Федеральное государственное бюджетное учреждение науки Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук

На правах рукописи

Злотников Илья Константинович

Идеалы алгебры ограниченных аналитических функций: интерполяция и уравнение Безу

01.01.01 — Вещественный, комплексный и функциональный анализ

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в лаборатории математического анализа ФГБУН Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук
Научный руководитель:
КИСЛЯКОВ Сергей Витальевич, доктор физико-математических наук, академик РАН,

Официальные оппоненты:

Ведущая организация:

ШАМОЯН Файзо Агитович,

им. В. А. Стеклова Российской академии наук.

доктор физико—математических наук, профессор кафедры математического анализа $\Phi\Gamma$ БОУ Саратовский национальный исследовательский государственный университет им. Н. Г. Чернышевского,

директор ФГБУН Санкт-Петербургское отделение Математического института

КОМЛОВ Александр Владимирович, кандидат физико-математических наук, старший научный сотрудник ФГБУН Математический институт им. В. А. Стеклова РАН.

ФГАОУ ВО Южный федеральный университет, г. Ростов-на-Дону, Россия
Защита состоится в часов на заседании диссертационного совета Д 002.202.01 при ФГБУН Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук: 191023, Санкт-Петербург, наб. р. Фонтанки, д. 27, к. 311.
С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук, http://pdmi.ras
Автореферат разослан 2019 г.

Учёный секретарь диссертационного совета, доктор физикоматематических наук

А. Ю. Зайцев

Общая характеристика работы

Цели и задачи диссертационной работы

Данная диссертация посвящена решению некоторых задач гармонического и комплексного анализа. В работе изучаются свойства идеалов алгебры ограниченных аналитических функций.

В первой части диссертации исследуются вопросы вещественной интерполяции пространств, образованных в результате пересечения идеалов, а в более общей ситуации — модулей над замкнутыми в w^* -топологии подалгебрами алгебры $L^\infty(\mu)$. В качестве примера пространств, для которых методы этой работы дают интерполяционные результаты (частично новые, частично известные) можно привести пространства, коинвариантные относительно действия оператора сдвига, и пространства Харди на двумерном торе. В процессе исследования изучаются возможности применения модификаций двух методов, ставших стандартными в теории вещественной интерполяции. Эти методы — разложение Кальдерона—Зигмунда и аналитические срезающие функции. Также в первой части работы изучается вещественная интерполяция $\sec \cos \omega x$ пространств, коинвариантных относительно оператора сдвига.

Вторая часть диссертации посвящена решению задачи об идеалах (или уравнения Безу) для ограниченных аналитических функций, принимающих значения в банаховой решётке последовательностей, удовлетворяющей некоторым дополнительным ограничениям. Примером такой решётки может служить пространство l^p при $p \in [1, \infty)$.

Актуальность работы

При изучении вопросов вещественной интерполяции различных пространств оказалось очень удобным понятие K-замкнутости.

Подпару (F_0, F_1) пары (X_0, X_1) совместимых квазибанаховых пространств называют Kзамкнутой, если существует такая универсальная постоянная C, что для всякого элемента f, лежащего в пространстве $F_0 + F_1$, и представления $f = x_0 + x_1$, где $x_i \in X_i$, найдётся такое представление $f = f_0 + f_1$, где $f_i \in F_i$, что выполняются оценки $\|f_i\|_{F_i} \leq C \|x_i\|_{X_i}$.

Стоит отметить, что информация о K-замкнутости подпары подпространств помогает распространить на них интерполяционные утверждения, если такие утверждения известны для исходной пары пространств. Например, для K-замкнутых пар можно легко вычислить вещественные интерполяционные пространства (громоздкое определение см., например, в [8]) по формуле

$$(F_0, F_1)_{\alpha,r} = (F_0 + F_1) \cap (X_0, X_1)_{\alpha,r}.$$

Вопросы интерполяции давно исследовались для различных функциональных пространств. В этой связи следует особо выделить классы Харди (которые в дальнейшем обозначены через H^p), интерполяционные свойства которых исследовали такие математики, как П. Джонс, Ж. Пизье, Ж. Бургейн, С.В. Кисляков, Ч. Фефферман, К. Шу и другие, см. [18], [6], [12], [28], [9]. Для пространств Харди на единичной окружности $\mathbb T$ справедлива следующая теорема.

Теорема 1. Пара $(H^p(\mathbb{T}), H^q(\mathbb{T}))$ K-замкнута в паре $(L^p(\mathbb{T}), L^q(\mathbb{T}))$ при $1 \leq p < q \leq \infty$.

Следует отметить, что для показателей $1 < p, q < \infty$ утверждение теоремы очевидно в виду ограниченности проектора $\mathbb{P}: L^r \to H^r$ для $1 < r < \infty$. Таким образом, теорема 1

нетривиальна, когда либо p=1, либо $q=\infty$. Существуют по крайней мере три различных подхода к доказательству этой теоремы, каждый из которых применим при некоторых ограничениях на значения параметров p и q. Первый подход принадлежит Ж. Бургейну и основан на применении разложения Кальдерона—Зигмунда. В основе подхода С.В. Кислякова лежит построение подходящей аналитической срезающей функции. Метод Ж. Пизье существенно использует алгебраическую структуру пространств Харди (следует отметить, что этот метод позволяет установить K-замкнутость пространств Харди на единичной окружности для показателей, меньших 1, однако эта тема лежит несколько в стороне от вопросов, изучаемых в этой диссертации). Все эти способы доказательства теоремы 1 подробно изложены в обзоре [18]. В этой диссертации методы С.В. Кислякова и Ж. Бургейна удаётся применить для получения интерполяционных теорем для пространств, имеющих более сложную (с точки зрения теории интерполяции) структуру.

