℋ2⟩ − ⟨ℋ⟩2) > 0 (27)

which vanishes if and only if |𝜓⟩ is an eigenstate of ℋ.

Cost function implementation proceeds by applying the fact that an ex-

pected value of a sum is a sum of expected values.

⟨𝜓|ℋ |𝜓⟩ = ⟨𝜓|
∑︁
𝑘

ℎ𝑘

𝑛⨂︁
𝑗=1

𝜎
𝛼𝑗(𝑘)
𝑗 |𝜓⟩ =

∑︁
𝑘

ℎ𝑘 ⟨𝜓|
𝑛⨂︁
𝑗=1

𝜎
𝛼𝑗(𝑘)
𝑗 |𝜓⟩ (28)

where ℎ𝑘 is a real number and
⨂︀𝑛

𝑗=1 𝜎
𝛼𝑗(𝑘)
𝑗 is a Pauli string for 𝛼𝑗 ∈ {0,1,2,3}.

Remark 22 (Iteration). Given copies of |𝜓⟩, measuring
⨂︀𝑛

𝑗=1 𝜎
𝛼𝑗(𝑘)
𝑗 repeatedly

gives an estimate for each ⟨𝜓|
⨂︀𝑛

𝑗=1 𝜎
𝛼𝑗(𝑘)
𝑗 |𝜓⟩ separately.

Remark 23. Whereas the objective function can be evaluated term-wise, achiev-

ing tolerance ∼ 𝜀 requires ∼ 𝜀−2 measurements—see Hoeffding’s inequality.

Definition 14 (Objective Function Cardinality). The number of terms in the

Pauli basis {1, 𝑋, 𝑌, 𝑍}⊗𝑛 needed to express an objective function.

Example 1. Let ℋ =
∑︀

𝑘 ℎ𝑘
⨂︀𝑛

𝑗=1 𝜎
𝛼𝑗(𝑘)
𝑗 for coefficients ℎ𝑘 and Pauli strings⨂︀𝑛

𝑗=1 𝜎
𝛼𝑗(𝑘)
𝑗 . Then |ℋ|card =

∑︀
𝑘(ℎ𝑘)

0.

27



Definition 15 (Bounded Objective Function—Biamonte (2021)). A family of ob-

jective functions is efficiently computable when uniformly generated by calculating

the expected value of an operator with poly(𝑛) bounded cardinality over

Ω ⊂ {1, 𝑋, 𝑌, 𝑍}⊗𝑛. (29)

Definition 16 (Poly-Computable Objective Function—Biamonte (2021)). An ob-

jective function

𝑓 : |𝜑⟩×𝒪(poly(𝑛)) → R+ (30)

is called poly-computable provided poly(𝑛) independent physical copies of |𝜑⟩ can
be efficiently prepared to evaluate a bounded objective function.

Definition 17 (Accepting a Quantum State—Biamonte (2021)). An objective

function 𝑓 accepts |𝜑⟩ when given 𝒪(poly 𝑛) copies of |𝜑⟩,

𝑓(|𝜑⟩×𝒪(poly(𝑛)) = 𝑓(|𝜑⟩ , |𝜑⟩ , · · · , |𝜑⟩) < Δ (31)

evaluates strictly less than a chosen real parameter Δ > 0.

Theorem 7 (Energy to Overlap Theorem—Biamonte (2021)). Let non-negative

ℋ = ℋ† ∈ L (C𝑑) have spectral gap Δ and non-degenerate ground eigenvector

|𝜓⟩ of eigenvalue 0. Consider then a unit vector |𝜑⟩ ∈ C𝑑 such that

⟨𝜑|ℋ |𝜑⟩ < Δ (32)

it follows that

1− ⟨𝜑|ℋ |𝜑⟩
Δ

6 | ⟨𝜑|𝜓⟩ |2 6 1− ⟨𝜑|ℋ |𝜑⟩
Tr{ℋ}

. (33)

Several constructions related to quantum approximate optimization using

short parameterised quantum circuits are subsequently developed. A general

bound applicable to short circuits is then given.

Consider a pure 𝑛-qubit state |𝜓⟩.

Definition 18. Bipartite Rank is the Schmidt number (the number of non-zero

singular values) across any reduced bipartite density state from |𝜓⟩ (i.e. ⌈𝑛/2⌉
qubits).
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Definition 19. An ebit is a unit of entanglement contained in a maximally en-

tangled two-qubit (Bell) state.

