На правах рукотиси

Туголукова Елена Александровна

ИНГИБИРОВАНИЕ АНОДНОГО РАСТВОРЕНИЯ СПЛАВОВ NiZn, НИКЕЛЯ И ЦИНКА В СУЛЬФАТНЫХ И БОРАТНЫХ РАСТВОРАХ

Специальность 02.00.05- электрохимия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

١,

.

Ростов-на – Дону 2005

Работа выполнена в Ростовском государственном университете на кафедре электрохимии

Научный руководитель:

доктор химических наук, профессор Экилик Владимир Викторович

Официальный оппонент:

доктор химических наук, профессор Кузнецов Юрий Игоревич кандидат химических наук, доцент Февралева Валентина Александровна

Ведущая организация:

Воронежский государственный университет

Защита состоится "10 " <u>HOLOPL</u> 2005 г. в 1400 часов на заседания Диссертационного совета К 212.208.05 по химическим наукам при Ростовском государственном университете по адресу: 344090 г. Ростов-на-Дону, ул. Зорге, 7, Химический факультет, ауд. 217.

С диссертацией можно ознакомится в научной библиотеке РГУ по адресу: г. Ростов-на-Дону, ул. Пушкинской, 148.

Автореферат разослан 23 ССИТИМ 2005 г.

Ученый секретарь Диссертационного совета доктор химических наук, профессор

677

Кузнецов В.В.

16722

3 2185517

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность темы. В электрохимии гомогенных интерметаллических фаз и твердых металлических растворов (сплавов) проблема анодного растворения (АР) является одной из наиболее значимых и интенсивно разрабатываемой в последние десятилетия рядом научных школ. Электрохимия интерметаллических фаз – это теоретическая база разработок многих технологических процессов получения скелетных катализаторов, анодов химических источников тока, электрохимической размерной обработки, электрорафинирования металлов. Кроме того, подавляющее число использующихся B промышленности конструкционных материалов представляют собой сплавы. Повышение их стойкости представляет большой практический интерес.

Растворение сплавов является сложным электрохимическим процессом, включающим ряд последовательных и параллельных, обратимых и необратимых стадий, к которому не применим принцип независимого протекания электрохимических реакций, что усложняет проблему. Кинетика и механизм растворения компонентов сплава оказываются взаимосвязанными.

Регулирование суммарной скорости процесса и парциальных скоростей растворения компонентов может быть достигнуто путем введения в раствор поверхностно-активных веществ (ПАВ), действие которых специфично к природе раствора и характеру процесса. Следовательно, выяснение механизма торможения процессов и расширение ассортимента эффективных ингибиторов является актуальной научно-технической задачей.

Диссертация является продолжением исследований, выполняемых на кафедре электрохимии Ростовского государственного университета в соответствии с координационным планом АН (№ гос. регистрации 80004926)*.

Цель работы состоит в выявлении закономерностей ингибирования и инициирования анодного растворения сплавов никель-цинк в широком интервале составов, а также для сравнения никеля и цинка в активном и пассивном состояниях. При этом предполагалось решить следующие задачи:

1 Установить закономерности АР растворения

- 1. Установить закономерности AP растворения сплавов NiZn в зависимости от их состава в сульфатном и боратном растворах, в условиях, когда один или оба компонента пассивируются, в сопоставлении с никелем и цинком.
- Провести подбор ингибиторов и выяснить их влияние на отдельные последовательные стадии процесса растворения электроотрицательного компонента (А) в зависимости от состава сплавов, потенциала Е, времени т, природы и концентрации добавок С_{доб}.
- 3. Сопоставить действие добавок на растворение чистых металлов и компонентов сплавов.
- 4. Определить возможность корреляционного анализа при оценке влияния природы добавок, С_{доб}, Е и τ на защитное действие в активном пассивном состоянии.

* В руководстве работы принимала участие к.х.н., доц. Бережная А.Г.

- 5. С использованием корреляционного анализа установить связь между эффективностью ингибиторов и их химической структурой, а также возможное ее изменение в зависимости от характера растворения и потенциала.
- Сравнить между собой бинарные смеси, составленные из близких и различных по природе соединений при сходном и различном их влиянии на кинетику растворения.
- 7. Разработать принцип оценки взаимовлияния на характеристические потенциалы анодной кривой.

Научная новизна. В работе получены новые данные поведения сплавов никель-цинк различного фазового и химического состава, а также чистых никеля и цинка в сульфатном и боратном растворах, в которых они склонны к пассивации. Обнаружена экстремальная зависимость эффекта цинка, направленного на облегчение пассивации в сульфатном растворе, от состава сплава.

Установлена закономерность влияния ароматических альдегидов перхлоратов на кинетику и механизм АР, а также замещенного пиридиния и хинолиния пассивацию, для чего детально проанализировано изменение во времени эффектов добавок с учетом стадийного растворения. Сопоставлено их действие на процесс АР и его отдельные стадии: перенос заряда, нестационарной и стационарной диффузии. Проанализирована связь между действием добавки на растворение и их гидрофобности. константами Изучено сольватацией. оцененной лействие неорганических добавок и комбинированных смесей на активную и пассивную области растворения сплавов и чистых металлов. Разработан принцип оценки взаимовлияния компонентов смеси на характеристические потенциалы анодной кривой.

С использованием корреляционного анализа и спектральных характеристик растворов ингибиторов рассмотрены вопросы количественной связи "химическая структура добавок – защитный эффект". Выявлено влияние на величину защитного эффекта состава сплавов, Е, т, природы и С_{доб}.

Практическая значимость работы состоит в расширении представлений о кинетике и механизме стадийного растворения сплавов, в том числе в присутствии ПАВ, которые важны для понимания характера технологических и коррозионных процессов.

Количественная оценка влияния заместителей в органических молекулах и катионах использованием корреляционных соотношений. связывающих С логарифмы коэффициентов торможения рассматриваемой И стандартной реакционной серии между собой и с длинами волн наиболее длинноволновой полосы поглощения электродных спектров добавок, может служить основой для целенаправленного подбора ингибиторов АР и коррозии сплавов.

В результате проведенной работы найдены органические и неорганические соединения и их комбинации, инициирующие анодный процесс растворения или значительно повышающие устойчивость исследованных сплавов никель-цинк при анодном растворении в сульфатных и боратных растворах.

Установленная зависимость потенциала пассивации от содержания цинка способствует оптимизации состава устойчивого сплава.

На защиту выносятся:

- Установление закономерности действии добавок на пассивацию и на стадии ионизации, жидкофазной и твердофазной диффузии при АР металлов и сплавов в зависимости от их состава в сульфатном и боратном растворах в сопоставлении с никелем и цинком. Обоснование зависимости эффекта ПАВ от т.
- 2. Корреляционное соотношение между эффективностью исследованных ПАВ, их С, Е и факторами учитывающими природу добавок.
- 3. Выявление эффекта взаимовлияния компонентов комбинированных добавок.
- 4. Сопоставление оценки действия добавок на чистые металлы и сплавы.

Апробация работы. Материалы работы были представлены на научной конференции аспирантов и соискателей (РГУ, 2000), на Международной школесеменаре "Современные методы исследования и предупреждения коррозионных разрушений" (Ижевск, 2001), на І Всероссийской конференции "ФАГРАН-2002" (Воронеж, 2002), на XI научной конференции "Проблемы химии и химической технологии" (Тамбов, 2003).

По материалам диссертации опубликовано 8 статей и 5 тезисов и докладов.

Структура диссертации. Диссертация состоит из введения, трех глав выводов и списка цитированной литературы из 232 наименований. Диссертация изложена на 192 страницах машинописного текста, содержит 42 рисунка и 31 таблицу.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе представлен обзор литературы по вопросам:

- термодинамических и кинетических предпосылок селективного растворения бинарных сплавов с низким и высоким содержанием электроотрицательного компонента;
- кинетики селективного растворения в условиях пассивации сплавов;
- закономерностей анодного растворения сплавов NiZn и влияния ПАВ на анодное растворение сплавов,

из которого следует, что сплавы никель-цинк преимущественно исследовали в области активного растворения, что сведения об ингибиторах растворения сплавов NiZn в активном состоянии ограничены сплавами с низким и средним содержанием цинка и не относятся к анодной пассивации. Имеются достаточно полные сведения о влиянии галидов на активное и пассивное растворение никеля и легированных никелем сталей. Корреляционный анализ, использован лишь при оценке влияния потенциала и температуры на защитный эффект конкретного соединения на основе принципа полилинейности, который широко использовался при коррозии и растворении чистых металлов в кислых и нейтральных средах. Сформулированы цель и задачи исследования.

Во второй главе описаны объекты и методы исследований. В работе использовали никель и цинк марки ЦВ. Основными объектами исследования данной работы служили сплавы NiZn с содержанием цинка [Zn]₀ 30, 45, 50, 55, 60, 80, 90 мас.% которые представляют собой, согласно диаграмме состояния, твердый раствор (с содержанием цинка 30%) и интерметаллиды (остальные), что подтверждено рентгенофазовым анализом.