Задача становится сложнее с повышением размерности. Как обычно, пространство $H^p(\mathbb{T}^2)$ определяется как замыкание линейной оболочки мономов $z_1^k z_2^m$, где k и m — неотрицательные целые числа. При $p=\infty$ замыкание берётся в слабой топологии. С.В. Кисляков и К.Шу в работе [6] доказали следующую теорему о K-замкнутости пары пространств Харди на двумерном торе \mathbb{T}^2 .

Теорема 2. Пусть p>1. Тогда пара пространств $(H^p(\mathbb{T}^2),H^\infty(\mathbb{T}^2))$ K-замкнута в паре пространств $(H^p(\mathbb{T}^2),H^\infty(\mathbb{T}^2))$.

Ранее в статье [28] К. Шу показал, что пара $(H^1(\mathbb{T}^2), H^p(\mathbb{T}^2))$ K-замкнута в паре $(L^1(\mathbb{T}^2), L^p(\mathbb{T}^2))$ для $1 . Более того, последнее утверждение остаётся справедливым и для пространств Харди на <math>\mathbb{T}^n$ с $3 \le n < \infty$. Однако, на сегодняшний момент неизвестно, справедлив ли аналог теоремы 2 для пространств Харди на n-мерном торе с $n \ge 3$. Эти и другие интерполяционные результаты для различных пространств применяются при решении широкого класса задач гармонического, комплексного и функционального анализа.

Результаты первой части диссертации продолжают предыдущие исследования в этой области. В работе рассматриваются пространства, образованные в результате пересечений двух модулей (или модуля и пространства, при дополнительных ограничениях) над некоторыми подалгебрами алгебры L^{∞} . Точная формулировка основной теоремы первой части диссертации достаточно громоздка, поэтому в этом разделе для обсуждения актуальности мы ограничимся её общей схемой и некоторыми интересными частными случаями.

Пусть (X,μ) — пространство с конечной мерой, C — подпространство в $L^{\infty}(X,\mu)$, B — подалгебра алгебры $L^{\infty}(X,\mu)$. Пусть D — модуль над алгеброй B, который, в свою очередь, тоже вложен в пространство $L^{\infty}(X,\mu)$. Пусть ещё p>1, а q — сопряжённый с p показатель. Пара $(\operatorname{clos}_{L^p}(C\cap D),C\cap D)$ К-замкнута в паре $(L^p(X,\mu),L^{\infty}(X,\mu))$, если A,B,C,D удовлетворяют некоторым дополнительным условиям. Эти требования к алгебрам и модулям (иногда к подпространствам) можно проверить для некоторых интересных примеров. Например, если положить $B=H^{\infty}(\mathbb{T}^2)$, а в качестве C и D взять подпространства $L^{\infty}(\mathbb{T}^2)$, состоящие из функций аналитических по первой и второй переменной соответственно, то получается, что из основной теоремы первой части этой работы следует теорема 2.

Вторым интересным (и новым) примером служат пространства, коинвариантные относительно сдвига (другое название: модельные пространства).

Пусть θ — внутренняя функция на \mathbb{T} , то есть $\theta \in H^{\infty}(\mathbb{T})$ и $|\theta(z)|=1$ для п.в. $z \in \mathbb{T}$. Для $1 \leq p \leq \infty$ положим

$$K_{\theta}^{p} = H^{p}(\mathbb{T}) \cap (\theta \overline{H_{0}^{p}}(\mathbb{T})),$$

где под чертой понимаем обычную операцию комплексного сопряжения, а под $H^p_0(\mathbb{T})$ следует понимать пространство $\{f \in H^p(\mathbb{T}) : \hat{f}(0) = 0\}.$

Знаменитая теорема Бёрлинга утверждает, что подпространство в $H^2(\mathbb{T})$, инвариантное относительно оператора обратного сдвига, можно представить в виде K_{θ}^2 для некоторой внутренней функции θ . На самом деле, и при $1 \leq p < \infty$ коинвариантные подпространства оператора сдвига представляются в виде пространств K_{θ}^p (см., например, статью [11] или книгу [21]). Подобные пространства возникают во многих задачах современного анализа. В качестве примера можно привести функциональную модель Надя-Фойяша для операторов сжатия в гильбертовых пространствах (см. [20] и [21]). Другое применение пространств K_{θ}^p можно найти в задачах, связанных с теоремой Бёрлинга-Мальявена (см. [2] и приведённые там ссылки).

Изучение интерполяционных свойств пространств K^p_θ представляется актуальным. В диссертации установлена K-замкнутость пары пространств $(K^p_\theta, K^\infty_\theta)$ в паре $(L^p(\mathbb{T}), L^\infty(\mathbb{T}))$ при p>1.

