На правах рукописи

how

Нгуен Тхи Тхам Хонг

МЕХАНИЗМЫ ЭЛЕКТРОПРОВОДНОСТИ И ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ Cu₂ZnSnS₄ И Cu₂SnS₃, ПОЛУЧЕННЫХ ТЕРМИЧЕСКИМ РАЗЛОЖЕНИЕМ ПРЕКУРСОРОВ В ВАКУУМЕ

01.04.07 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Белгород – 2020

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Белгородский государственный национальный исследовательский университет»

Научный руководитель:	доктор физико-математических наук, доцент Захвалинский Василий Сергеевич
Официальные оппоненты:	Немов Сергей Александрович доктор физико-математических наук, профессор, профессор Высшей школы физики и технологий материалов, федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого (СПбПУ)» (г. Санкт-Петербург)
	Соболев Валентин Валентинович доктор физико-математических наук, доцент, профессор кафедры физики и оптотехники, декан факультета математики и естественных наук, федеральное государственное автономное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (г. Ижевск)
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет (ВГТУ)» (г. Воронеж)

Защита состоится «24» декабря 2020 г. в 14.00 часов на заседании диссертационного совета Д 212.015.04 при Юго-Западном государственном университете по адресу: 305040, г. Курск, ул. 50 лет Октября, 94, конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке Юго-Западного государственного университета по адресу: 305040, г. Курск, ул. 50 лет Октября, 94 и на сайте Юго-Западного государственного университета: https://swsu.ru

Автореферат разослан «10» ноября 2020 г.

Ученый секретарь Кочура Алексей Вячеславович диссертационного совета Д 212.015.04, к.ф.-м.н., доцент

Актуальность темы. Солнечные элементы являются перспективным источником энергии для удовлетворения постоянно растущего спроса на энергию и преодоления истощения ископаемых ресурсов. Хотя солнечные элементы на основе монокристаллического кремния или полупроводников III-V демонстрируют очень высокую эффективность, для доступного и широкого применения требуются гораздо более дешевые фотоэлектрические системы. Полупроводники Cu₂ZnSnS₄ (CZTS) и Cu₂SnS₃ (CTS) привлекают к себе внимание в качестве поглощающих фотоны слоев тонкопленочных солнечных батарей благодаря наличию у них прямой запрещенной зоны шириной 1,0–1,7 эВ, высокого коэффициента оптического поглощения (>10⁴ см⁻¹) и проводимости *p*-типа [1,2]. Кроме того, элементы, присутствующие в этих соединениях, относительно дешевы, распространены в земной коре и экологически безопасны.

Количество публикаций по CTS и CZTS материалам и количество научных групп, применяющих различные методики для создания и исследования тонких слоев этих материалов, увеличивается ежегодно. Однако лишь в относительно небольшом количестве исследований сообщается о характеристиках CZTS со структурой станнита и CTS с тетрагональной структурой. Из выше изложенного вытекает основная цель предложенной работы: систематическое исследование оптических и электрических свойств станнита CZTS и тройного соединения CTS в тетрагональной сингонии, перспективных для применения в фотовольтаике и оптимизация технологии их получения.

Таким образом, **существующий уровень разработанности темы** исследования и полученные данные позволят существенно обогатить имеющиеся знания об исследуемых материалах и расширить области применения этих соединений в оптоэлектронных приборах, что прямо свидетельствует об актуальности данной работы.

Целью диссертационной работы является получение образцов соединений CZTS и CTS, теоретическое и экспериментальное исследование структурных характеристик, электронных и оптических свойств этих соединений, применяющихся для создания фотопоглощающих слоёв ячеек солнечных батарей и анализ влияния технологических параметров на их свойства.

Объект исследования: перспективные фотопоглощающие материалы фотовольтаики станнит Cu₂ZnSnS₄ и тройное соединение Cu₂SnS₃.

Предмет исследования: оптические и электрические свойства станнита CZTS и тройного соединения CTS в тетрагональной сингонии, перспективных для применения в фотовольтаике и оптимизация технологии их получения.

Для достижения поставленной цели решались следующие задачи:

- 1. Разработать технологию получения объёмного четверного CZTS со структурой станнита и тройного соединения CTS с тетрагональной структурой методом пиролитического разложения прекурсоров в вакууме.
- 2. Исследовать фазовый состав и кристаллическую структуру полученных объёмных образцов CZTS и CTS.

- 3. Изучить температурную зависимость сопротивления четверных CZTS и тройных соединений CTS в интервале 10 300 К для определения механизмов электропроводности, а также оценить ряд макроскопических и микроскопических параметров, характеризующих электропроводность данных материалов. Изучить влияние магнитного поля на удельное электрическое сопротивление соединения CTS.
- 4. Получить плёнки CZTS и CTS методом высокочастотного нереактивного магнетронного распыления. Исследовать влияния параметров напыления на структуру и морфологию поверхности, оптические свойства сформированных тонких плёнок CZTS и CTS.
- 5. Произвести квантово-механические расчёты электронно-энергетической структуры и оптических характеристик соединения CZTS с помощью программного пакета VASP.