Кинетику AP сплавов NiZn в чистом растворе и в присутствии добавок исследовали путем снятия поляризационных кривых, хроноамперограмм (ХАГ), хронопотенциограмм (ХПГ) и циклических хроновольтамперограмм (ЦВА). Измерения проводили в термостатированной трехэлектродной ячейке с разделенными шотом катодным и анодным пространствами на неподвижном электроде на установке ПИ-50-1.1 с программатором ПР-8 и комбинированным прибором В 7-35. Потенциалы приведены относительно нас. х.с.э.

Представленное исследование никеля, цинка и их сплавов показало, что в сульфатном растворе Zn и сплавы с высоким [Zn]₀ не пассивируются, а в растворе боратного буфера (ББ) Ni и сплавы с низкой и средней [Zn]₀ пассивны уже при E_{kop} . Это определило необходимость использовать два типа растворев: сульфатный, в котором исследовали активную и пассивную области растворения никеля и сплавов с содержанием цинка до 55%, и ББ, в котором анодно пассивируются только цинк и сплавы с содержанием [Zn]₀ более 80%.

Применяли сульфатные растворы (0,005М $H_2SO_4 + 0,25$ M Na₂SO₄) и ББ (11,2 г/л $H_3BO_3+1,91$ г/л Na₂B₄O₃·10 H_2O ; pH 7.4). Раствор предварительно насыщали очищенным аргоном. Средние парциальные скорости при совместном растворении компонентов сплава находили петем анализа раствора на атомно-абсорбционном спектрометре Analyst - 300 Perkin Elmer. Электронные спектры поглощения снимали на приборе Specord UVVIS.

ингибиторов B качестве использовали перхлораты коллидиния: N-(2-бромфенил)-[3]; N-(2-аминофенил)-[1], N-(3-аминофенил)-[2], перхлорат 2,4,6-трифенилпиридиния: N-(3-аминофенил)-[4], N-(4-аминофенил)-[5]. N-(2-(4-хлорфенил)-N,4-дифенилпиридиния-[7], бромфенил)-[6]: перхлорат 2.6-ди N-(2-аминофенил)-6,7-диметил-1-метил-[8], перхлораты изохинолиния: N-(2аминофенил)-6,7-диметил-1-этил-[9], N-(2-аминофенил)-6,7-диметил-1-пропил-[10], N-(2-аминофенил)-6,7-диметил-1-пентил-[11]; ароматические альдегиды: бензальдегид (12), салициловый альдегид (13), а-бромкоричный альдегид (14), ванилин (15), вератровый альдегид (16), иодид калия (17), сульфат натрия (18), перхлорат лития (19).

Эффективность ПАВ оценивали при помощи коэффициента торможения $\gamma = i/i_{\mu}$, показывающего во сколько раз отличаются скорости процесса на поляризационных кривых и ХАГ в чистом растворе і и с добавками i_{μ} .

Для решения вопроса о линейном соотношении между двумя наборами чисел, характеризующих изменение экспериментальных характеристик в определенном ряду, использовали метод наименьших квадратов. Статистическую обработку проводили для малых выборок с определением коэффициентов регрессивного уравнения, коэффициента корреляции г и теста экспериментатора S. В третьей главе представлены результаты измерений и их обсуждение.

Анодные кривые (рис.1) указывают, что в сульфатном растворе никель и сплавы с $[Zn]_0 \le 50\%$ анодно пассивируются, при $[Zn]_0 \ge 60\%$ имеет место предельный анодный ток, а на сплаве Ni55Zn наблюдаются нечетко выраженная двухпиковая зависимость, отвечающая активно-пассивному переходу, и предельный ток. Данные рис.1 и табл.1 свидетельствуют о существенной роли химического состава сплавов в кинетике растворения и об увеличении скорости с ростом [Zn]₀.

Рис. 1. Анодные поляризационные кривые при $[Zn]_0$, мас. % 0 (1), 30 (2), 45 (3), 50 (4), 55 (5), 60 (6), 80 (7), 90 (8) и 100 (9) в сульфатном растворе.

Рис. 2. Анодные участки ЦВА на никеле (а) и Ni50Zn (б,в) в сульфатном растворе с предварительной катодной поляризацией (а,б) и без нее (в). Циф-ры у линий – скорость V (мВ/с) увели-чения (1-100) и уменьшения (1¹) Е

Таблица 1. Зависимость характеристик анодных кривых от [Zn]₀

Характеристика*	Значения характеристики при [Zn] ₀ ,%							
	0	30	45	50	55			
-E _{KOD} , B	0,32	0,38	0,42	0,46	0,60			
$-E_{n,1}$ B	0,16	0,20	0,26	0,20	0,14			
$-E_{n,2}$ B	0,00	0,04	0,08	0,05	0,00			
E _{nn} B	0,20	0,20	0,16	0,08	0,18			
$i_{n,l}, A/M^2$	7	32	89	199	370			
$i_{\pi,2}$, A/M ²	13	40	89	178	502			
$i_{n,1}/i_{n,2}$	0,54	0,80	1,00	1,12	0,74			
$i_{nn}(E=0,2 B), A/M^2$	0,3	0,6	1,2	11,8	396			

*Обозначения характеристик общепринятые.

Сплавы по сравнению с чистым никелем раньше пассивируются, но за счет большей активности никеля они имеют более высокие $i_{n,1}$, $i_{n,2}$ и i_{nm} , монотонно растущие с $[Zn]_0$. Зависимости критических Е от $[Zn]_0$ имеют минимум, приходящийся на $[Zn]_0 = 45\%$ в случае $E_{n,1}$ и $E_{n,2}$ и на $[Zn]_0 = 50\%$ для E_{nn} . С ростом $[Zn]_0$ от 0 до 50% меняется соотношение между $i_{n,1}$ и $i_{n,2}$. Рост $i_{n,1}/i_{n,2}$ указывает на то, что активация поверхности сплавов уже на первой ступени протекает более интенсивно, чем у никеля и процесс интенсифицируется с повышением $[Zn]_0$. Это может быть следствием селективного растворения сплава, которое приводит к увеличению активности никеля, и постоянному генерированию активных центров, так что этот процесс преобладает над стравливанием.

Вид анодной кривой никеля в сульфатных растворах и, в частности, отношение $i_{n,1}$ и $i_{n,2}$ зависят от его подготовки и условий эксперимента. В согласии с этим кривые изменяются во времени т (табл. 2). Характеристики анодных кривых в табл. 2 со временем сближаются. Изменение соотношения между $i_{n,1}$ и $i_{n,2}$ с ростом т зависит от материала электрода. На никеле $i_{n,1}/i_{n,2}$ имеет тенденцию к увеличению во времени до 2 мин., на Ni50Zn - к спаду и на Ni30Zn зависимость $i_{n,1}/i_{n,2}$ от т имеет достаточно четко выраженный максимум. Это свидетельствует о том, что во времени на никеле быстрее инициируются активные центры у вершин кристаллов, на Ni50Zn - на остальных кромках, а на Ni30Zn скорости активации соизмеримы и их соотношение зависит от т. Соответственно процессы пассивации меняются противоположно. С данными хроноамперометрии согласуются результаты ЦВА (рис. 2).

Характеристи										
ки		Значения характеристик при т,с								
	5	10	20	30	60	120	300	600		
				Ни	кель					
-E _{n,1} , B	-	0,16	0,16	0,16	0,16	0,16	0,18	0,18		
i _{п,1} , А/м ²] -	8,5	8,6	8,7	8,8	8,7	5,7	4,9		
i _{min} , А/м ²	-	8,5	6,7	6,3	5,0	4,3	3,3	2,5		
i _{п,2} , А/м ²	17,6	14,7	12,3	9,2	8,8	4,8	4,3	3,0		
i _{шi} , А/м ²	5,6	3,2	1,9	1,4	0,8	0,4	0,3	0,2		
i _{n,1} / i _{n,2}	-	0,6	0,7	0,9	1,0	1,8	1,3	1,6		
				NI3	07 m					
F D			.							
$-E_{n,l}B$	0,17	0,17	0,17	0,17	0,17	0,17	0,18	0,20		
i _{п,1} , А/м ²	25	44	81	112	126	103	45	38		
i _{mın} , А/м ²	16	20	25	27	32	40	42	32		
-Е _{п,2,} В	0	0	0	0	0	0,04	0,04	0,04		
i _{п,2} , А/м ²	56	52	47	45	44	48	63	66		
і _{пл} , А/м ²	9,2	6,0	3,3	2,4	1,8	1,6	1,4	1,5		
i _{n,1} / i _{n,2}	0,4	0,8	1,7	2,5	2,8	2,2	0,7	0,6		

Таблица 2. Характеристики анодных кривых, построенных по изохронным сечениям ХАГ.