Отдельный интерес в теории интерполяции вызывают случаи пространств с весом. В дальнейшем предполагается, что \sec — это неотрицательная функция на окружности с суммируемым логарифмом.

Пусть (S,μ) — пространство с мерой, w — вес, а p — параметр, $p \in [1;\infty]$. Весовые пространства $L^p(w)$ можно определить, указав норму в этих пространствах: $\|f\|_{L^p(w)} = \int_S |f|^p w d\mu$, в случае $p < \infty$; $\|f\|_{L^\infty(w)} = \operatorname{ess\,sup} \frac{|f|}{w}$. Такое определение соответствует терминологии статьи [1]. Такая система обозначений не вполне универсальна, и в некоторых источниках норма определяется иным образом $(\|f\|_{L^p(w)} = \int |fw|^p d\mu$ и $\|f\|_{L^\infty(w)} = \|fw\|_{L^\infty})$, что следует учитывать при изучении теорем в этих источниках. Для пространств H^p и K^p_θ можно определить весовые аналоги. Пусть u — вес, а $s \in (0, +\infty]$. Пространство $H^s(u)$ определяется как пересечение граничного класса Смирнова с пространством $L^s(u)$, то есть это по-прежнему аналитические функции, лежащие в соответствующем весовом пространстве. В свою очередь, пространство $K^s_\theta(u)$ определяется формулой $K^s_\theta(u) = H^s(u) \cap \theta \overline{H^s(u)}$. Аналогично определяются пространства $H^{p,q}(u)$ и $K^{p,q}(u)$, снабжённые нормой из пространства Лоренца $L^{p,q}(u)$. Классы Макенхаупта в дальнейшем обозначены через A_p .

Как уже отмечалось, в теории интерполяции много внимания уделяется случаю прострастранств с весом. Классические интерполяционные теоремы для пространств Лебега и Лоренца с весами можно найти в книге [8]. Для весовых пространств Харди в работе [15] С.В. Кисляков и К. Шу установили необходимые и достаточные условия K-замкнутости пары $(H^p(w_0), H^q(w_1))$ в паре $(L^p(w_0), L^q(w_1))$. В случае конечных показателей p и q это условие принимает вид: $\log(w_0^{1/p}w_1^{-1/q}) \in BMO$. Если $q=\infty$, то это условие переписывается в виде $\log(w_0^{1/p}w_1) \in BMO$. Наконец, в случае $p=q=\infty$ пара $(H^\infty(w_0),H^\infty(w_1))$ K-замкнута в паре $(L^{\infty}(w_0), L^{\infty}(w_1))$ тогда и только тогда, когда $\log(w_0^{-1}w_1) \in BMO$. Таким образом, получение интерполяционных теорем для модельных пространств с весом актуально. Для пространств, коинвариантных относительно сдвига, а тем более для пересечения модулей над алгебрами, подобные вышеописанным необходимые и достаточные условия получить пока не удаётся. Однако, в диссертации удалось установить K-замкнутость для некоторых пар модельных пространств с весами и показателями, удовлетворяющими некоторым дополнительным условиям. Пусть $a \in A_{\infty}, w \in A_1$. Найдётся число r', которое зависит от весов a и w такое, что для всякого числа q > r' пара $(K^q_\theta(aw^{-q}), K^\infty_\theta(w))$ K-замкнута в паре $(L^q(aw^{-q}), L^{\infty}(w)).$

Вторая часть этой диссертации посвящена решению задач об идеалах для функций, принимающих значения в некоторых банаховых решётках последовательностей.

Пусть (S,μ) — пространство с мерой, а X — некоторое линейное пространство измеримых функций на S, снабжённое полной квазинормой $\|\cdot\|$. Говорят, что X — решётка измеримых функций, если выполняется следующее свойство. Пусть функция g измерима и найдётся такая функция f из пространства X, что почти всюду справедлива оценка $|g| \leq |f|$, тогда $g \in X$ и $\|g\|_X \leq \|f\|_X$. Решётка X называется банаховой, если её квазинорма является нормой (более общим образом, если такая ситуация возникает после перенормировки).

В связи с ограничениями на объём автореферата здесь не приведены некоторые важные определения: произведения решёток, степени решётки, q-вогнутости или p-выпуклости решётки, понятия сопряжённой решётки к решётке X (которое в дальнейшем обозначено через X'), понятия порядковой непрерывности и свойства Фату. Эти определения и множество интересных фактов из теории решёток можно найти в книгах [3] и [19].

Задача об идеалах тесно связана с теоремой о короне. Классическая проблема короны была сформулирована в 1941 году С. Какутани и возникла при изучении пространства максимальных идеалов алгебры H^{∞} . Л. Карлесон в работе [10] решил её, доказав следующее утверждение.

Теорема 3. Пусть функции f_1, \ldots, f_n принадлежат классу $H^{\infty}(\mathbb{D})$ и пусть $\delta > 0$. Если выполняются условия

$$\sum_{j=1}^{n} |f_j(z)| \ge \delta \ u \ ||f_j||_{H^{\infty}} \le 1 \ npu \ 1 \le j \le n,$$

то найдутся такие функции g_1, \ldots, g_n из класса $H^{\infty}(\mathbb{D})$, что

$$\sum_{j=1}^{n} f_j(z)g_j(z) = 1, \ z \in \mathbb{D},$$

npu этом $||g_i||_{H^{\infty}} \leq C(\delta, n)$.