Научная новизна работы:

- 1. Синтезировано четверное соединение Cu₂ZnSnS₄ со структурой станнита и тройное соединение Cu₂SnS₃ с тетрагональной структурой дешевым методом пиролитического разложения. Исследовано влияние отношений элементов [Cu]/([Zn]+[Sn]) и [Cu]/[Sn] в прекурсоре на фазовый состав и качество синтезированных образцов CZTS и CTS, соответственно с помощью рентгеновского дифракционного анализа и спектроскопии комбинационного рассеяния.
- 2. Впервые исследованы температурные зависимости удельного сопротивления объемного станнита Cu₂ZnSnS₄ и тетрагонального Cu₂SnS₃, полученных методом пиролитического разложения прекурсоров; показано, что в соединениях Cu₂ZnSnS₄ и Cu₂SnS₃ в широком интервале температур обнаружена прыжковая проводимость Моттовского типа с переменной длиной прыжка; определены значения радиуса локализации, концентрации акцепторов и средняя плотность локализованных состояний в акцепторной зоне; установлена близость электропроводности исследованных материалов к переходу металл-диэлектрик; для обоих изученных соединений предложена модель плотности состояний в акцепторной зоне, уточнено положение уровня Ферми и определено наличие и положение дефектных уровней в запрещенной зоне.
- 3. Наблюдалось положительное магнитосопротивление в соединении СТЅ в широком температурном интервале T = 2–300 К. Установлено, что в области прыжковой проводимости магнитосопротивление подчиняется механизму Мотта в импульсных магнитных полях от 0 до 20 Тл.
- 4. Исследовано комплексное влияние параметров напыления (мощность, время напыления и процесс сульфуризации) на температура подложки, формирование пленок CZTS CTS, полученных методом тонких И высокочастотного нереактивного магнетронного напыления; определена ширина запрещенной зоны тонкопленочного станнита CZTS и тетрагонального CTS, находящихся в оптимальном диапазоне поглощения света для преобразования солнечной энергии.
- 5. Теоретически определена электронно-энергетическая структура и оптические спектры четверного соединения Cu₂ZnSnS₄ со структурами типа станнит и

кестерит; определено влияние на ширину запрещенной зоны использования разных обменно-корреляционных функционалов; рассчитан тензор диэлектрической проницаемости и по нему определены основные оптические спектры: коэффициент поглощения, показатель преломления, коэффициент экстинкции, коэффициент отражения, и функция энергетических потерь.

Теоретическая значимость работы.

Результаты квантово-механических расчётов показывают, что программный пакет VASP может успешно применяться для исследования электронных зонных структур и основных оптических свойств, сложных по составу и кристаллической структуре соединений таких как Cu₂ZnSnS₄. Полученные в работе оптические спектры могут быть полезны для оценки отражательной и поглощающей способности материалов при применении в оптоэлектронных устройствах.

Практическая значимость работы.

работы Результаты диссертационной существенно расширяют фундаментальную базу знаний по исследованным материалам, а также могут быть полезны при разработке и изготовлении различных оптоэлектронных устройств, в том числе преобразователей солнечной энергии, как в лабораторных, так и в промышленных условиях. Полученные данные о характере проводимости четверных и тройных соединений и их электронные параметры дополняют недостаток информации необходимой для разработки приборов на основе соответствующих материалов. Результаты данного исследования позволяют подобрать наилучшие параметры для синтеза тонкоплёночных $Cu_2 Zn Sn S_4$ и $Cu_2 Sn S_3$ высокочастотного нереактивного магнетронного методом распыления. Полученные величины ширины запрещённой зоны материалов подтверждают возможность их применения в качестве поглощающего слоя солнечных элементов.

Методы исследований: Для реализации поставленных задач были использованы следующие методы исследования: анализ дисперсии рентгеновских лучей, рентгеноструктурный анализ, анализ спектров комбинационного рассеяния света, анализ результатов просвечивающей электронной микроскопии, определение температурной зависимости удельного сопротивления шести-зондовым методом, изучение эффекта Холла, анализ с помощью спектрофотометра спектров поглощения, квантово-механические расчёты, выполненные в рамках теории функционала плотности и реализованные в программном пакете VASP.

Положения, выносимые на защиту:

- 1. Получены объёмные соединения четверное Cu₂ZnSnS₄ со структурой станнита и тройное Cu₂SnS₃ с тетрагональной структурой методом пиролитического разложения прекурсоров в вакууме, и тонкие плёнки Cu₂ZnSnS₄ и Cu₂SnS₃ методом высокочастотного нереактивного магнетронного распыления.
- 2. Установлены для соединений Cu₂ZnSnS₄ и Cu₂SnS₃ температурные интервалы механизма проводимости с переменной длинной прыжка по Мотту; определены макроскопические и микроскопические параметры, характеризующие электропроводность данных материалов;
- 3. Для соединений Cu₂ZnSnS₄ и Cu₂SnS₃ предложена модель плотности состояний в акцепторной зоне, уточнено положение уровня Ферми и определены положения дефектных уровней в запрещенной зоне.

4. Теоретически рассчитана электронная зонная структура и оптические свойства соединения Cu₂ZnSnS₄ со структурой кестерита и станнита с помощью программного пакета VASP.