	Ni50Zn							
-E _{n,1} , B	0,17	0,17	0,17	0,17	0,18	0,20	0,25	0,25
i _{п,1} , А/м ²	166	200	219	245	235	184	126	107
i _{min} , А/м ²	31	36	46	51	63	66	71	72
i _{п.2} , А/м ²	47	50	61	72	92	104	109	115
i _m , А/м ²	58	44	23	19	18	14	17	20
i _{n,1} / i _{n,2}	3,3	4,0	3,6	3,4	2,6	1,8	1,2	0,9

Примечания: 1. На никеле при т< 10 с первый пик отсутствует

2. Независимо от τ потенциал минимума E_{man}, В между пиками для Ni, Ni30Zn и Ni50Zn составляет -0,10; -0,10 и -0,14, а E_{n,2}, В для Ni и Ni50Zn равен 0 и -0,05.

3. i_{min}- плотность тока в минимуме.

4. Значения іпп даны при Е=0,5 В.

С увеличением V пассивация и активация затрудняются: растут все характеристики анодных кривых прямого хода, а на кривых обратного хода пики реализуются только на сплаве при V=1мB/с. В остальных случаях электрод пассивен до E_{коп} С ростом V до 50мВ/с на кривых прямого хода пропадают менее интенсивные пики. На никеле увеличение V от 5 мВ/с до 20 мВ/с сопровождается снижением in.1/ in.2 с 0,85 до 0,69, а затем исчезает первый пик (рис. 2а). На Ni50Zn в интервале роста V от 1мB/с до 10мB/с $i_{n,1}/i_{n,2}$ увеличивается с 1,46 до 2,94, а затем пропадает второй пик (рис.26). В согласии с этим на анодных кривых, посторенных по изохронным сечениям ХАГ (табл. 2), i_{n,1}/ i_{n,2} изменяется с т симбатно для никеля и антибатно для сплава, причем на никеле при малых т пропадает первый пик. Таким образом, соотношение процессов активации стравливания активных центров и пассивации у вершин кристаллов и на остальных кромках неодинаково на никеле и на сплаве. Поэтому при больших V никель не успевает пассивироваться, а сплав активироваться после первого пика. Исчезновение первого пика на анодной кривой никеля и второго пика в случае сплава, приводит к тому, что по сравнению с двухпиковой зависимостью при малых V на однопиковой зависимости при V>50 мВ/с критический потенциал пассивации сплава оказывается меньше, чем никеля лополнительно на 160 мВ.

Рассмотренные закономерности проявляются в изменении і с т. Типичные ХАГ схематично приведены в табл. 3.

Таблица 3. Схематичное изображение анодных ХАГ в координатах lgi -lgt в течение 10 мин.

E	Схемы ХАГ						
	Ni	Ni30Zn	Ni50Zn				
$E_1 \le E_{n,1}$	\sim	\sim	\sim				
$E_1 \le E_2 \le E_{n,1}$	\sim		/				
E _{n,1}	\sim	\sim	\land				
Emin			5				
E _{n,2}	\sim	<u>~</u>	5				
$E_{n,2} < E_3 < E_{nn}$	く	\sim					
Em	く	\sim					
E _m <e<sub>4</e<sub>							

На никеле реализуется три типа ХАГ. При Е≤ Е_л начальный спад і во обусловлен нестационарностью времени может быть массопереноса. а последующий рост і активацией поверхности при возможном участии токов фазообразования. Снижение і на последнем участке связано с образованием визуально наблюдаемой пленки продуктов растворения. С ростом Е время, отвечающее минимуму и максимуму на кривой, снижается. Для последнего участка $i-\tau^{-1/2}$, ΧΑΓ при всех исследованных E характерно наличие прямой экстраполирующейся в начало координат и отражающей спад і за счет формирования пленки.

На сплавах непрерывный спад тока во времени наблюдается только при $E>E_{n,2}$ и вблизи $E_{\text{кор}}$. При остальных Е имеет место конкуренция ускорения и торможения процесса с ростом τ при преобладании первого, которое доминирует на начальном этапе. Это можно понять при учете повышенной активности поверхности сплава по сравнению с чистым никелем и ее морфологической нестабильности.

Разделение парциальных скоростей растворения никеля и цинка из сплавов проводили путем графического анализа анодных ХАГ в предположении независимости от т скоростей выделения водорода и растворения никеля i_{N_I} . Последнее было показано для анализируемого интервала т на основании спектрофотометр:нческих измерений. При [Zn]₀≥55% продукты растворения никеля в растворе не обнаружены. Анодные ХАГ (рис. 3,4) имеют несколько линейных участков в характеристических координатах. При малых т реализуются прямые $i-\tau^{1/2}$ в соответствии с уравнением (1) для смешанного диффузионно-кинетического контроля растворения, которое позволяет рассчитать скорости ионизации i_e и нестационарной твердофазной i_{τ} или жидкофазной i_{π} диффузии.

где

$$i = i_{e} - Q\tau^{1/2} = i_{e} [1 - 2 i_{e} (\pi i_{*})^{-1}]$$
(1)

$$Q = 2 i_{e}^{2} (\pi a_{*})^{-1} \neq f(\tau)$$
(2)

$$i_{*} = 2F (C_{s} - C_{0}) \sqrt{D_{*} / \pi \tau} = a_{*} \tau^{-1/2}$$
(3)

 C_s и C_0 – соответственно поверхностная и объемная концентрации ионов металла, D_* - коэффициент жидкофазной диффузии. Уравнения (1)– (3) описывают растворение чистых никеля и цинка, а также цинка из сплавов с [Zn]₀≥55%. При более низких [Zn]₀ соизмеримы i_e и i_r, а уравнения аналогичны (1) и (2) с использованием вместо i_{*} величины i_r.

$$i_{\tau} = 2F[Zn]_0 \sqrt{D_{\tau}/\pi\tau} = \varkappa_{\tau} \tau^{-1/2}$$
(4)

Другой вариант разделения i_e и i_{\star} или i_{τ} основан на уравнении (6), которое получено из уравнений (3) или (4) и приближенного соотношения (5).

$$\mathbf{i}^{-1} = \iota_{\mathbf{x}}^{-1} + \iota_{e}^{-1}$$
 или $\mathbf{i}^{-1} = \iota_{T}^{-1} + \iota_{e}^{-1}$ (5)
 $\mathbf{i}^{-1} = \iota_{r}^{-1} + \mathbf{x}^{-1} \tau^{1/2}$ или $\mathbf{i}^{-1} = \iota_{e}^{-1} + \mathbf{x}^{-1} \tau^{1/2}$ (6)

По мере торможения во времени нестационарной диффузии смешанной контроль на втором участке переходит в диффузионный и реализуются во времени прямые $i-\tau^{-1/2}$ или $i^{-1}-\tau^{1/2}$, в соответствии с уравнениями (3) и (4) экстраполирующиеся в начало координат. На третьем участке при достижении

Рис. 3. Анодные ХАГ растворения цинка Рис. 4. Анодные ХАГ растворения цинка из сплава Ni30Zn в сульфатном растворе (1,6) и с добавкой №4 (2-5) при Е,В' - 0,35 (1,3, 4, 6) и -0,30 (2, 5).

из сплава Ni55Zn в сульфатном растворе (1,2) и с добавкой №П (3, 4) при $E \approx -0.55 B.$

через т. стационарного тока icr. который в случае сплавов отвечает неселективному растворению, скорость стационарной диффузии i.a можно вычислить при помощи соотношения (5) в предположении, что при переходе к третьему участку і, не меняется. Такую последовательность режимов растворения иллюстрирует рис. 3. Рассчитанные по уравнениям (1)-(6) на основании графиков i-т^{1/2} и i⁻¹-т^{1/2} характеристики представлены в табл. 4, которые свидетельствуют о решающей роли массопереноса в твердой фазе при [Zn]₀≤50 % и в растворе при [Zn]₀>50 %.

Действие перхлоратов хинолиния на анодное растворение никеля, цинка и сплавов в сульфатных растворах достаточно специфично. Оно зависит от $[Zn]_0$, E, кривой участка поляризационной И длины радикала R. Для анодно пассивирующихся никеля и сплавов при [Zn]₀<50% добавки ингибируют растворение при E<E_n, но, препятствуя хемосорбции кислорода, увеличивают i_{пи}. На сплавах при [Zn]₀≥60% они ускоряют растворение, причем эффект растет с потенциалом на Ni60Zn и Ni80Zn, но падает на Ni90Zn. На чистом цинке при Е<-0,9 В добавки являются ингибиторами, а при менее отрицательных Е – стимуляторами.