Следует отметить зависимость от n в последнем неравенстве. Т. Вольф в 1979 году предложил другой подход к доказательству теоремы о короне, который был основан на идее Л. Хёрмандера, сводившей исходную проблему к решению $\bar{\partial}$ задачи. Доказательство Вольфа удалось обобщить на случай бесконечной размерности. Для лаконичности изложения требуется следующее определение.

Определение 1. Пусть X — банахова решётка последовательностей на множестве \mathbb{N} . Говорят, что для решётки X справедлива теорема о короне, если выполняется следующее утверждение. Для параметра $\delta > 0$ и любой векторнозначной функции f из класса $H^{\infty}(\mathbb{D};X)$, удовлетворяющих условиям

$$\delta \le ||f(z)||_X \le 1, \ z \in \mathbb{D},$$

можно найти такую векторнозначную функцию g из класса $H^{\infty}(\mathbb{D}; X')$, что выполняется:

$$1 = \sum_{i=1}^{\infty} f(z, i)g(z, i) = \langle f(z), g(z) \rangle, \quad z \in \mathbb{D},$$

при этом величина $||g||_{H^{\infty}(\mathbb{D};X')}$ контролируется константой $C_{X,\delta}$, зависящей только от параметра δ и решётки X.

В этой связи отметим работы В. А. Толоконникова [7] и А. Учиямы [27]. В статье последнего одним из интересных полученных результатов была теорема о короне в случае пространства $X = l^{\infty}$. Следует отметить, что рассуждение Учиямы находится на том же уровне сложности, что и рассуждение Карлесона. С. В. Кисляков и Д. В. Руцкий показали в статье [4], что теорема о короне справедлива для пространств l^p для $2 \le p < \infty$. Используя интерполяционный метод, Кисляков в работе [5] установил справедливость теоремы о короне для всех пространств l^p (и даже для всех q-вогнутых решёток, удовлетворяющих дополнительному интерполяционному требованию BMO-регулярности). В работе [23] Д. В. Руцкому с помощью теоремы Какутани о неподвижной точке удалось показать, что теорема о короне справедлива для всех порядково непрерывных решёток последовательностей. Изначально в основе его доказательства лежал результат Учиямы для пространства l^{∞} , однако оно применимо и в случае, если в качестве базового результата взять рассуждение Вольфа для пространства l^2 (при этом возникнут некоторые ограничения на участвующие решётки). Недавнее простое рассуждение, принадлежащее С.В. Кислякову, позволяет обобщить теорему о короне на произвольные решётки последовательностей, если предположить, что теорема Учиямы доказана.

Ниже приведена точная формулировка задачи об идеалах.

Определение 2. Пусть X — банахова решётка последовательностей с областью задания на множестве \mathbb{N} . Говорят, что для решётки X разрешима задача об идеалах с показателем α и оценкой $C_{X,\alpha}$, если справедливо следующее утверждение. Для всякой функции h из класса $H^{\infty}(\mathbb{D})$ и векторнозначной функции f из класса $H^{\infty}(\mathbb{D};X)$, удовлетворяющих условиям

$$|h(z)| \le ||f(z)||_X^{\alpha} \le 1,$$

для всех z из круга $\mathbb D$ и некоторого фиксированного параметра α , можно найти такую векторнозначную функцию g из класса $H^\infty(\mathbb D;X')$, что выполняется равенство

$$h(z) = \sum_{i=1}^{\infty} f(z, i)g(z, i) = \langle f(z), g(z) \rangle, \ z \in \mathbb{D},$$

при этом величина $||g||_{H^{\infty}(\mathbb{D};X')}$ контролируется константой $C_{X,\alpha}$, зависящей только от параметра α и решётки X.

Вообще говоря, название задачи об идеалах может ввести читателя в заблуждение. Очевидно, что если функция $h \in H^{\infty}$ лежит в идеале, порождённом функциями $f_1,..,f_k \in H^{\infty}$, то выполняется оценка $|h(z)| \leq C \sum_{j=1}^k |f_j(z)|, z \in \mathbb{D}$. Суть задачи об идеалах можно свести к вопросу: в какой мере можно обратить это утверждение?

Вслед за описанными выше результатами для теоремы о короне, полученными методом Вольфа, в этой задаче тоже стали рассматривать бесконечные наборы функций $\{f_j\}$. Тогда термин "задача об идеалах", строго говоря, утрачивает буквальный смысл, однако всё равно употребляется. Более того, следует обратить особое внимание на показатель α в определении 2. Поиск оптимального показателя, с которым разрешима задача об идеалах, — предмет отдельного исследования (см. [25] и [26]). В упомянутой выше статье Толоконникова [7] было показано, что задача об идеалах разрешима для пространства l^2 . Стоит отметить, что в отличие от теоремы о короне, в задаче об идеалах функция f может обращаться в 0 в некоторых точках z, и это существенно усложняет некоторые рассуждения. Естественным образом возникает вопрос: для каких решёток последовательностей задача об идеалах разрешима?