Remark 24. A quantum state with 𝑞 ebits of entanglement (quantified by any

entanglement measure) contains the same amount of entanglement (in that mea-

sure) as 𝑞 Bell states.

If a task requires 𝑟 ebits, it can be done with 𝑟 or more Bell states, but not with

fewer. Maximally entangled states in C𝑑⊗C𝑑 have log2(𝑑) ebits of entanglement.

The dissertation then presents and proves the following:

Theorem 8 (Combinatorial quantum circuit area law—Biamonte-Morales-Koh

(2020)). Let 𝑐 be the depth of 2-qubit controlled NOT gates in an ansatz circuit.

Then the maximum possible number of ebits is min{⌊𝑛/2⌋ , 𝑐}.

Finally, the chapter presents the definition of an effect the dissertation au-

thor discovered and published with coauthors.

Definition 20. Let |𝜓⟩, be the ansatz states generated from a p–depth QAOA

circuit. Then

𝑓 = min
𝜓⊂ℋ

⟨𝜓| 𝒱 |𝜓⟩ −min
𝜑∈ℋ

⟨𝜑| 𝒱 |𝜑⟩ , (34)

characterises the limiting performance of QAOA.

The R.H.S. of equation (34) can be expressed as a function, 𝑓(𝑝,𝛼,𝑛).

Proposition 5 (Reachability Deficit—with Akshay et al. 2020). For 𝑝 ∈ N and

fixed problem size, ∃ 𝛼 > 𝛼𝑐 such that 𝑓 from (34) is non-vanishing. This is a

reachability deficit.

Chapter 5

Chapter 5 develops a universal model of variational quantum computation.

The early chapter related to programming diagonal Hamiltonin ground states.

Chapter’s 5 and 6 focus on the non-diagonal case.
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The dissertation then goes on to construct Hermitian ℋ ∈ ℒ(C⊗𝑛
2 ) with

ℋ > 0 and non-degenerate |𝜓⟩ ∈ C⊗𝑛
2 as ℋ |𝜓⟩ = 0. Define

𝑃𝜑 =
𝑛∑︁
𝑖=1

|1⟩ ⟨1|(𝑖) = 𝑛

2

(︃
1− 1

𝑛

𝑛∑︁
𝑖=1

𝑍(𝑖)

)︃
(35)

and consider (35) as the initial Hamiltonian, preparing state |0⟩⊗𝑛.
We will act on (35) with a sequence of gates

∏︀𝐿
𝑙=1 𝑈𝑙 corresponding to the

circuit being simulated as

ℎ(𝑘) =

(︃
𝑘6𝐿∏︁
𝑙=1

𝑈𝑙

)︃
𝑃𝜑

(︃
𝑘6𝐿∏︁
𝑙=1

𝑈𝑙

)︃†

> 0 (36)

which isospectral on (35).

Lemma 2 (Clifford Gate Cardinality Invariance). For 𝐶 a Clifford gate and ℎ ∈
spanR {

⨂︀𝑛
𝑙=1 𝜎

𝛼𝑙

𝑙 | 𝛼𝑙 = 0,1,2,3}, |ℎ|card = |𝐶ℎ𝐶†|card.

Remark 25. The algebraic 𝑘-locality of (36) is not invariant under Clifford con-

jugation.

Remark 26. Non-Clifford gates increase the cardinality of (36) by exponentially

and so must be logarithmically bounded from above, restricting to 𝑝 gate circuit’s

with 𝒪(poly ln 𝑝) non-Clifford single qubit gates.

We will then consider embedding general quantum circuits into Hamiltonian

ground states.

Two notions of universality are common in the literature:

1. Strongly universal means a system is fully controllable and able to ap-

proximate any state.

2. Computationally universal means that any quantum circuit can be effi-

ciently simulated by this model.

Remark 27 (with Morales and Zimboras QIP 19:291 (2020)). One can simu-

late general 𝑝-depth circuits containing two-qubit gates with ansatze circuits of

𝒪 (poly(𝑝)) depth.