Закономерное изменение ингибирования И стимулирования ряду перхлоратов хинолиния с ростом длины углеводородного R в соответствии с принципом линейности свободных энергий создает предпосылку к использованию r=0,993-0,999 констант R; наилучшие результаты с дают π-константы гидрофобности: $\lg \gamma = \lg \gamma_0 + \rho \pi$ (7).

Таблица 4. Зависимость кинетических характеристик от [Zn]₀ и Е.

[Zn] ₀ ,	ΔE _{кор} ,	-E, B	i _{Nı} ,	i _{Zn,0} ,	$\tau_1 - \tau_{2_1}$	i _{e,1} ,	æ _æ ,	τ3 - τ4,	i _{e,2} ,	8° ₁₇ ,	τ5- τ6,	æ _{g,}	τς, C	і _{сд} ,
%	В		A/m ²	А/м ²	с	A/m ²	Ac ^{1/2} /m ²	c	А/м ²	$Ac^{1/2}/M^2$	с	Ac ^{1/2} /м		A/m ²
												2		
0	30	0,29	-	-	2-180	0,4/0,4	6,3/5,8	-	-	-	300-1200	3,2	1200	0,15
30	250	0,35	0,71	0,27	-	-	-	2-50	1,3/1,3	8,4/8,9	60-180	4,5	420	0,34
30	-	0,30	1,81	0,71	-	-	-	2-7	3,6/3,4	14,7/15,1	10-45	6,0	300	0,89
45	360	0,39	0,48	0,34	-	-	-	2-40	1,7/1,5	9,0/7,2	50-300	5,5	350	0,42
50	230	0,42	0,24	0,21	-	-	-	2-60	1,1/1,1	6,8/7,0	90-200	4,4	300	0,24
50	-	0.37	0,30	0,27	-	-	-	2-10	2,5/1,8	6,9/7,6	20-120	3,3	300	0,29
55	170	0,55	0	-	2-20	2,3/2,3	120/110	30-60	3,7/2,9	27/33	> 9 0	10	-	-
60	140	0,63	0	-	2-10	1,1/1,1	85/96	-	-	-	-	-	-	-
80	130	0.66	0	-	-	-	-	-	-	-	-	-	-	[-]
90	120	0,95	0	-	2-50	15,7/15,6	105/114	-	-	-	-	-	-	
100	10	0,97	-	-	2-40	15,2/13,1	94/106	-	-	-	50-120	46	420	3,2

Примечания к табл. 4 l. izn.o - парциальная скорость растворения цинка при неселективном растворении сплава.

- 2. т1-т2 интервал при смешанном контроле растворения и нестационарной жидкофазной диффузии.
- 3. т₃- т₄- то же при нестационарной твердофазной диффузии.
- т₅- т₆ интервал т при диффузионном контроле и нестационарном массопереносе в жидкой фазе для цинка и никеля и в твердой фазе для сплавов.
- 5. При смешанном контроле значения i_e и æ в числителе определяли по графикам i⁻¹_{Zn} -τ^{1/2} в соответствии с уравнением (6), а в знаменателе по прямым i_{Zn} -τ^{1/2} с использованием уравнений (2) (4).
- 6. Прочерк означает отсутствие определяемой величины или соответствующего участка ХАГ.
- 7. Для цинка и никеля i_{cr} равен соответственно 2,5 А/м² и 0,11 А/м², для сплавов $i_{cr} = i_{Za,0}$

где у-коэффициент торможения, γ_0 - стандартное значение у при $\pi=0$, $\rho-$ константа реакционного ряда, характеризующая чувствительность у к изменению π .

При ингибирующей адсорбции, которая имеет место при $E < E_{n,2}$ и [Zn]₀ $\leq 50\%$, а также на цинке при $E \leq -0,95$ В, у увеличивается по мере роста гидрофобности R, то есть эффекта высаливания, и $\rho > 0$. В остальных случаях у обычно меньше 1, а $\rho > 0$ при [Zn]₀ $\leq 50\%$, что указывает на конкуренцию ослабления пассивации и усиления ингибирующей адсорбции с ростом π или $\rho < 0$ в других случаях, по-видимому, за счет облегчения процесса с ростом π по механизму комплексообразования.

Оценку влияния солей хинолиния на стадии растворения проводили на примере наиболее эффективной добавки №1 по данным потенциостатических измерений при тех же Е, что и в чистых растворах (табл.5).

[Zn] _{0,} %	-Е, В	γ _{Ni} = γ _{Zn 0}	Ye,1	Ŷж	Υe,2	γτ	γд	Ŷсд
0	0,29	-	1,0/1,0	1,5/1,4	-	-	1.2	
30	0,35	3,0	-	-	3,2/3,2	2,1/2,4	3,1	2,9
30	0,30	6,4	-	-	2,8/3,1	5,3/3,6	3,4	3,9
45	0,39	3,4	-	-	8,5/7,5	2,2/2,1	1,7	2,5
50	0,42	3,0	-	-	2,8/3,6	3,1/2,8	3,4	2,3
50	0,37	1,4	•	-	1,2/1,1	1,2/1,4	1,0	1,3
55	0,55	-	2,6/2,9	-	2,5/2,3	2,2/2,4	1,7	-
90	0,95	-	0,5/0,5	0,4/0,4	-	-	-	-
100	0,97	-	3,6/3,3	7,5/10	-	-	1,7	2,1

Таблица 5. Зависимость у добавки №1 ют [Zn]₀ и Е.

За некоторым исключением добавка достаточно универсальна, то есть величины γ_{N_i} , γ_e и γ_{π} различаются несущественно. Коэффициент торможения анодного растворения γ , γ_e и γ_{π} связаны между собой:

 $\gamma = \gamma_{\pi} (1 + x_{e})/(1 + x) = \gamma_{e} (1 + 1/x_{e})/(1 + 1/x), \qquad (8)$

где $x = i_{a}/i_{e}$, $x_{\mu} = i_{a,\mu}/i_{e,\mu}$, $x_{\mu}/x = \gamma_{e}/\gamma_{a}$.

Поскольку перечисленные в табл. 5 γ не зависят от τ , величина ингибирующего действия γ на анодное растворение не должна меняться во времени. С учетом того, что при нестационарной диффузии степень контроля по этой стадии в условиях смешанной кинетики увеличивается, значения γ будут расти во времени, если $\gamma_a > \gamma_e$, и падать при $\gamma_a < \gamma_e$

Действие аниона на пассивацию и пассивное растворение никеля, а также сплава Ni50Zn рассмотрено на примере влияния иодида. Установлено, что при значительном сходстве анодного растворения никеля и его сплавов со среднем содержанием цинка и влияния KJ на процессы имеются существенные отличия, проявляющиеся в действии на первичную и вторичную пассивацию цинка, активное и пассивное растворение, а также на количественные показатели концентрационной зависимости эффекта KJ. Иодид калия существенно подавляет активное растворение сплавов и уже при C=1 ммоль/л делает сплав Ni50Zn значительно более устойчивым, чем никель в чистом растворе. Это объяснено с использованием модели, основанной на сопряжении пространственно разделенных процессов растворения металла и хемосорбции кислорода и анионов. Согласно этой модели, растворение гидрофильных металлов происходит на подвижных активных центрах (кинках) и сопровождается параллельным образованием хемосорбированных О_{алс} и J_{алс} на нерастворяющихся в этот момент участках поверхности и встречами кинков с их ловушками: О_{алс} и J_{алс}. При низких C_{KJ} вероятностью адсорбции J в кинках и их непосредственным участием в процессе можно пренебречь. Поскольку хемосорбция анионов протекает намного быстрее, чем кислорода, значения коэффициентов торможения γ с ростом C существенно возрастают.

За счет более высокой активности никеля в сплаве и соответственно повышенной концентрации кинков значения і и γ при растворении сплава в активной области больше, чем в случае чистого никеля. При повышенных С_{КЈ} стимулирование растворения анионами обусловлено количественным различием проявления единого эффекта сопряжения процессов и их способностью к образованию источников кинков и ступеней на неактивных участках. Кроме того, анионы J⁻, по-видимому, в этих условиях могут адсорбироваться в кинках и стимулировать растворение. В результате конкуренции эффектов ингибирования и стимулирования кривая lg γ_{N_1} – lg C имеет максимум, хотя $\gamma > 1$, а на цинке при C > 3·10⁻⁵ моль/л $\gamma < 1$ и изменяется антибатно с C. На сплаве это проявляется в уменьшении углового коэффициента прямых lg γ – lg C при C > 1 ммоль/л, когда исчезает первый пик на анодной кривой.

Повышение поверхностной концентрации J_{aac} идет за счет снижения адсорбции кислорода, что препятствует вторичной пассивации и увеличивает скорость растворения в пассивном состоянии. Поэтому при $E = 0,3 \text{ B} \gamma < 1 \text{ и}$ падают с ростом C, а у сплава меньше γ никеля.