Апробация результатов работы. Результаты работы представлялись на: V международной студенческой конференции «Студенческий научный форум 2013» (г. Москва), VII Всероссийской конференции «Научная инициатива иностранных студентов и аспирантов российских вузов» (г. Томск, 2014), Международной научно-практической конференции (г. Тамбов, 2014), L Школы ПИЯФ по физике конденсированного состояния (г. Санкт-Петербург, 2016), The 3rd International Conference on Advanced Materials and Nanotechnology (г. Ханой, Вьетнам, 2016), XIII Международной конференции «Перспективные технологии, оборудование и аналитические системы для материаловедения и наноматериалов» (г. Курск, 2016).

Реализация результатов работы. Основные результаты работы будут использованы при исследованиях и разработках новых солнечных элементов, а также результаты, методы и методики будут применяться в учебном процессе при подготовке специалистов в области наноматериаловедения, физики и химии.

Публикации. По теме диссертации опубликовано 15 научных работ, в том числе 5 – в изданиях, входящих в перечень рецензируемых научных изданий, рекомендованных ВАК, 2 – в изданиях, индексируемом в базе данных Scopus и Web of Science и 8 статей в сборниках трудов конференций и всероссийских журналах.

Достоверность результатов работы основана на использовании экспериментальных взаимодополняющих методов исследования, воспроизводимости результатов и корреляции результатов, полученных с применением различных методов, хорошем количественном и качественном описании экспериментальных обнаруженных закономерностей В рамках используемых физических моделей и механизмов, сопоставлении полученных результатов с теоретическими и экспериментальными данными других авторов опубликованными в научной литературе.

Личное участие соискателя в получении результатов, изложенных в диссертации: Все результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии. Автор участвовал в постановке диссертационной работы, задач, решаемых рамках проведении в обсуждении, экспериментальных исследований, анализе и интерпретации полученных данных, формулировке научных выводов, а также принимал участие в подготовке статей к публикации.

Соответствие паспорту научной специальности.

Диссертационное исследование соответствует паспорту специальности 01.04.07 «Физика конденсированного состояния» по п. 1 «Теоретическое и экспериментальное изучение физической природы свойств металлов и их сплавов, неорганических и органических соединений, диэлектриков и, в том числе, материалов световодов как в твердом, так и в аморфном состоянии в зависимости от их химического, изотопного состава, температуры и давления»; по п. 4. "Теоретическое и экспериментальное исследование воздействия различных видов излучений, высокотемпературной плазмы на природу изменений физических свойств конденсированных веществ"; по п. 6 «Разработка экспериментальных методов изучения физических свойств и создание физических основ промышленной технологии получения материалов с определенными свойствами».

Структура и объем диссертации. Диссертационная работа изложена на 167 страницах машинописного текста, проиллюстрирована 56 рисунками, 16 таблицами. Работа состоит из введения, 5 глав, основных результатов, выводов, перечня сокращений и условных обозначений и списка литературы, включающего 210 источников, в том числе 197 иностранных.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, определены цель и задачи исследования, сформулированы научная новизна и практическая значимость полученных результатов, представлены основные положения, выносимые на защиту и др.

Первая глава посвящена аналитическому обзору литературы по теме диссертационного исследования. Обоснованы требования, предъявляемые к полупроводникам, используемым для создания солнечного элемента. Приведены основные кристаллические, оптические, электрические характеристики четверных Cu_2ZnSnS_4 и тройных Cu_2SnS_3 полупроводниковых материалов. Рассмотрены технология получения объемных образцов и тонких пленок данных материалов, одновременно обсуждены преимущества и недостатки этих методов. Сформулированы задачи исследования на основе анализа литературных данных.

Вторая глава содержит описание основных экспериментальных методов исследования свойств полученных образцов. Рассмотрены принцип действия, назначение, а также преимуществ и недостаток этих методов.

В третьей главе дано подробное описание технологии получения объёмных и тонкоплёночных образцов Cu_2ZnSnS_4 , методов и результатов исследования структурных, электрических и оптических свойств полученных образцов, а также обсуждение полученных результатов.

Поликристаллы CZTS были синтезированы с различными атомными отношениями металлов, а именно были выбраны [Cu]/([Zn]+[Sn]) = 1; 0,9; 1,1 соответственно для образцов CZTS 1, CZTS 2, CZTS 3. Порошки были получены методом пиролитического разложения хлоридов соответствующих компонентов и тиомочевины вакууме. Структуры, элементные И фазовые составы В контролировались образцов с помощью синтезированных рентгеновского дифракционного анализа, спектроскопии романовского рассеяния и рентгеновского энергодисперсионного анализа. Показано, что все образцы CZTS имели структуру станнита с пространственной группой (I42m).

С целью установления особенностей электрических свойств образцов четверных полупроводников CZTS были проведены измерения удельного сопротивления $\rho(T)$ в интервале температур 10 – 300 К шестизондовым методом. Для контролируемого изменения температуры образца был использован криостат замкнутого цикла модели Janis CCS-350S, укомплектованный гелиевым компрессором 8200 Compressor, оснащенный термостатом и термоконтроллером 331 марки Lake Shore. Поведение зависимости удельного сопротивления от

температуры $\rho(T)$ полученных образцов CZTS (рис. 1) характерно для примесного полупроводника.