В этой диссертации удалось установить, что задача об идеалах разрешима для q-вогнутых решёток последовательностей со свойством Фату, в частности для пространств l^p при $p \in [1,\infty)$.

Таким образом, задачи

- о K-замкнутости пары пространств, образованных в результате пересечения двух модулей (или модуля и подпространства) над некоторыми подалгебрами алгебры $L^{\infty}(X,\mu)$ в паре $(L^p(X,\mu),L^{\infty}(X,\mu))$, при некоторых дополнительных ограничениях на модули и алгебры и конечном p>1;
- о K-замкнутости пары $(K_{\theta}^p, K_{\theta}^{\infty})$ в паре $(L^p(\mathbb{T}), L^{\infty}(\mathbb{T}))$ при p > 1;
- о К-замкнутости пары пространств, коинвариантных относительно сдвига, с весами;
- об идеалах для функций со значениями в различных решётках последовательностей, представляются актуальными.

Научная новизна

Все основные результаты диссертации — новые.

Теоретическая и практическая значимость

Работа носит теоретический характер. Результаты диссертации могут быть использованы при решении задач теории интерполяции, вопросов, связанных с теоремой Бёрлинга—Мальявена, теоремой о короне или задачей об идеалах, при изучении структуры алгебры ограниченных аналитических функций, а также в теории модельных пространств.

Методы исследования

В работе применяется множество методов вещественного, комплексного и функционального анализа. В первой части диссертации стоит выделить разложение Кальдерона-Зигмунда, которое в своё время использовал Ж.Бургейн (см. [9] и [18]) при решении интерполяционных задач для классов Харди. Один из аналогов этого разложения был получен для случая весовых пространств в работе [1] С.В. Кисляковым и Д.С Анисимовым . Этот инструмент оказался очень удобным при решении задач, связанных с весовыми пространствами K_{θ}^{p} в первой части работы. Другой метод в теории вещественной интерполяции был предложен С.В. Кисляковым, см. обзор [18]. Он основан на применении так называемых аналитических срезающих функций. В данной работе с помощью этого метода удаётся получить некоторые новые разложения в случаях, когда разложение Кальдерона–Зигмунда недоступно, и исследовать интерполяционные свойства широкого класса пространств, образованных в результате пересечения модулей над w^* -замкнутыми подалгебрами алгебры $L^{\infty}(\mu)$. В процессе доказательства теорем во второй части диссертации главным инструментом служит метод Д.В. Руцкого, в основе которого лежит теорема Какутани о неподвижной точке.

Степень достоверности и апробация результатов

Все результаты, которые выносятся на защиту, являются математически достоверными фактами. Они были опубликованы в рецензируемых журналах, а их доказательства неоднократно проверялись специалистами в той области, к которой эти результаты относятся. Отметим также, что результаты работы были доложены на различных семинарах по вещественному, комплексному и гармоническому анализу: Санкт-Петербургский семинар по теории операторов и теории функций и аналитический семинар лаборатории Чебышёва.

Публикации и личный вклад автора

Материалы диссертации опубликованы в работах [Z1], [Z2], [KZ], [16], из них 3 статьи ([Z1], [Z2], [KZ]) напечатаны в рецензируемых журналах, которые входят в список ВАК, в то время как статья [16] является препринтом.

Статья [KZ] и препринт [16] написаны в соавторстве с С.В. Кисляковым. По мнению соавторов, их вклад в эти работы равный.

Структура и объем диссертации

Диссертация состоит из введения, двух глав, разбитых на параграфы, и библиографии. Общий объем диссертации составляет 86 страниц. Библиография содержит 44 наименования, в число которых включены 4 работы автора по теме диссертации.

Содержание работы

Первая глава

В первой главе (она же введение) обосновывается актуальность диссертации, формулируются цели работы, аргументируется научная новизна проведённых исследований, обосновывается теоретическая значимость полученных результатов. Кроме того, приводятся формулировки основных теорем и положений, выносимых на защиту, снабжённые необходимыми для понимания определениями.

Вторая глава

Прежде, чем подробно описать структуру второй главы, мы сформулируем доказанные в ней утверждения. Для формулировки основной теоремы второй главы понадобятся следующие определения и обозначения. Пусть (X,μ) — пространство с конечной мерой. Пусть $\mathcal E$ — w^* -замкнутая подалгебра алгебры $L^\infty(\mu)$, содержащая константы, и пусть p — конечное число, строго большее единицы. В диссертации рассматриваются алгебры, удовлетворяющие следующему требованию.

Условие (α_p) . Для всякой положительной функции u, принадлежащей пространству $L^p(X,\mu)$, найдётся такая последовательность функций $\{w_n\}_0^\infty$, принадлежащих алгебре $\mathcal E$

и таких, что

- (i) Re $w_n \geq 0$,
- (ii) Re w_n слабо сходятся к u в $L^p(\mu)$,
- (iii) $||w_n||_{L^p} \le C||u||_{L^p}$,

с постоянной C, которая может зависеть только от параметра p.