При анодном растворении цинка и сплавов с $[Zn]_0 \ge 60 \%$ в ББ (поляризационные кривые приведены на рис.5) спектрофотометрический анализ раствора с диметилглиоксимом показал отсутствие Ni²⁺ в растворе при E < -0,5 В. Параллельное растворение никеля при E > -0,5 В практически не меняет i_{nn} сплавов. Хотя Ni90Zn раньше переходит в пассивное состояние и его i_n меньше, чем у цинка, i_{nn}, напротив, несколько больше. Это связывается с тем, что никель, накапливающийся на поверхности сплава при его селективном растворении в процессе снятия поляризационной кривой, препятствует формированию оксидно-гидроксидной пленки цинка. Катодные ХПГ, снятые после 10 – минутной выдержки при E = -0,5 В, только на цинковом электроде имеют задержку потенциала, которой отвечает количество электричества 162 Кл/м², что соответствует толщине пленки около 12 нм.

Анодные ХАГ Zn и Ni90Zn при E = -1,04 B (рис.6) имеют два участка. В интервале времени т от 30 с до 7 мин i, $\tau^{-1/2}$ - прямые экстраполируются в начало координат в соответствии с уравнением (1), что указывают на лимитирующую стадию нестационарной диффузии.

Рис. 5. Поляризационные кривые на Ni (1), Ni80Zn (2), Zn (3) и Ni90Zn (4) в ББ.

Рис. 6. Анодные ХАГ на Zn (2, 3), Ni90Zn (1, 4) и Ni80Zn (5) в ББ при E, B: -0,5 (1,2,5) и -1,04 (3, 4).

Аналогия зависимостей і от т и близкие значения і цинка и сплава позволяют полагать решающую роль диффузии в жидкой фазе. Это не отрицает твердофазного массопереноса в сплаве, который растворяется селективно и скорость процесса несколько меньше, чем у цинка. При $\tau < 30$ с кривая і - $\tau^{-1/2}$ указывает на диффузионно-кинетический режим растворения. Разделение скоростей последовательных стадий проводили на основании соотношения (5). Значение i_e=1,3 A/м² практически одинаково для цинка и сплава, а æ равны соответственно 3,3 и 2,8. При $\tau > 30$ с коэффициенты æ прямых i, $\tau^{-1/2}$ (рис. 6 а) меньше на 30% у цинка и на 26% у сплава. Это может быть обусловлено дополнительным снижением i на первом участке согласно модели сопряжения пространственно разделенных процессов растворения металла и хемосорбции кислорода тем более что процесс протекает близко к критическому потенциалу пассивации E_n.

Вид анодных ХАГ в пассивной области при E = -0,5 В зависит от материала электрода (рис. 6 а). На сплаве Ni80Zn, как и на некоторых металлах, получена $i,\tau^{-1/2}$ – прямая, экстраполирующаяся в 0, что указывает на однотипный процесс для всего интервала т. На цинке и сплаве Ni90Zn в этой

же системе координат ХАГ имеет два прямолинейных участка, причем только второй экстраполируется в начало координат. Это может быть обусловлено двухстадийной пассивацией. Возможно и другое объяснение. На первом участке при $\tau < 60$ с, как показали расчеты, выполненные на основании анодной ХПГ и последующей катодной ХАГ цинкового электрода, доля тока, идущего на растворение металла, выше средней и составляет почти 35%. Это приводит к тому, что к спаду і за счет пассивации добавляется снижение і нестационарной диффузии и і.т^{-1/2} - прямая экстраполируется в точку, лежащую на оси времени. В дальнейшем существенно увеличивается доля тока образования оксида и $i_{\tau}\tau^{-1/2}$ - прямая, как и в других случаях экстраполируется в 0. Учитывая аналогию графиков для Zn и Ni90Zn, сходное объяснение возможно и в случае сплава, хотя в этом случае по сравнению с меняется соотношение между количеством оксида цинком его пассивирующей способностью. На сплаве Ni80Zn, где пассивация происходит более эффективно и быстро нестационарная диффузия за пределами пленки подавлена и излом на $i.\tau^{-1/2}$ – прямой отсутствует.

Для выяснения природы нестационарных процессов в пассивном состоянии наряду с ХАГ использовали ЦВА (рис. 7). Согласно теории при обратимом процессе разность потенциалов анодного $E_{A\Pi}$ и катодного $E_{K\Pi}$ пиков не должна превышать 58/n мВ (n – число электронов в реакции), а зависимости соответствующих $i_{A\Pi}$ и $i_{K\Pi}$ от скорости развертки потенциала $V^{1/2}$ должны описываться прямыми, проходящими через 0. На цинке и сплаве Ni90Zn выполняется только второе условие, а разность $E_{A\Pi}$ и $E_{K\Pi}$ существенно превышает 29 мВ и растет со V.

Рис. 7. ЦВА Zn (а), Ni90Zn (б) и Ni80Zn (в) в ББ растворе Цифры у линий – скорость развертки потенциала V, мВ/с

Нужно учитывать специфику пика, отвечающего активно-пассивному переходу, когда $E_{A\Pi} = E_{\pi}$ и $i_{A\Pi} = i_{\pi}$, по сравнению с классическими пиками ЦВА. На сплаве Ni80Zn в соответствии с поляризационной кривой и ЦВА

отсутствует анодный пик, хотя зависимость inn от V описывается прямой i... = 0.22 V^{1/2} (А/м²). Эти данные иллюстрируют существенную роль массопереноса в пассивации и при пассивном растворении. С ростом V эта роль снижается, что приводит к увеличению E_g и i_g. На сплаве Ni90Zn по сравнению с цинком несколько преобладает рост і, и значительно снижено увеличение Е.,ЦВА позволяет выяснить, где более замедлен массоперенос: в оксиде или в сплаве. Поскольку $i_{A\Pi}$ (Ni90Zn) $\approx i_{A\Pi}$ (Zn) (Грушевская С.Н., Введенский А.В.), причем первая величина даже несколько выше и это свидетельствует в пользу более замедленной диффузии в оксиде. Соответственно $\Delta E_{A\Pi} \approx 0$ только при V = 0, а при V > 0 $\Delta E_{A\Pi} < 0$ и убывает с ростом V. Такая аномалия может быть обусловлена отмеченной выше разницей в толщине оксидной пленки на цинке и сплаве. На более быструю сплаве указывает акже данные многоциклической диффузию в вольтамперометрии, поскольку ЦВА при 5-кратном снятии практически не менялись.

Исходя из вышеизложенного, ингибиторы анодного растворения сплавов и цинка должны влиять на массоперенос. Исследованные добавки, не меняя E_{II} и потенциала полной пассивации E_{III}, тормозят растворение цинка и сплава Ni90Zn на всех участках поляризационной кривой.

Величины у существенно снижаются в пассивной области растворения по сравнению с активной, причем степень уменьшения у зависит от природы добавки. В рассматриваемых условиях кроме цинка при E = -0,5 B. сохраняется торможение процесса, но меняется на противоположную последовательность расположения добавок в ряду растущих у. Это объясняется следующим образом: чем лучше адсорбируется добавка, показателем чего является торможение растворения, тем в большей степени она препятствовует хемосорбции пассивирующего кислорода с последующем ростом оксидной пленки. С другой стороны, ингибиторы могут обеспечивать адсорбционное торможение процесса в пассивной области. Соли пиридиния, увеличивая перенапряжение восстановления оксида, уменьшают время задержки Е на катодных ХПГ тем в большей степени, чем выше у в активной области. При этом на цинке, образующем по сравнению со сплавом Ni90Zn более толстую пленку оксида, обращение указанного ряда добавок происходит при более отрицательном Е. Следует учитывать также обратную связь, а именно адсорбционное вытеснение ингибиторов кислородом и, следовательно, уменьшение их влияния на іпп, что в итоге сказывается на величинах у, которые оценивают суммарный эффект. Это же относится и к действию солей пиридиния на потенциостатическое растворение сплавов и цинка.

На цинке соли пиридиния на 20-35 % сокращают время задержки Е и на 10-25 % увеличивают заряд при снятии анодной ХАГ при E = -0,5 В. В результате этого доля тока, идущего на образование оксида сокращается с 85% в чистом растворе до 62% и 41% в присутствии добавок №1 и №7 соответственно. Это приводит к тому, что при $\tau < 40$ с, когда преобладает адсорбционное торможение процесса, соли пиридиния являются ингибиторами, а в дальнейшем увеличивают i, по-видимому, за счет

ę

замедления образования пассивной пленки. Ускорение процесса добавками при E = -0,5 В установлено и по данным поляризационных измерений.

В отличие от цинка на сплаве Ni90Zn значения γ , хотя и уменьшаются во времени, но остаются больше 1, а при $\tau > 60$ с $\gamma \neq f(\tau)$. На сплаве Ni80Zn как в чистом растворе, так и с добавками $\gamma \neq f(\tau)$ для всего исследованного интервала τ .