В области прыжковой проводимости зависимость удельного сопротивления от температуры описывается универсальной формулой [3]:

$$\rho(T) = A_p T^{1/p} \exp\left[\left(\frac{T_{0p}}{T}\right)^{1/p}\right] \qquad (1)$$

где A_p — константа пропорциональности не зависящая от температуры, T_{0p} - характеристическая прыжковая температура, p = 1

Рис. 1. Температурная зависимость удельного сопротивления образцов CZTS 1,2,3

соответствует механизму проводимости по «ближайшим соседям» (ПБС); p = 4 характерно для Моттовского типа прыжковой проводимости с переменной длиной прыжка (ПДП), и p = 2 описывает прыжковую проводимость ПДП типа Шкловского – Эфроса (ШЭ) [3]. Установлено, что поведение сопротивления образцов CZTS в высокотемпературной области (T>150 K) соответствует проводимости по ближайшим соседям.

В низкотемпературном интервале механизмы электропроводимости трех образцов CZTS были определены тремя методами: универсальный метод, метод Финлайсона (см. раздел 3.2.2, рис. 3.11 диссертации) и метод Шкловского и Эфроса, определенный после введении понятия локальной энергии активации, у которой значение определяется $E_{loc}(T) = \frac{d [\ln \rho(T)]}{d (kT)^{-1}}$ [3].

Тогда:
$$\ln\left(\frac{E_{loc}}{kT} + \frac{1}{p}\right) = \ln\left(\frac{1}{p}\right) + \frac{1}{p}\ln T_{0p} + \frac{1}{p}\ln\left(\frac{1}{T}\right)$$
(2)

Согласно существующим теоретическим представлениям, механизм проводимости CZTS может быть определён посредством использования метода

линеаризации удельного сопротивления $\rho(T)$, приведенного в уравнении (1). Так же значения p = 1, 2, 4 и наклона участка при построении зависимости $\ln\left(\frac{E_{loc}}{kT} + \frac{1}{p}\right)$ от

ln(1/T) должны соответствовать значениям *p* в случае прыжковой проводимости по механизму ПБС, ШЭ и Мотта. В результате анализа было установлено, что поведение удельного сопротивления образцов CZTS 1, 2, 3 в низкотемпературном интервале продемонстрировало наличие проводимости с переменной длиной прыжка Моттовского типа. Из линейных частей графиков (рис. 2 и рис. 3) были получены для всех трех образцов основные характеристические температуры, константа пропорциональности A_4 и ширина зоны локализованных состояний $W_0 = k(T_v^3 T_{04})^{1/4}$ (см. таб. 1).

Таблица 1. Константа пропорциональности (A_4), характеристическая температура T_{04} , наибольшая и наименьшая температуры участков для проводимости ПДП Моттовского типа T_v , T_m и ширина зоны локализованных состояний (W_0) в поликристаллах Cu₂ZnSnS₄

Образец	$T_{v}(\mathbf{K})$	$T_m(\mathbf{K})$	А4 (Ом см К ^{-1/4})	$T_{04}{}^{l/4}$ (K ^{1/4})	<i>W</i> ₀ (мэВ)
CZTS 1	140	46	0,015	27,5	96
CZTS 2	180	50	0,246	19,9	84
CZTS 3	158	52	0,088	21,51	82

Механизм прыжковой проводимости является доказательством формирования неупорядоченной структуры В самодопированном р-типа полупроводнике Cu₂ZnSnS₄. Переход от проводимости ПБС к проводимости ПДП по Мотту часто стимулируется увеличением беспорядка в кристаллических структурах или понижением температуры, поскольку в этих условиях энергетически выгодно совершение прыжков носителями заряда за пределы ближайшего центра [3]. Предложена модель плотности состояний в акцепторной зоне в условиях близости к переходу металлдиэлектрик (ПМД) Андерсона (см. рис. 4). Результирующая широкая примесная зона интервал делокализованных содержит состояний вокруг центра между порогами подвижности (-Е_с, Е_с) и два интервала локализованных (расширенных) состояний вне порогов подвижности, сдвинутых к краям зоны [3]. Проводимость ПДП типа по Мотту осуществляется, когда уровень Ферми µ

Рис. 4. Схематичное изображение плотности локализованных состояний в акцепторной зоне. (Заштрихованные области локализованные состояния)

располагается в зоне локализованных состояний. В этом случае, материал имеет конечное значение плотности локализованных состояний (ПЛС) $g(\mu)$ вблизи уровня Ферми, но достаточно неупорядочен и степень беспорядка достаточна для локализации состояний носителя заряда [3]. Это означает, что положение уровня Ферми должно находиться вблизи хвостов примесной зоны. Малая величина ПЛС вблизи краев акцепторной зоны приводит к затруднениям при поиске ближайшего соседнего узла с низкой энергией активации. Поэтому прыжок за пределы ближайших соседей становится энергетически выгодным. Для соединения Cu₂ZnSnS₄ установлено положение уровня Ферми, расположенное в области (*-E_c, -W*) с низкой степени компенсации К <<1.