Для лаконичности записи будут использованы следующие обозначения для аннуляторов, замыканий и пересечений с пространством $L^p(\mu)$. Пусть (X,μ) — пространство с конечной мерой, а \mathcal{F} — подпространство пространства $L^{\infty}(X,\mu)$. Аннулятор пространства \mathcal{F} в пространстве $L^1(\mu)$ будет обозначен через \mathcal{F}^{\perp} . Он определяется формулой:

$$\mathcal{F}^{\perp}=\{h\in L^1(\mu)\colon \int\limits_X f\overline{h}\,d\mu=0$$
 для всех $f\in\mathcal{F}\}.$

Пусть $p \in [1, \infty]$. Через \mathcal{F}_p будет обозначено замыкание пространства \mathcal{F} в пространстве $L^p(X, \mu)$. Наконец, пусть $\mathcal{E}^p = L^p(X, \mu) \cap \mathcal{E}$ для $\mathcal{E} \subset L^1(\mu)$.

Разложение Кальдерона—Зигмунда — классический и хорошо известный результат гармонического анализа. Для полноты изложения ниже приведена точная формулировка.

Разложение Кальдерона—Зигмунда. Пусть (X,μ) пространство с конечной мерой. Мы будем говорить, что оператор P, действующий из пространства $L^1(\mu)$ в пространство μ -измеримых функций, допускает разложение Кальдерона—Зигмунда, если для любых $g \in L^1(X,\mu)$ и $\lambda > 0$ найдутся такие функции g_0 и g_1 , а также множество E, обладающие следующими свойствами:

(CZ1)
$$g_0 \in L^{\infty}(\mu)$$
, $|g_0| \leq C\lambda$;
(CZ2) $g_1 \in L^1(\mu)$, $||g_1||_{L^1} \leq C||g||_{L^1(\mu)}$, $||g_0||_{L^1} \leq C||g||_{L^1(\mu)}$;
(CZ3)
$$\int_{X \setminus E} |Pg_1| d\mu \leq C||g_1||_{L^1};$$
(CZ4) $\mu(E) \leq \frac{C}{\lambda} ||g||_{L^1(\mu)}.$

Хорошо известно, что такие разложения справедливы для сингулярных интегральных операторов, в частности, для проектора Рисса и преобразования Гильберта. Более подробно о разложении Кальдерона—Зигмунда см. книги [24] или [14].

Ниже полностью сформулирована основная теорема второй главы.

Теорема 4. Пусть (X,μ) — пространство с конечной мерой, C — подпространство в $L^{\infty}(X,\mu)$, B — w^* -замкнутая подалгебра алгебры $L^{\infty}(X,\mu)$, удовлетворяющая условию (α_p) . Пусть D — модуль над алгеброй B, который, в свою очередь, тоже вложен в пространство $L^{\infty}(X,\mu)$. Пусть ещё p>1, а q — сопряжённый с p показатель. Предположим также, что существует проектор P, отображающий пространство $L^q(\mu)$ на $C^{\perp,q}$ и обладающий слабым типом (1,1), и при этом справедливо включение: $P(D^{\perp,q}) \subset D^{\perp,q}$. Тогда пара $(C_p \cap D_p, C \cap D)$ K-замкнута в паре $(L^p(X,\mu), L^{\infty}(X,\mu))$, если дополнительно выполняется одно из следующих условий.

І. Для проектора Р справедливо разложение Кальдерона-Зигмунда.

II. Пространство C образует модуль над некоторой подалгеброй A алгебры $L^{\infty}(\mu)$. Кроме того, алгебра A тоже удовлетворяет условию (α_n) .

Следующая теорема является прямым следствием теоремы 4.

Теорема 5. Пусть $p \in (1, +\infty)$. Тогда пара пространств $(K_{\theta}^p, K_{\theta}^{\infty})$ K-замкнута в паре пространств $(L^p(\mathbb{T}), L^{\infty}(\mathbb{T}))$.

Следует отметить, что пока не удаётся доказать K-замкнутость для пространств, коинвариантных относительно сдвига, в случае, когда p=1. Однако, для показателей, близких к 1, можно получить некоторый результат в терминах вещественных интерполяционных пространств.

Теорема 6. Пусть $p_1 \in (1, \infty)$, 0 < r < 1. Положим $p = \frac{p_1}{p_1 + r - r p_1}$. Справедливо равенство

$$(K_{\theta}^{1,\infty}, K_{\theta}^{p_1})_{r,p} = K_{\theta}^p.$$

Теорема 7. Пусть $a \in A_{\infty}, w \in A_1$. Найдётся число r', которое соответствует весам a и w такое, что для всякого числа q > r' пара $(K^q_{\theta}(aw^{-q}), K^{\infty}_{\theta}(w))$ K-замкнута e паре $(L^q(aw^{-q}), L^{\infty}(w))$.

Вторая глава состоит из 12 разделов. Ниже приведено описание структуры второй главы.

В разделе 2.1 приведены определения и некоторые необходимые для дальнейших рассуждений свойства пространств Харди и пространств, коинвариантных относительно действия оператора сдвига, и их весовых аналогов.

В раздел 2.2 вынесены некоторые общие факты из теории вещественной интерполяции, необходимые для последовательного изложения полученных результатов. В частности, приведено определение вещественного интерполяционного пространства, его связь с уже упоминавшимся понятием K-замкнутости, а также формулировки классических теорем об интерполяции пространств Лоренца и Лебега, которые будут нужны для изучения вещественных интерполяционных пространств, соответствующих пространствам K_{θ}^{p} .