ү, ү_д и ү_е в ряду исследованных добавок Закономерное изменение независимо от их роста или снижения создало предпосылку к использованию корреляционного анализа и принципа линейности свободных энергий. Корреляцию использованием некоторых проводили с характеристик электронных спектров поглощения растворов ингибиторов: длины волны λ наиболее длинноволновой полосы ультрафиолетовой части, характеризующую энергию возбуждения п - электронов; силы осциллятора f, оценивающей вероятность электронного перехода и произведение дипольной силы перехода D_п на степень возможного вырождения верхнего и нижнего состояний G: $GD_{\Pi} = 0.124 \cdot 10^{-10} \text{ f} \lambda (\text{моль}^{-1} \text{ m}^{-1})$ (9)

Величины λ по сравнению с γ оказались существенно менее чувствительными к природе заместителя в органическом катионе, поэтому для корреляции использовали комплексную характеристику GD_П, оценивающую поляризацию электронного перехода. Соответствующее соотношение имеет вид:

$$\lg \gamma = \lg \gamma_{0,x} + \rho_x X, \tag{10}$$

где $\gamma_{0,x}$ и ρ_x – константы реакционного ряда; X= λ , f или GDп.

Применимость корреляционного соотношения (7) в качестве примера иллюстрируют данные рис. 8, а в табл. 6 приведены значения констант реакционных рядов и г на примере цинка.

Таблица 6. Константы реакционной серии перхлоратов замещенного пиридиния и коэффициенты корреляции *r*.

- <i>E</i> , B	Yor	Yos	Yo,GD	$\rho_{\lambda} \cdot 10^2$	p/10 ⁻²	ρ _{GD} ·10 ⁻²⁰	れ	rj	r _{GD}
1.06	1.8	16	1.6	06	5.4	1.8	0.726	0.985	0 989
1 02	1.6	15	1.5	0.6	5.1	1.8	0.768	0.983	0 993
0 96	1.7	1.6	1.6	0.4	3.4	1.2	0.789	0.967	0.984
0.90	1.5	1.5	1.5	-0.2	-2.1	-0.7	0.554	0.899	0.876
0.60	1.4	0.7	1.5	-0.2	-1.5	-0.5	0.797	0.884	0.917
0.20	0.9	0.9	0.9	-0.5	-4.5	-1.6	0.744	0.940	0.926
0 00	0.7	0.8	0.8	-0.8	-6.9	-2 4	0.726	0.934	0.945

В согласии с отмеченным выше изменением величины у при переходе от активного к пассивному растворению цинка изменяется на противоположный и знак констант р. При этом же переходе отмечается снижение значений r, что может быть вызвано действием неучтенных корреляцией факторов. Так добавки начала ряда (№№ 1-3) как метилзамещенные могут легче попадать в формирующуюся оксидную пленку сравнению по С остальными фенилзамещенными. Указанному переходу примерно соответствует изменение знака заряда поверхности ($E_{q=0}^{2\pi} = -0,82$ В) с отрицательного на положительный, что способствует π – электронному взаимодействию и может менять поверхностную ориентацию частиц.

1

Рис. 8. Зависимость 1g γ от GD_{Π} для цинка в ББ. Цифры у линий – E (B), цифры у точек – номера добавок. $C_{\text{доб.}}$ =10⁻⁴ моль π^{-1} .

Действие добавок существенно зависит от концентрации, что показано на примере соединения №2, КСЮ4 и их смеси. При более отрицательных Е добавка №2 действует как адсорбционный ингибитор, для которого получены характерные прямые $lg\gamma - lgC$, угловые коэффициенты которых изменяются симбатно с γ . КСЮ4 ведет себя аналогично до С =0,5ммоль n^{-1} , после чего γ снижается. Возможно, это связано с тем, что для анионов характерны *U*-образные зависимости скорости растворения металла от С. По достижении $E \approx -0.7$ В наблюдается анодно-анионная активация, которая особенно четко проявляется при С> 3 ммоль n^{-1} . После существенного роста значений *i* в интервале *E* от -0,35 В до -0,50 В устанавливается практически предельный анодный ток.

Сопоставление γ смесей и КСЮ₄ в зависимости от С_{КСЮ4} показало, что изменение γ смеси обусловлено преимущественным действием КСЮ₄. Определенную роль, кроме К⁺, здесь играет и СЮ₄⁻. Опыты, проведенные с LiClO₄ показали, что его значения γ в активной области равны 1, а при пассивации практически не отличаются от полученных в присутствии КСЮ₄. Таким образом при пассивации существенную роль играют СЮ₄⁻-ионы, а в торможении активного растворения – ионы К⁺. Поэтому действие смеси в первом приближении можно рассматривать с позиций совместной адсорбции катионов калия и пиридиния. Их взаимовлияние оценивали коэффициентом взаимовлияния компонентов смеси:

$$\delta = \gamma_{N \ge 2 + K \subset O_4} (\gamma_{N \ge 2} \cdot \gamma_{K \subset O_4})^{-1}, \qquad (11)$$

где нижние индексы означают использованные добавки. Если $\delta > 1$ при $\gamma > 1$, имеет место взаимоусиление эффектов ингибиторов. В рассматриваемых условиях, хотя добавки принадлежат к разным типам соединений, они конкурируют и взаимно ослабляют действие друг друга, так как $\delta < 1$. Наименьшие значения δ отвечают смеси, где $C_{Ne2} = C_{KClO_4} = 5^{\circ}10^{-4}$ моль 'л⁻¹. На эту же C_{KClO_4} приходятся экстремальные величины γ перхлората калия и смеси, причем в согласии с отмеченной выше конкуренцией адсорбции ПАВ и пассивации зависимости γ смеси от ее состава имеют противоположный вид в активной области и при пассивации Этот переход сопровождается ослаблением конкурентного действия добавок.

¥

В ряду однотипных веществ эффективность ингибиторов определяется свойствами заместителей и, следовательно, меняя состав и структуру заместителей, можно существенно изменить эффективность ингибитора. С этой точки зрения интересны соединения замещенных бензальдегидов, их влияние на анодное растворение и пассивацию металлов и сплавов. Значения γ связаны с изменением гидрофобности, которая оцененивается π -константами Ханша. В сумму π -констант не включены значения общих для всех добавок фрагментов: -СНО и $-C_6H_5$. По этой характеристике альдегиды можно разделить на три группы:

1. α -Бромкоричный альдегид, содержащий наиболее гидрофобный фрагент ($\Sigma \pi = 1.72$)¹ и соответственно имеющий наименьшую растворимость (около 10⁻⁴ моль/л), является ингибитором.

2. Ванилин ($\Sigma \pi = 0,54$), вератровый альдегид ($\Sigma \pi = -0,04$) и бензальдегид ($\pi = 0$) со средней растворимостью (около 1 ммоль/л) в пределах погрешности эксперимента (± 5%) не меняют анодную кривую.

3. Салициловый альдегид (СА), содержащий гидрофильный фрагмент (π = -0,52) и обладающий наиболее высокой растворимостью (около 10⁻² моль/л) преимущественно стимулирует растворение.

Такую зависимость можно связать с эффектами высаливания и всаливания, за счет которых неспецифическая адсорбция гидрофобных веществ в водных растворах при прочих равных условиях превышает адсорбцию гидрофильных. По Я.М. Колотыркину, при ингибирующей адсорбции добавка настолько прочно связана с металлом, что практически полностью теряет связь с раствором. К этой группе относится хемосорбирующийся гидрофобный БКА. При стимулировании частица, входящая в поверхностный комплекс, сохраняет прочную связь с раствором, то есть гидрофильна (СА). В условиях конкуренции соизмеримых эффектов хемосорбции и гидратации действие на процесс растворения минимально. Это относится к остальным добавкам. Для корреляции значений у с π-константами необходимо использовать эквимолярные растворы альдегидов. Это невозможно, так как БКА имеет ограниченную растворимость, а СА в концентрации С = 10⁻⁴ моль/л теряет активирующую способность. Для

остальных добавок в исследованном интервале С значения γ близки к 1. Поэтому в дальнейшем рассматриваются данные при существенном различии С салицилового и α -бромкоричного альдегидов. Характер их действия не зависит или мало зависит от С, а значения γ закономерно меняются с С. Концентрационная зависимость γ в большинстве случаев дает прямую в логарифмических координатах в соответствии с уравнением (12):

$$\gamma = \gamma_0 (C/C_0)^{\varepsilon}$$
,

(12)

где γ_0 и ε – константы, С₀- стандартная С.

ŧ

1

1

Из уравнения (12) следует условие $\gamma C^{-\epsilon} = \gamma_0 C_0^{-\epsilon} \neq f(C)$. Следовательно, критерием применимости уравнения (12) являются горизонтальные прямые γC^{ϵ} -С. Как и ожидалось, константы є для этих добавок имеют противоположенные знаки, но, как и γ_0 , уменьшаются при переходе из активной области в пассивную. Уравнение (12) описывает также концентрационную зависимость $\gamma i_{n,2}$, которая является менее строгой по сравнению с $\gamma i_{n,1}$, поскольку добавки, хотя и незначительно, меняют $\gamma i_{n,2}$.