Для упрощения анализа ПЛС была аппроксимирована прямоугольной формой: $g(\mu) \approx N/(2W)$ (3)

где N - концентрация состояний акцепторов, участвующих в прыжковой проводимости [4]. Тогда значения относительной концентрации состояний акцепторов N/N_C и относительного радиуса локализации носителей заряда a/a_0 можно рассчитать по следующему уравнению при критическом показателе длины корреляции v=1:

$$\left(\frac{T_{04}}{T_{\nu}}\right)^{1/4} \approx 4\beta^{1/3} \left(\frac{N_{C}}{N}\right)^{1/3} \left(1 - \frac{N}{N_{C}}\right)^{\nu}$$
(4)

где N_C - критическая концентрация ПМД, a_0 - радиус локализации вдали от ПМД, a - радиус локализации носителей заряда $a = a_0(1 - N/N_C)^{-v}$. Для мелких водородоподобных уровней радиус локализации вдали от ПМД равен $a_0 \approx a_B$, где a_B - радиус Бора. Значение статической диэлектрической проницаемости κ_0 может было найдено путем подгонки значения a/a_B к данным значениям a/a_0 , представленным в Таб. 3 при минимизации стандартного отклонения SD:

$$SD = \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\left(\frac{a}{a_0} \right)_i - \left(\frac{a}{a_B} \right)_i \right]^2 \right\}^{1/2}$$
(5)

где *п* - количество образцов, которые используются при фитинге [3].

Таблица 2. Относительная концентрация акцепторов (N/N_c), радиус локализации относительного радиуса вдали от ПМД (a/a_0) и относительного Боровского радиуса (a/a_B), полуширина акцепторной зоны (W), энергия порога подвижности (E_c) и усреднённая ПЛС ($g(\mu)$) в исследованных образцах Cu₂ZnSnS₄

Образец	$N/N_{ m c}$	a/a_0	$a/a_{\rm B}$	W (мэВ)	<i>E</i> c (мэВ)	g(μ) (10 ¹⁶ мэВ ⁻¹ см ⁻³)
CZTS 1	0,42	1,7	1,7	48	20	2,9
CZTS 2	0,57	2,3	2,3	42	24	4,4
CZTS 3	0,53	2,1	2,3	41	23	4,2

Используя метод минимизации с помощью формулы (5) было получено хорошее согласие значений a/a_0 и a/a_B при SD = 0,09 (см. Таб. 2). Были рассчитаны значения $a_0 \approx a_B \approx 13,4$ Å и энергия ионизации акцепторного уровня $E_0 \approx 48$ мэВ. Значение $N_c \approx 6,5 \times 10^{18}$ см⁻³ было получено из универсального критерия Мотта. В

Таб. 2 также приведена величина порога подвижности E_C и плотности состояний на уровне Ферми, рассчитанные из формулы (3). При этом результаты проведенных качественных оценок подтвердились сравнимым с опубликованным ранее значением диэлектрической проницаемости κ_0 =11,9 [4].

Рис. 5. ПЭМ изображения плёнок CZTS и картины дифракционного контраста, высаживаемых (а) на холодной подложке (б) на горячей подложке

Тонкопленочные Cu_2ZnSnS_4 были получены методом высокочастотного нереактивного магнетронного с последующим напыления сульфуризации. этапом В мишени качестве для магнетронного распыления были использованы синтезированные порошки образца CZTS 2 поскольку в атомные отношения нём металлов были близки к оптимальному составу для солнечных [5]. элементов Морфология И структуры полученных пленок исследованы методом просвечивающей электронной и сканирующей электронной микроскопии. Значения запрещённой зоны были определены спектру ПО

пропускания света. При оптимизации технологии получения тонких пленок станнита установлено, что такие параметры напыления как мощность, температура подложки, время напыления и процесс сульфуризации оказывает значительное морфологию поверхности и оптические свойства влияние на структуру, сформированных пленок. Аморфные плёнки были получены при их напылении на холодных подложках, а поликристаллические плёнки были сформированы на горячих подложках для T_S=350°C (рис. 5). На рис. 5 представлено ПЭМизображение поверхности пленки, полученной на монокристаллической подложке NaCl при температуре подложки $T_s=40^{\circ}C$ (a) и $T_s=350^{\circ}C$ (б) при мощности в 50 Вт в течении 20 минут и соответствующая ей микродифрактограмма. Отмеченные индексы плоскости, соответствующие дифракционным кольцам, соответствуют характерной тетрагональной структуре типа станнита. Нанокристаллическая структура пленки CZTS четко видна на микрофотографии ПЭМ поверхности в светлопольном контрасте. Полидисперсные частицы CZTS получаются в форме зёрен риса шириной 10-35 нм и длиной 25-50 нм.

На рис. 6 представлены изображения поперечного сечения, поверхности и внутренних частей пленок CZTS, выращенных на стеклянных подложках при мощности в 100 Вт при температуре подложки $T_s=350^{\circ}$ С в течении 20 минут. На

рис. 6 видно, что пленка имеет столбчатую структуру с толщиной d \approx 1,5 µм. Пленка, осажденная при большей мощности, имеет более гомогенную и плотную структуру поверхности по сравнению с поверхностью плёнки полученной при мощности 50 Вт (рис. 5). При этом она состоит из более однородных и мелких частиц (шириной 10-15 нм и длиной 22-30 нм).