Theorem 9 (Biamonte PRA 103:L030401 (2021)). Let Π𝐿
𝑙=1𝑈𝑙 |0𝑛⟩ be an 𝐿-gate

quantum circuit preparing state |𝜓⟩ on 𝑛-qubits and containing 𝐿−𝑐 non-Clifford
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gates. Then there exists a non-negative Hamiltonian ℋ on n-qubits with |ℋ|card =
𝒪
(︀
poly(𝑐, 𝑒𝐿−𝑐)

)︀
, gap Δ and ker{ℋ} = span{Π𝐿

𝑙=1𝑈𝑙 |0𝑛⟩}. In particular, if |𝜑⟩ is
such that

0 6 ⟨𝜑|ℋ |𝜑⟩ < Δ (37)

then it follows that

1− ⟨𝜑|ℋ |𝜑⟩
Δ

6 | ⟨𝜑|𝜓⟩ |2 6 1− ⟨𝜑|ℋ |𝜑⟩
Tr{ℋ}

. (38)

For some 𝑈 a Clifford gate, Lemma 2 shows that the cardinality is invariant.

Non-Clifford gates increase the cardinality by factors 𝒪(𝑒𝐿−𝑐) and so must be

logarithmically bounded from above. Hence, telescopes bound the number of

expected values by restricting to circuit’s with

𝑘 ∼ 𝒪(poly ln𝑛)

general single qubit gates. Clifford gates do however modify the locality of terms

appearing in the expected values.

Chapter 5 then presents then proves the following theorem (10) which es-

tablishes universality of the variational model of quantum computation.

Theorem 10 (Universal Objective Function—Biamonte (2021)). Consider a

quantum circuit of 𝐿 gates on 𝑛-qubits producing state
∏︀

𝑙 𝑈𝑙 |0⟩
⊗𝑛. Then there

exists an objective function (Hamiltonian, ℋ) with non-degenerate ground state,

cardinality 𝒪(𝐿2) and spectral gap Δ > 𝒪(𝐿−2) acting on 𝑛+𝒪(ln𝐿) qubits such

that acceptance implies efficient preparation of the state
∏︀

𝑙 𝑈𝑙 |0⟩
⊗𝑛. Moreover, a

variational sequence exists causing the objective function to accept.

The proof follows from several lemma. Degeneracy is first lifted. We let

𝑃0 = |0⟩ ⟨0|.

Lemma 3 (Degeneracy Lifting). A tensor product of a projector on the first clock

qubit with a telescope

ℋin = 𝑉

(︃
𝑛∑︁
𝑖=1

𝑃
(𝑖)
1

)︃
𝑉 † ⊗ 𝑃0 (39)
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lifts the degeneracy of ℋprop and the history state with fixed input as

1√
𝐿+ 1

𝐿∑︁
𝑡=0

𝑡∏︁
𝑙=1

𝑈𝑙(𝑉 |0⟩⊗𝑛)⊗ |𝑡⟩ (40)

becomes the non-degenerate ground state of 𝐽 · ℋin +𝐾 · ℋprop for real 𝐽,𝐾 > 0.

The penalty function is gaped and omits a log-space embedding.

Lemma 4 (Gap Existence). For appropriate non-negative 𝐽 and 𝐾, the operator

𝐽 · ℋin +𝐾 · ℋprop is gapped.

Note that in the theory of adiabatic quantum computation, several authors

bound the gap of operators such as 𝐽 · ℋin +𝐾 · ℋprop. One such lower bound is

𝐿−3 for an 𝐿 gate circuit [SIAM Journal of Computing 37(1):166 (2007)].

Lemma 5 (Logspace Embedding ℋprop). The clock space of ℋprop embeds into

𝒪(ln𝐿) slack qubits, leaving the ground space of 𝐽 · ℋin +𝐾 · ℋprop and the gap

invariant.

The dissertation then proves acceptance and derives the bound, noting that

one must add 𝑀 identity gates to boost the probability of the desired circuit

output state |𝜑⟩ = Π𝐿
𝑙=1𝑈𝑙 |0⟩

⊗𝑛. The telescoping construction, we have that

1− ⟨𝜑|ℋ |𝜑⟩
𝐿−3

6 | ⟨𝜑|𝜓hist⟩ |2 =
1

1 + 𝐿+1
𝑀

(41)

whenever ⟨𝜑|ℋ |𝜑⟩ < 𝐿−3. For large enough 𝑀 > 𝐿, the right hand side of (41)

approaches unity, implying acceptance.