Далее в разделе 2.4 и 2.6 приведены некоторые методы решения интерполяционных задач: разложение Кальдерона—Зигмунда для сингулярных интегральных операторов и его весовой аналог, а также метод построения срезающей аналитической функции. Оба этих метода применены при доказательстве основной теоремы. Разложение Кальдерона—Зигмунда будет основным при доказательстве теоремы 4 с условием (I) и теоремы 7 об интерполяции весовых модельных пространств.

Метод срезающих функций в этой диссертационной работе играет одну из ключевых ролей. Как ясно из уже сказанного, рассматриваются не только срезающие аналитические функции, но и функции, принадлежащие подалгебрам алгебры $L^{\infty}(\mu)$, которые обладают некоторыми дополнительными свойствами, включающими условие (α_p) . В разделе 2.5 обсуждается условие (α_p) , затем приведён простой пример применения аналитических срезающих функций при доказательстве K-замкнутости классических пространств Харди. Далее приведено доказательство важной леммы о свойствах срезающих функций, принадлежащих подалгебрам алгебры $L^{\infty}(\mu)$. В разделе 2.7 построены новые разложения, которые заменят разложения Кальдерона—Зигмунда в тех случаях, когда они недоступны. Разложения Кальдерона—Зигмунда и разложение с помощью срезающих функций в разделе 2.8

объединены в одно общее разложение, которое и будет применено при доказательстве теоремы 4.

Как уже отмечалось, громоздким требованиям в формулировке теоремы 1 удовлетворяют многие модули и алгебры, и в разделе 2.9 мы покажем некоторые примеры её применения. В частности, будет доказана теорема 5 для модельных пространств, а также передоказана теорема об интерполяции пространств Харди на двумерном торе.

Далее будет доказана теорема 4. В двух последних разделах этой главы будет продолжено изучение интерполяционных свойств модельных пространств и их весовых аналогов, а также доказаны теоремы 6 и 7.

Третья глава

В начале этого раздела приведены формулировки основных теорем третьей главы, а затем описана её структура.

Теорема 8. Пусть $p \in [1, \infty)$. Для всякого параметра $\varepsilon > 0$ задача об идеалах разрешима в пространствах l^p с показателем $(1 + \varepsilon)p$ и константами, зависящими только от ε .

Следующая теорема показывает, что, при некоторых дополнительных предположениях, для произведения решёток задача об идеалах разрешима, если она была разрешима хотя бы для одного из сомножителей.

Теорема 9. Пусть E и F — конечномерные банаховы решётки, заданные на множестве \mathbb{N} . Пусть для решётки E задача об идеалах имеет решение c показателем α_E и оценкой C_E . Если произведение решёток E и F — банахова решётка, которую обозначим через X, то задача об идеалах разрешима и для решётки X c показателем α_E и оценкой $C_E 2^{\alpha_E} (1+\delta)$ для произвольного положительного δ .

Ниже сформулирована основная теорема третьей главы.

Теорема 10. Пусть X-q-вогнутая решётка со свойством Фату и областью задания на множестве \mathbb{N} . Тогда для решётки X задача об идеалах имеет решение с показателем $(1+\varepsilon)q$ для произвольного положительного ε и с константой, зависящей от q и ε .

Ниже приведено описание структуры третьей главы.

В разделе 3.2 приведены основные определения и свойства банаховых решёток.

Раздел 3.3 посвящён обсуждению истории теоремы о короне и задачи об идеалах, напоминанию классических результатов. Также приведено упомянутое во введении лаконичное доказательство Кислякова теоремы о короне для банаховых решёток (при условии, что доказана теорема Учиямы для пространства l^{∞}). В следующем разделе доказана теорема 8 о разрешимости задачи об идеалах для всех пространств l^p с $p \in [1, \infty)$. Из этого результата выведена теорема 10 в предположении, что теорема 6 и некоторая техническая лемма доказаны. Далее приведено доказательство этой технической леммы. Последний раздел посвящён доказательству теоремы 9.

Положения, выносимые на защиту

Теорема 4, Теорема 5, Теорема 6, Теорема 7, Теорема 8, Теорема 9, Теорема 10.

Заключение

Основные результаты диссертационной работы:

- 1. Установлена K-замкнутость пары пространств, образованных в результате пересечения двух модулей над w^* -подалгебрами $L^{\infty}(\mu)$ в паре $(L^p(X,\mu),L^{\infty}(X,\mu))$ при p>1;
- 2. Установлена K-замкнутость пары пространств $(K^p_\theta, K^\infty_\theta)$ в паре $(L^p(\mathbb{T}), L^\infty(\mathbb{T}))$ при p>1;
- 3. Вычислены некоторые вещественные интерполяционные пространства для модельных пространств;
- 4. Доказана разрешимость задачи об идеалах в q-вогнутых решётках, в частности, в пространствах l^p при $p \in [1, \infty)$.