Для исследования влияния нагрева подложек толшины на ИХ И пленок свойства, оптические вч-магнетронные пленок Cu_2ZnSnS_4 напыления были проведены при мощности в 50 Вт в течение 5, 10, 20, 40 и 60 минут на стеклянные подложки при комнатной температуре и при температуре 350°С. При обоих температурах наблюдается непрерывное изменение цвета с увеличением толщины пленок. Значения запрещённой зоны были определены по краю

Рис. 6. СЭМ-изображения поперечного сечения (а) и поверхности (б) пленки CZTS

собственного поглощения спектра пропускания света в диапазоне длин волн света $\lambda = 200 - 1000$ нм с помощью спектрофотометра СФ-2000. На рис. 7 показаны оценки значений оптической ширины запрещенной зоны различных пленок CZTS при варьировании времени напыления и температуры подложки. Соединение CZTS имеет прямозонную энергетическую структуру. Как и следовало ожидать, аморфные пленки CZTS имеют более широкие запрещенные зоны по сравнению с поликристаллическими пленками CZTS. Наблюдается уменьшение оптической ширины запрещенной с с ростом их толщины. Ширина запрещенной зоны аморфных и поликристаллических пленок CZTS, нанесенных при мощности 50 Вт варьируется от 1,63 до 2,24 эВ.

Рис. 7. Влияние времени напыления и температурой подложки на спектры оптического поглощения образца CZTS

Рис. 8. Влияние сульфуризации на спектры оптического поглощения образца CZTS

При осаждении пленок CZTS на стеклянных подложках при мощности в 100 Вт при температуре подложки $T_s=350^{\circ}$ С в течении 20 минут, нам удалось получить пленки (см. рис. 6а), имеющие ширину запрещенной зоны, близкую к теоретическому значению $E_g = 1,39$ эВ. Такое небольшое отклонение может быть связано с наличием вторичных фаз, появившихся в результате потери серы в процессе отжига и напыления. Поэтому, на последнем этапе получения плёнок CZTS проводилась сульфуризация. Ширина запрещенной зоны полученной пленки CZTS после сульфуризации составляла $E_g = 1,33$ эВ (рис. 8), что хорошо согласуется с теоретическими расчетами. Кроме того, это значение находится в оптимальном диапазоне для преобразования солнечной энергии, что создаёт перспективы получения солнечных элементов с высоким КПД на основе станнита CZTS.

В четвертой главе представлены методы синтеза порошка Cu_2SnS_3 путем пиролитического разложения соответствующих хлоридов металлов и тиомочевины. Для изучения влияния отношений [Sn]/[Cu] на фазовый состав, формирование и характерные свойства образцов CTS было выбрано соотношение [Sn]/[Cu] равно 0,2, 0,4, 0,5 и 0,6 для образцов CTS 1, CTS 2, CTS 3 и CTS 4 соответственно. На основании рентгеновского дифракционного анализа установлено, что синтезированные образцы в основном содержат тетрагональную фазу CTS (за исключением образца CTS 1, в котором еще присутствует нежелательная кубическая фаза Cu_2S). Используя методы комбинационного рассеяния, мы также обнаружили присутствие минорных фаз SnS и Sn₂S₃.

Рис. 9. (а) Зависимость $\ln \rho / T$ от 1/T полученных образцов СТS 1 - СТS 4. (б) Зависимость $\ln(\rho / T^{1/4})$ от $T^{-1/4}$ полученных образцов СТS 1 - СТS 4

В четвертой главе рассмотрены возможные также механизмы электропроводности расчёт И произведен основных характеристических температур и ширины зоны локализованных состояний в модели прыжковой проводимости для различных образцов CTS 1-4 (см. таб. 3). Поведение электрической проводимости всех объёмных образцов CTS в температурном интервале от 10 до 300 К описывается механизмом проводимости по ближайшим соседям в высокотемпературной области (T> 145K) и механизмом прыжковой проводимости с переменной длиной прыжка по Мотту в температурном интервале 15-145 К (рис. 9).

)T	оттовского типа в поликристаллах Cu ₂ SnS ₃							
	Образец	$T_{v}(\mathbf{K})$	$T_m(\mathbf{K})$	$T_{04}{}^{l/4}(\mathrm{K}^{1/4})$	<i>W</i> ₀ (мэВ)			
	CTS 1	150	35	9,1	33,6			
	CTS 2	140	15	6,6	20,0			
	CTS 3	130	25	6,3	21,0			

6.5

19.8

20

CTS 4

135

Таблица 3. Характеристические температуры (T_v , T_m , T_{04}) и ширина зоны локализованных состояний (W_0) в случае прыжковой проводимости ПДП Моттовского типа в поликристаллах Cu₂SnS₃

Путем анализа данных в условиях близости к переходу металл-диэлектрик в рамках модели Мотта был определен ряд основных макро- и микропараметров, характеризующих электропроводность материала: относительная концентрация акцепторов $N/N_c \approx 0.77-0.85$ для значения критической концентрации $N_c \approx 3.1 \times 10^{18}$ см⁻³, радиус локализации относительно Боровского радиуса $a/a_B \approx 4.4-6.7$ с $a_B \approx 17.1$ Å, усреднённая плотность локализованных состояний $g \approx (0.7-1.3) \times 10^{17}$ мэВ⁻¹ см⁻³. Значение диэлектрической проницаемости вдали от ПМД $\kappa_0 = 10.7$ аналогично результатам приведенным в литературе [6]. Рассчитанное значение энергии центра акцепторов в СТS определяется вакансиями V_{Cu} . Наблюдалось влияние элементного и фазового состава на электрические свойства исследуемых образцов. Более высокая степень микроскопического беспорядка в образце CTS 1 связана с высоким дефицитом Sn и присутствуем значительного количества кубической фазы Cu₂S.