Для выяснения степени стационарности растворения и природы нестационарных процессов использовали анодные ХАГ и ЦВА. Добавки не меняют вида кривых. Двухпиковая зависимость на поляризационных кривых переходит в однопиковую на ЦВА. Аналогичное явление описано выше на никеле и сплаве NiZn. Зависимости i_{xn} и i_{an} от $V^{1/2}$ указывают на существенную роль массопереноса в кинетике пассивации и пассивного растворения. С ростом V пассивация затрудняется, о чем свидетельствует увеличение E_n , E_{nn} , i_n и i_{nn} .

Сульфат натрия, как и БКА, снижает i_n , i_{nn} , E_n и E_{nn} . Однако в отличие от альдегидов, действие которых при $E > E_{nn}$ мало зависит от E, сульфат натрия вызывает локальную депассивацию.

Исследованы смеси в условиях растущей С одного компонента и уменьшающейся С другого. Действие бинарной смеси определяли δ (табл. 7).

<i>C</i> ₁ , ммоль/л	0,033	0,050	0,067
C_{2} , ммоль/л	6,7	5	3,3
C_1/C_2	1:200	1:100	1:50
1	2	3	4
$l_{n,1}, A/M^2$	0,71	0,57	0,44
$-E_{\min}$, B	1,08	1,04	1,06
$i_{\rm min}$, A/m ²	0,69	0,37	0,26
- <i>E</i> _{n,2} , B	1,00	1,00	0,98
$i_{n,2}, A/m^2$	0,85	0,44	0,35
$-E_{\rm rm}$, B	0,88	0,86	0,82
$i_{\rm nm}, {\rm A/m}^2 (E = -0.8 {\rm B})$	0,39	0,21	0,16
$\gamma_{t} (E = -1, 12 \text{ B})$	1,46	1,67	1,78
γi _{n,1}	0,89	1,10	1,43
γi _{mun}	0,41	0,76	1,08

Таблица 7. Влияние состава смеси α-бромкоричного (1) и салицилового (2) альдегидов на растворение цинка и взаимовлияние добавок

γ <i>i</i> _{π.2}	0,34	0,66	0,81
γi _{nn}	0,46	0,84	1,12
$\delta_i (E = -1, 12 \text{ B})$	0,83	0,64	0,58
$\delta i_{n,1}$	0,84	0,64	0,52
δi _{mun}	0,58	0,71	0,54
δι _{n,2}	0,78	0,95	0,69
διm	1,09	1,17	0,87

В активной области (E = -1,12 В) наблюдается взаимоослабление ингибирования, увеличивающееся с ростом γ_1 и γ_2 , причем $\gamma_1 > \gamma_{1+2} > \gamma_2$. При $E_{n\,1}$ значения $\delta i_{n,1}$ и γ_1 по сравнению с активным растворением почти не меняются, но γ_2 и γ_{1+2} снижаются, причем в некоторых случаях до стимулирования. Поэтому взаимоослабление ингибирования наблюдается только для смеси 1:50. В остальных случаях наблюдается либо ослабление ингибирующей адсорбции, либо усиление стимулирующей, но всегда $\gamma_1 > \gamma_{1+2} > \gamma_2$.

Влияние на процесс и взаимное влияние добавок 1 и 2 оценено также путем сопоставления характеристических Е. В этом случае вместо δ целесообразно использовать $\Delta\Delta E$ с учетом знаков ΔE :

 $\Delta\Delta E \approx \Delta E_{1+2} - (\Delta E_1 + \Delta E_2)$

где $\Delta E_1 = E_1 - E$, $\Delta E_2 = E_2 - E$, $\Delta E_{1+2} = E_{1+2} - E$, E – потенциал в чистом растворе, остальные в присутствии индивидуальных добавок или их смеси. При этом возможны следующие варианты:

(13)

1. $\Delta E_1 < 0$, $\Delta E_2 < 0$ и $\Delta \Delta E < 0$ происходит взаимоусиление облегчения пассивации,

2. $\Delta E_1 > 0$, $\Delta E_2 > 0$ и $\Delta \Delta E > 0$ – взаимоусиление затруднения процесса,

3. $\Delta E_1 < 0$, $\Delta E_2 > 0$ и $\Delta \Delta E < 0$ преобладает рост облегчения или снижение затруднения

4. $\Delta E_1 < 0$, $\Delta E_2 > 0$ и $\Delta \Delta E > 0$ преобладает рост затруднения или снижение облегчения.

За небольшим исключением альдегиды и их смеси не влияют на $E_{n,1}$, облегчают активацию после первичной пассивации (ΔE_{min} <0), вторичную пассивацию ($\Delta E_{n,2}$ <0) и полную пассивацию (ΔE_{nn} <0). Как правило, эффекты добавок и смеси невелики и соизмеримы, поэтому имеет место их взаимонезависимость или взаимоослабление ($\Delta \Delta E$ >0 или реже $\Delta \Delta E$ =0) (табл. 8). Аналогичным образом рассмотрена комбинация добавок БКА и сульфата натрия. Для смеси БКА и Na₂SO₄ последовательность у при всех Е имеет вид: $\gamma_{1+2} > \gamma_1 > \gamma_2$.

α -Бромкоричный альдегид (ΔE_1)										
C_I , моль/л	С ₁ , моль/л 0,033 0,050 0,067 0,100									
$-\Delta E_{min}$	30	40	40	60						
$-\Delta E_{n,2}$	0	0	20	20						
$-\Delta E_{m}$	0	0	20	60						

Таблица 8. Зависимость ΔE и $\Delta \Delta E$ (мВ) альдегидов и их смеси от С.

Салициловый альдегид (ΔE_2)								
<i>C</i> ₂ , моль/л	3,3	5,0		6,7	10			
$-\Delta E_{min}$	40	30		20	40			
$-\Delta E_{n,2}$	20	20		20	40			
$-\Delta E_{m}$	40	40		40	40			
Смесь альдегидов (ΔE_{1+2} и $\Delta \Delta E_{1+2}$)								
C_1/C_2	1:200		1:100		1:50			
$-\Delta E_{min}$	60		20		40			
$-\Delta E_{n,2}$	20		20		0			
$-\Delta E_{\rm m}$	-40		-20		20			
$\Delta \Delta E_{min}$	10		50		20			
$\Delta \Delta E_{n,2}$	0		0		40			
$\Delta\Delta E_{nn}$	20			20				

Сульфат натрия по сравнению с СА существенно в большей степени разблагораживает Е_{пп}, а его смесь с БКА чаще облагораживает Е_{пп}. Поэтому $\Delta\Delta E_{nn}$ достаточно велики, указывая на преобладание роста затруднения полной пассивации. Провести аналогичный анализ для E_{по} невозможно, так как в чистом растворе и с добавкой БКА нет локальной депассивации. Сопоставление Е_{по} показывает, что введение БКА в раствор, содержащий Na_2SO_4 , увеличивает E_{no} на 10-30 мВ. Кроме того, из сравнения величин у при E=0,3 В следует, что при C_{Na2SO4} < 0,2 ммоль/л БКА при C > 0,05 ммоль/л питтинговое растворение в 1,2 – 2,2 раза. Органические и тормозит неорганические добавки, не меняя зоны лимитирующей диффузии, меняют основные характеристики ЦВА. Эффект добавок оценивали у или $\Delta E = E - E_n$ = $\Delta E_0 - \Delta \beta V^{1/2}$. БКА и сульфат натрия в исследованных С обладают соизмеримым эффектом. Они тормозят катодный процесс, в большей степени снижают i_{n} , чем i_{nn} , но увеличивают E_n и E_{nn} за счет адсорбционного действия, замедляя формирование пассивного состояния.

Основные результаты и выводы

- В сульфатном растворе активное растворение никеля, цинка и их сплавов в начальное время протекает с диффузионно-кинетическим контролем для сплавов с [Zn]₀ ≥55% при нестационарной жидкофазной диффузии, а для [Zn]₀≤ 55% при твердофазной диффузии, причем во втором случае, процесс во времени переходит в диффузионный режим и при совместном растворении компонентов становится стационарным, а в первом, процесс со временем ускоряется, за счет развития поверхности и фазовых перегруппировок.
- 2. В боратном буферном растворе сплав Ni80Zn, как и никель, пассивен при потенциале свободной коррозии, а сплав Ni90Zn, как и цинк, анодно пассивируется. В активной области растворение в начальные моменты времени протекает в диффузионно-кинетическим режиме, который сменяется диффузионным. В пассивном состоянии процесс лимитируется массопереносом в оксиде.