Список публикаций автора по теме диссертации

- [Z1] И.К. Злотников, "Об оценках в задаче об идеалах алгебры H^{∞} ", Записки научных семинаров ПОМИ, т. 447, с. 66–74, (2016).
- [Z2] И.К. Злотников, "Задача об идеалах алгебры H^{∞} в случае некоторых пространств последовательностей", Алгебра и анализ, т. 29, вып. 5, с. 51–67, (2017).
- [KZ] S. V. Kislyakov, I. K. Zlotnikov, "Coinvariant Subspaces of the Shift Operator and Interpolation", Analysis Mathematica, vol. 44, no. 2, p. 219–236, (2018).

Список литературы

- [1] Д. С. Анисимов, С. В. Кисляков, "Двойные сингулярные интегралы: интерполяция и исправление", Алгебра и анализ, т. 16, вып.5, с. 1–33, (2004).
- [2] А. Д. Баранов, В. П. Хавин, "Допустимые мажоранты для модельных подпространств и аргументы внутренних функций", Функциональный анализ и его приложения, т. 40, вып. 4, с. 3–21,(2006).
- [3] Л.В. Канторович, Г.П. Акилов, "Функциональный анализ, изд. 2," Москва, 1977.
- [4] С.В. Кисляков, Д.В. Руцкий, "Несколько замечаний к теореме о короне", Алгебра и анализ, т. 23, вып. 2, с. 171–191, (2012).
- [5] С.В. Кисляков, "Теорема о короне и интерполяция", Алгебра и анализ 2015, т. 27, вып. 5, с. 69–80, (2015).
- [6] С. В. Кисляков, Куанхуа Шу, "Вещественная интерполяция и сингулярные интегралы", Алгебра и анализ, т. 8, вып. 4, с. 75–109, (1996).
- [7] В.А. Толоконников, "Оценки в теореме Карлесона о короне, идеалы алгебры H^{∞} , задача Секефальви–Надя", Записки научных семинаров ЛОМИ, т. 113, с. 178–198, (1981).
- [8] J. Bergh, J. Löfström, "Interpolation spaces", Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976.
- [9] J. Bourgain, "Some consequences of Pisier's approach to interpolation", Israel. J. Math, vol. 77, p. 165–185, (1992).
- [10] L. Carleson, "Interpolations by bounded analytic functions and the corona problem", Ann. Math., vol. 76, no. 3, p. 547–559, (1962).
- [11] R. G. Douglas, H. S. Shapiro, A. L. Shields, "On cyclic vectors of the backward shift", Bull. Amer. Math. Soc., vol. 73, no. 1, p. 156–159, (1967).
- [12] C. Fefferman, N.M. Riviere and Y.Sagher, "Interpolation between H^p spaces: the real method", Trans. Amer. Math. Soc., vol. 191, p. 75–81, (1974).
- [13] P. Jones, " L^{∞} estimates for the $\overline{\partial}$ problem on a half-plane", Acta Math., vol. 150, p. 137–152, (1983).

- [14] S. Kislyakov, N. Kruglyak, "Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals", vol. 74, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical monographs (New series)]. Basel: Birkhäuser/Springer Basel AG, (2013).
- [15] Kislyakov S. V., Xu Q., "Interpolation of weighted and vector-valued Hardy spaces", Trans. Amer. Math. Soc. 343 (1994), no. 1, 1–34.
- [16] S. V. Kislyakov, I. K. Zlotnikov, "Interpolation for intersections of Hardy-type spaces", submitted to Israel J. Math., preprint: arxiv.org/abs/1903.09959
- [17] S. V. Kislyakov, "A sharp correction theorem", Studia Math., vol. 113, p. 177–196, (1995).
- [18] S. V. Kislyakov, "Interpolation of H^p-spaces: some recent developments", Israel Math. Conf. vol. 13, p. 102–140, (1999).
- [19] J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces I and II", Springer-Verlag, (1996).
- [20] N. K. Nikolski, "Operators, functions, and systems: an easy reading", Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, (2002).
- [21] N. K. Nikolski, "Treatise on the Shift Operator", Grundlehren der mathematischen Wissenschaften, vol. 273, Springer, Berlin, (1985).
- [22] M. Rosenblum, "A corona theorem for countably many functions", Integral Equations Operator Theory, vol. 3, no. 1, p. 125–137, (1980).
- [23] D. Rutsky, "Corona problem with data in ideal spaces of sequences", Arch. Math. (Basel), vol. 108, no. 6, p. 609–619, (2017).
- [24] E. Stein, "Singular Integrals and Differentiability Properties of Functions", (PMS-30). Princeton, New Jersey: Princeton University Press, (1970).
- [25] S. Treil, "The problem of ideals of H^{∞} : beyond the exponent 3/2", J. Funct. Anal., vol. 253, no. 1, p. 220–240, (2007).
- [26] S. Treil, "Estimates in the corona theorem and ideals of H^{∞} : A problem of T. Wolff", J. Anal. Math., vol. 87, p. 481–495, (2002).
- [27] A. Uchiyama, "Corona theorems for countably many functions and estimates for their solutions", Preprint, UCLA, (1980).
- [28] Q. Xu, "Some properties of the quotient space $(L^1(\mathbb{T}^d)/H^1(\mathbb{D}^d))$ ", Illinois J. Math., vol. 37, no. 3, p. 437–454, (1993).