Таблица 4. Относительная концентрация акцепторов (N/N_c), относительный радиус локализации вдали от ПМД (a/a_0) и относительный Боровский радиус (a/a_B), полуширина акцепторной зоны (W), энергия порога подвижности (E_c) и усреднённая ПЛС ($g(\mu)$) в исследованных образцах Cu₂SnS₃

Образец	$N/N_{\rm c}$	a/a_0	$a/a_{\rm B}$	W (мэВ)	<i>Е</i> с (мэВ)	<i>g(µ)</i> (10 ¹⁷ мэВ ⁻¹ см ⁻³)
CTS 1	0,77	4,4	3,7	16,8	12,2	1,3
CTS 2	0,85	6,7	6,5	10,0	8,5	1,2
CTS 3	0,83	5,9	6,1	10,5	8,8	1,3
CTS 4	0,85	6,5	6,5	9,9	8,4	0,7

В результате исследования влияния магнитного поля на удельное электрическое сопротивление образца Cu₂SnS₃ было обнаружено, что соединение CTS характеризуется положительным магнитосопротивлением, т.е. $\rho(B) > \rho(0)$ наблюдаемым во всём интервале исследованных температур, как показано на рис. 10, отдельно для низкотемпературных и высокотемпературных интервалов T = 2-5 К и T = 50-150 К, соответственно. Кроме этого установлено, что в област прыжковой проводимости магнитосопротивление подчиняется механизму Мотта в импульсных магнитных полях от 0 до 20 Тл (рис. 11)

Рис. 10. Зависимость относительного магнитосопротивления $\rho(B)/\rho(0)$ образца CTS 4 от магнитного поля в высокотемпературном интервале T = 50–150 K и в низкотемпературном интервале T = 2–5 K

Получение пленок Cu_2SnS_3 проводилось С использованием той же технологической схемы. что была применена для пленок Cu₂ZnSnS₄. В качестве твердой мишени для напыления был использован синтезированный порошок CTS 4, у которого состав был самым близким к стехиометрическому. На рис.12 представлен результат исследования влияния температуры подложки на структуру морфологию И поверхности осажденных пленок CTS. Из ПЭМизображений поверхности видно, что на обеих плёнках полидисперсные наночастицы CTS приобретают шарообразную форму с

Рис. 11. Зависимость $ln[\rho(B)/\rho(0)]$ от B^2 для образца СТЅ 4 в температурном интервале, соответствующем проводимости ПДП по Мотту. Вставки: Зависимость A_4 от $T^{-3/4}$.

Рис. 12. ПЭМ изображения плёнок СТЅ и картины дифракционного контраста, высаживаемых (а) на холодной подложке (б) на горячей подложке.

размером 15-25 нм. Однако, плёнка, полученная при осаждении на горячей подложке (при температуре подложки $T_s=350^{\circ}C$) более однородна и компактна. Размытые кольца на картине дифракционного контраста характерны для аморфной структуры плёнки CTS, осажденной на холодной подложке. А наличие ярких дифракционных колец соответствует о поликристаллической природе плёнки CTS, высаживаемой на горячей подложке. Дифракционные кольца соответствуют плоскостям, полученным из сравнения с рентгеновской дифракцией

тетрагональной сингонии Cu_2SnS_3 (I $\overline{4}2m$). Результат нашего исследования позволяет использовать влияние температуры подложки в процессе вчмагнетронного напыления на структуру поглощающего слоя, созданного на основе CTS и CZTS, и в конечном счёте, на эффективность солнечных элементов.

Ширины запрещенной зоны получаемой пленки CTS с тетрагональной

структурой до и после процесса сульфуризации составили $E_g = 1,70$ эВ и $E_g = 1,62$ эВ, соответственно. Такое небольшое смещение спектра В область низких энергий объясняется, вероятно, наличием дефектов В синтезированного решётке CTS. появившихся в результате потери серы в процессе отжига и напыления, что приводит к изменению свойств тонких плёнок. Величины ширины запрещенной плёнок зоны тетрагонального соединения Cu₂SnS₃ лежат В пределах значений. подходящих для применения в высоко эффективных солнечных элементах.