0.000

ł

- 3. Двухпиковая зависимость і от Е в сульфатном растворе в области активнопассивного перехода чувствительна к [Zn]₀, режиму подготовки электрода и снятия поляризационных кривых и меняется во времени, что объясняется в рамках модели активирования и стравливания субмикроскопических ступеней и выступов на поверхности электрода.
- 4. При переходе от никеля к сплавам в сульфатном растворе облегчение пассивации по сравнению с никелем наиболее существенно на сплавах с содержанием цинка 45-50%. При снятии анодных кривых со скоростью более 50 мВ/с за счет перехода двухпиковой зависимости в однопиковую критический потенциал пассивации при [Zn]₀ = 50% дополнительно уменьшается на 160 мВ.
- 5. При количественной оценке влияния природы алкильного заместителя в катионе хинолиния на его эффективность при растворении никеля, цинка так и их сплавов в сульфатной среде целесообразно использовать π-константы гидрофобности. Если [Zn]₀≤ 50%, защитное действие добавок в активной области растет с гидрофобностью, а в пассивной области в этом направлении снижается стимулирование процесса. При [Zn]₀≥60% добавки являются стимуляторами и их эффект обычно растет при увеличении π. Перхлораты замещенного хинолиния при [Zn]₀< 50% в соизмеримой степени тормозит активное растворение обоих компонентов сплава, а также стадии стационарной, нестационарной диффузии и ионизации. Поэтому его защитное действие в условиях изменения природы замедленной стадии не зависит от времени.</p>
- 6. В сульфатном растворе во влиянии КЈ на анодное растворение никеля и его сплавов со средним содержанием цинка имеются существенные отличия, проявляющиеся в действии на первичную и вторичную пассивацию, активное и пассивное растворение, а также на количественные показатели концентрационной зависимости эффекта КЈ. Иодид калия существенно подавляет активное растворение сплавов и уже при С = 1 ммоль/л делает сплав Ni45Zn значительно более устойчивым, чем никель в чистом сульфатном растворе.
- 7. В ББ перхлораты замещенного пиридиния тормозят анодное растворение цинка и его сплавов до потенциала питтингообразования, а после него инициируют. Целесообразна корреляция их эффектов с характеристиками ультрафиолетовой длинноволновой полосы поглощения части электронного спектра растворов добавок. Последовательность солей пиридиния по растущему ингибиторному действию изменяется на противоположную при переходе цинка из активного в пассивное состояние, что связывается с конкуренцией процессов хемосорбции добавок и пассивации кислородом. Соответственно в корреляционном соотношении для реакционного ряда изменяется знак коэффициента, характеризующего чувствительность защитного эффекта к спектральным характеристикам растворов добавок. Перхлораты пиридиния – достаточно универсальные ингибиторы, примерно в равной степени тормозящие

стадии ионизации и диффузии. Их защитное действие мало зависит от времени, в течение которого изменяется соотношение между скоростями последовательных стадий активного растворения.

- 8. Смеси перхлоратов калия и замещенного пиридиния по сравнению с чистыми компонентами дают более низкие значения коэффициента торможения при активном растворении цинка и более высокие при пассивации и в пассивном состоянии. Независимо от характера процесса смеси характеризуются взаимоослаблением эффектов входящих в нее соединений, наибольшим для состава 1:1.
- 9. По данным циклической хроновольтамперометрии ингибирующее и стимулирующее действие альдегидов на пассивацию и пассивное растворение цинка не зависит от скорости поляризации и связано с изменением скорости диффузионной стадии. Сульфат натрия является слабым ингибитором активного и пассивного растворения цинка, но вызывает локальную депассивацию, которая частично подавляется αбромкоричным альдегидом. Добавки преимущественно тормозят стадию переноса заряда. α-Бромкоричный альдегид является ингибитором нестационарной диффузии, салициловый альдегид ускоряет ее, а сульфат натрия не влияет. При переходе к стационарному растворению эффекты ингибирования и стимулирования возрастают. У комбинированной добавки, состоящей из двух альдегидов, один из которых является ингибитором, а второй преимущественно стимулятором, эффект занимает промежуточное положение между эффектами индивидуальных веществ и обычно имеет место ослабление ингибирующей адсорбции или усиление стимулирующей. Действие смеси хуже ожидаемого, исходя из принципа независимости эффектов добавок. Коэффициент торможения растет в сульфат натрия< α-бромкоричный альдегид< ряду: смесь αи сульфата натрия. Взаимоослабление бромкоричного альдегида эффектов меньше, чем у смеси 2-х альдегидов И возможно взаимоусиление.
- 10. Переход цинка и его сплава с никелем в пассивное состояние в ББ существенно замедляется при увеличении скорости поляризации электрода, которая не влияет на действие ингибиторов и стимуляторов процесса. Введение гидрофобных фрагментов в молекулу ароматического альдегида способствует торможению растворения, а гидрофильных стимулированию.

Основное содержание диссертации отражено в следующих работах:

1. Экилик В.В., Бережная А.Г., Туголукова Е.А. Анодное растворение сплава Ni50Zn в присутствии смесей органических добавок с хлоридом натрия. Журнал прикладной химии. 2002. Т. 75. Вып. 10. С. 1655-1658.

2. Экилик В.В., Бережная А.Г., Туголукова Е.А., Скворцова И.Ю. Анодное поведение Ni и сплавов системы Ni-Zn в сульфатном растворе с

ţ

добавкой КЈ. Конденсированные среды и межфазные границы. 2003. Т 5. №1. С.66-71.

3. Экилик В.В., Бережная А.Г., Туголукова Е.А. Влияние некоторых органических и неорганических солей на растворение Zn. Журнал прикладной химии. 2003. Т 76. Вып. 11. С. 1802-1808.

4. Экилик В.В., Бережная А.Г., Туголукова Е.А. Растворение сплавов системы NiZn в сульфатном растворе. Защита металлов. 2005. Т 41. №4. С.2С8-2/4.

ş

5. Экилик В.В., Бережная А.Г., Туголукова Е.А. Действие производных перхлората пиридиния на NiZn аноды в боратном буфере. Защита металлов. 2004. Т 40. №2. С. 149-155.

6. Экилик В.В., Бережная А.Г., Туголукова Е.А. Ингибирование анодного растворения никеля в сульфатном растворе производными перхлората хинолиния. Коррозия: материалы, защита. 2004. №1. С. 16-22.

7. Экилик В.В., Бережная А.Г., Туголукова Е.А. Оценка действия добавок на поведение цинка и сплавов NiZn в боратном буферном растворе по данным ЦВА. Коррозия: материалы, защита. 2004. №5. С. 32-35.

8. Экилик В.В., Бережная А.Г., Туголукова Е.А. Ароматические альдегиды, сульфат натрия и их смеси как регуляторы анодного растворения Zn в растворе боратного буфера. Известие вузов. Северо-Кавказский регион. Tex. науки. 2004. Спецвыпуск. С.21-28.

9. Туголукова Е.А. Влияние состава сплава на анодное растворение сплавов NiZn в перхлоратных средах. Тез. докл. науч. конф. аспирантов и соискателей. Ростов н/Дону: Изд-во РГУ, 2000. С. 13.

10. Туголукова Е.А., Экилик В.В., Бережная А.Г. Влияние некоторых добавок на электрохимическое поведение сплава NiZn. Тез. докл. 3-й Междунар. школы-семинара "Современные методы исследования и предупреждения коррозионных разрушений". Ижевск, 2001. С. 60-62.

11. Экилик В.В., Туголукова Е.А., Бережная А.Г. Анодное поведение Ni и сплавов системы Ni–Zn в сульфатном растворе с добавкой KJ. Материалы I Всероссийской конф. "Физ-хим. процессы в конденсированном состоянии и на межфазных границах "ФАГРАН-2002". Воронеж, 2002. С. 165.

12. Экилик В.В., Бережная А.Г., Туголукова Е.А. Влияние некоторых перхлоратов бензопиридиния на анодное растворение Ni, Zn и их сплавов в сульфатной среде Материалы докл. Х Межрегионалбной науч.-техн. конф. "Проблемы химии и хим. технологии". Тамбов, 2003. С. 148-151.

13. Туголукова Е.А. Поведение сплавов NiZn в сульфатном растворе. Материалы юбилейной Междунар. научно-практич. конф. "Строительство-2004". Ростов н/Дону: РГСУ, 2004 г. С. 137-138.

Печать цифровая. Бумага офсетная. Гарнитура «Таймс». Формат 60х84/16. Объем 1,0 уч.-изд.-л. Заказ № 612. Тираж 100 экз. Отпечатано в КМЦ «КОПИЦЕНТР» З44006, г. Ростов-на-Дону, ул. Суворова, 19, тел. 247-34-88

f

Į

5

ŧ

ŧ

.

#17488

;,

7

РНБ Русский фонд

<u>2006-4</u> 16722

-