Chapter 6

Remark 28. Kitaev et al. established that sparse Hamiltonian’s restricted to

have at most 5-body bounded strength interactions have a ground state energy

problem which is complete for the quantum analog of the complexity class NP

(QMA-hard).
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Definition 21. The 𝑘-local Hamiltonian problem: The input is a 𝑘-local Hamil-

tonian acting on n qubits, which is the sum of poly many Hermitian matrices that

act on only 𝑘 qubits. The input also contains two numbers 𝑎 < 𝑏 ∈ [0,1], such

that 1
𝑏−𝑎 = 𝒪(𝑛−𝑐) for some constant 𝑐. The problem is to determine whether the

smallest eigenvalue of this Hamiltonian is less than 𝑎 or greater than 𝑏, promised

that one of these is the case.

Remark 29. The 𝑘-local Hamiltonian admits an energy decision problems with is

QMA-complete for 𝑘 > 2. The minimisation of 𝑘-local Hamiltonians is QMA-hard

for 𝑘 > 2. We seek to determine the simplest 2-local QMA-hard Hamiltonian to

embed computational problems into a Hamiltonian for practical means.

The dissertation then develops and proves the following theorems.

Remark 30 (Real Hamiltonians). We call Hamiltonian’s expressed in the real

subset of the Pauli basis, real Hamiltonians. That is, qubit Hamiltonians that

contain no tensor product terms with odd numbers of 𝑌 operator(s). The corre-

sponding ground state energy problem is called Real Hamiltonian.

Lemma 6. The ground state energy decision problem Real Hamiltonian is

QMA-hard.

Remark 31 (Complexity (Sketch)). Given a Hamiltonian on 𝑛 qubits, determine

if min|𝜓⟩∈𝑉𝑛 ⟨𝜓|𝐻 |𝜓⟩ is below 𝑏 or above 𝑎 for 𝑎, 𝑏 ∈ [0,1] and 𝑏− 𝑎 > poly(𝑛−1).

Remark 32 (Universality (Sketch)). A computationally universal set of real val-

ued gates is embedded to act in ground states of (42) and (43).

Theorem 11 (Biamonte-Love (2008)). The ground energy decision problem

ZZXX Hamiltonian is QMA-hard, given as:

𝐻ZZXX =
∑︁
𝑖

ℎ𝑖𝑍𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑍𝑖𝑍𝑗 +
∑︁
𝑖,𝑗

𝐾𝑖𝑗𝑋𝑖𝑋𝑗. (42)

Theorem 12 (Biamonte-Love (2008)). The ground energy decision problem ZX

Hamiltonian is QMA-hard, given as:

𝐻ZX =
∑︁
𝑖

ℎ𝑖𝑍𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑍𝑖𝑋𝑗. (43)
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The Hamiltonian (44) (that is, 45) can create effective 𝑌 ⊗ 𝑌 (that is,

𝑍 ⊗ 𝑍 ⊗ 𝑍) interactions with error 𝜀 using one slack bit acted on by a term

∼ 𝜀−4𝑍 (that is, ∼ 𝜀−5𝑋).

Theorem 13 (with Cao-et al. (2015)). The Hamiltonian

𝐻ZZXX =
∑︁
𝑖

ℎ𝑖𝑍𝑖 +
∑︁
𝑖

Δ𝑖𝑋𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑍𝑖𝑍𝑗 +
∑︁
𝑖,𝑗

𝐾𝑖𝑗𝑋𝑖𝑋𝑗. (44)

emulates a 𝑌 ⊗ 𝑌 interaction with 𝛿 = 𝒪(𝜀−4) given one slack qubit.

Theorem 14 (with Cao-et al. (2015)). The Hamiltonian

𝐻Ising,X =
∑︁
𝑖

ℎ𝑖𝑍𝑖 +
∑︁
𝑖

Δ𝑖𝑋𝑖 +
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑍𝑖𝑍𝑗. (45)

emulates the 𝑍 ⊗ 𝑍 ⊗ 𝑍 interaction with 𝛿 = 𝒪(𝜀−5) given one slack qubit.

Conclusion

The conclusion presents and discusses the implications of efficiently check-

able quantum versus classical minimization problems. It also presents some future

research directions.

Anticipated computational resources to determine ground state energy and

calculate energy relative to a state have been conjectured. In Table 4 I have sum-

marized what is known/conjectured regarding efficiently checkable minimisation

problems. Therein ‘Restricted Ising’ denotes problems known to be in P. (⋆) de-

notes conjectures. Electronic structure problem instances have constant maximum

size so are assumed to be in BQP whereas the ZZXX model is QMA-hard.
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Table 4 — Hamiltonian complexity micro zoo

Problem Hamiltonian Finding Ground En-
ergy (Classical / Quan-
tum)

Calculating State En-
ergy (Classical / Quan-
tum)

1-Local Hamiltonian Polynomial Polynomial
2-Local Ising Exp Polynomial
Electronic Structure ⋆Exp ⋆Exp / Polynomial
ZZXX Model Exp ⋆Exp / ⋆Polynomial

TWENTY PRIMARY RESEARCH ARTICLES CONSTITUTING

THE DISSERTATION CONTENTS

1. Akshay V. et al. Reachability Deficits in Quantum Approximate Opti-

mization // Phys. Rev. Lett. 2020. Vol. 124, № 9. P. 090504.

2. Biamonte J.D., Morales M.E.S., Koh D.E. Entanglement scaling in quan-

tum advantage benchmarks // Phys. Rev. A. 2020. Vol. 101, № 1. P.

012349.

3. Whitfield J.D., Faccin M., Biamonte J.D. Ground State Spin Logic //

EPL (Europhysics Letters). 2012. Vol. 99, № 5. P. 57004.

4. Biamonte J.D., Love P.J. Realizable Hamiltonians for universal adiabatic

quantum computers // Phys. Rev. A. 2008. Vol. 78, № 1. P. 012352.

5. Whitfield J.D., Biamonte J., Aspuru-Guzik A. Simulation of electronic

structure Hamiltonians using quantum computers // Molecular Physics.

2011. Vol. 109, № 5. P. 735–750.

6. Biamonte J.D. et al. Adiabatic quantum simulators // AIP Advances.

2011. Vol. 1, № 2. P. 022126.

7. Biamonte J.D., Morton J., Turner J. Tensor Network Contractions for

#SAT // Journal of Statistical Physics. 2015. Vol. 160, № 5. P.

1389–1404.

8. Cao Y. et al. Hamiltonian gadgets with reduced resource requirements

// Physical Review A. 2015. Vol. 91, № 1.

9. Faccin M. et al. Community Detection in Quantum Complex Networks

// Phys. Rev. X. 2014. Vol. 4, № 4. P. 041012.

10. Faccin M. et al. Degree Distribution in Quantum Walks on Complex

Networks // Phys. Rev. X. 2013. Vol. 3, № 4. P. 041007.

35



11. Morton J., Biamonte J. Undecidability in tensor network states // Phys.

Rev. A. 2012. Vol. 86, № 3. P. 030301.

12. Denny S.J. et al. Algebraically contractible topological tensor network

states // J. Phys. A: Math. Theor. 2012. Vol. 45, № 1. P. 015309.

13. Morales M.E.S., Tlyachev T., Biamonte J. Variational learning of

Grover’s quantum search algorithm // Physical Review A. 2018. Vol.

98, № 6.

14. Biamonte J. Charged string tensor networks // Proceedings of the Na-

tional Academy of Sciences. 2017. Vol. 114, № 10. P. 2447–2449.

15. De Domenico M., Biamonte J. Spectral Entropies as Information-

Theoretic Tools for Complex Network Comparison // Phys. Rev. X.

2016. Vol. 6, № 4. P. 041062.

16. Biamonte J. Universal Variational Quantum Computation // Phys. Rev.

A. 2021. Vol. 103, № 3. P. 030401.

17. Kardashin A., Uvarov A., Yudin D., Biamonte J. Certified variational

quantum algorithms for eigenstate preparation // Phys. Rev. A. 2020.

Vol. 102, № 5. P. 052610.

18. Morales M.E.S., Zimbor Z., Biamonte J. On the universality of the quan-

tum approximate optimization algorithm // Quantum Information Pro-

cessing. 2020. Vol. 19, № 9., P. 291.

19. Uvarov A., Kardashin, A, Biamonte J. Machine learning phase transitions

with a quantum processor // Physical Review A. 2020. Vol. 102, № 7.

P.012415.

20. Baez J., Biamonte J.D. Quantum Techniques in Stochastic Mechanics.

World Scientific Publishing Co Pte Ltd, 2018.

36