гис. 15. Влияние сульфуризации на спектры оптического поглощения образца Cu₂SnS₃

Пятая глава посвящена исследованию электронных и оптических свойств структур кестерита и станнита соединения Cu₂ZnSnS₄ на основе расчётов из первых

Расчеты принципов. были теории выполнены В рамках функционала плотности С PAWиспользованием совместно потенциалов С полулокальным обменнокорреляционным функционалом РВЕ и гибридным функционалом HSE. реализованными R программном пакете VASP. Обрезание базиса плоских волн кинетической энергией 400 эВ и сетка точек в зоне Бриллюэна 8x8x4 обеспечили размером точность расчёта полной энергии 0.1 мэВ/атом. равную Электронные структуры И оптические свойства кестерита и станнита CZTS были рассчитаны с обменноразными корреляционными потенциалами: РВЕ, HSE, HSE+U. При этом,

Рис. 14. Энергетические зонные структуры кестерита и станнита соединения Cu₂ZnSnS₄

дополнительный потенциал Хаббарда U вводился чтобы улучшить описание сильно локализованных состояний *d*-и *f*-электронов.

Известно, что соединение Cu₂ZnSnS₄ принадлежит к семейству I-II-IV-VI полупроводников с двумя кристаллографическими модификациями кестерит (I $\overline{4}$) и станнит (I $\overline{4}$ 2m). Обе кристаллические структуры содержат восемь атомов в примитивной ячейке с объемно-центрированной тетрагональной решеткой. В этих структурах положения атомов подрешеток S и Sn одинаковые, а атомов Cu и Zn - разные. В структуре кестерита чередуются слои Cu-Sn и Cu-Zn, а в структуре станнита слои Zn-Sn и Cu-Cu. В данной работе расчеты полной энергии и зонной структуры в обоих случаях проводились для 16 атомов, лежащих внутри одной элементарной ячейки со структурами кестерита и станнита. Обнаружено, что структура кестерита является более стабильной, но разность полных энергий кестерита и станнита незначительна $\Delta E = 3,75$ мэВ/атом.

Зонные структуры для четверных соединений типа кестерит и станнит СZTS, полученные с использованием разных обменно-корреляционных потенциалов: PBE, HSE и HSE+U, представлены на рис. 14 (ноль на шкале энергий соответствует максимуму валентной зоны). Подобное поведение наблюдается в зонах обеих рассматриваемых кристаллографических модификаций. Станнит и кестерит являются прямозонными полупроводниками и характеризуются наличием запрещенной зоны вблизи центра зоны Бриллюэна (точки Г). Ширина запрещенной зоны очень сильно зависит от того, какой обменно-корреляционный потенциал использовался в расчете. При использовании приближения HSE+U значения E_g составили 1,49 эВ для структуры кестерита и 1,31 эВ для структуры кестерита [7] и станнита - в нашей работе (см. таб. 5).

Таблица 5. Параметры элементарной ячейки, разности полной энергии и значения ширины запрещенной зоны структуры кестерита и станнита Cu₂ZnSnS₄, рассчитанные с разными обменно-корреляционными потенциалами PBE, HSE, HSE+U по сравнению экспериментальными данными

Структура	a = b (Å)	c (Å)	c/2a	ΔE (эB)	Ширина запрещенной зоны E _g (эВ)	Ссылка
	5,473	10,950	1,0004	0,0	0,09	PBE
Кестерит	5,473	10,950	1,0004	0,0	1,18	HSE06
(I 4)	5,473	10,950	1,0004	0,0	1,49	HSE06+U
	5,426	10,810	0,9961		1,45	[7]
	5,468	10,965	1,0027	0,045	0,0	PBE
Станнит	5,468	10,965	1,0027	0,040	1,04	HSE06
(I42m)	5,468	10,965	1,0027	0,060	1,31	HSE06+U
	5,432	10,903	1,0035		1,33	наша работа

Для визуального анализа электронной структуры кестерита станнита И соединения CZTS были рассчитаны полная И парциальные плотности электронных состояний (см. глава 5, рис. 5.3 диссертации). Согласно кривым плотности электронных состояний, основное поглошение солнечного излучения материалам CZTS, при использовании солнечных В элементах. связано c электронными переходами из антисвязывающих состояний Cu-3d/S-3p в антисвязывающие состояния Sn-5s/S-3p.

Рис. 15. Мнимая и действительная части диэлектрической функции для кестерита и станнита соединения Cu₂ZnSnS₄

Рис. 16. Показатель преломления $n(\omega)$ (а); коэффициент экстинкции $k(\omega)$ (б); коэффициент оптического отражения $R(\omega)$ (в); спектр энергетических потерь $L(\omega)$ (г); оптический коэффициент поглощения $\alpha(\omega)$ (д) для структур кестерита и станнита соединения Cu₂ZnSnS₄.

Оптические характеристики кестерита и станнита CZTS вычисляются непосредственно из комплексной диэлектрической функции. Предсказанные диэлектрические функции для кестерита и станнита CZTS, полученные в PBE и HSE+U расчётах представлены на рис. 15. В спектре станнита CZTS наблюдаются смещения пиков в область низких энергий по сравнению с пиками в структуре

кестерита в связи с немного меньшей шириной запрещенной зоны. Значение статической диэлектрической проницаемости можно оценить по действительной части диэлектрической функции при частоте $\omega \rightarrow 0$. Средние статические значения составили 12,0 и 12,3 для кестерита и станнита CZTS в PBE расчётах, соответственно. Рассчитанные значения довольно близко к диэлектрической проницаемости в идеальной кристаллической структуре решетки κ_0 =11,9, определенной выше для станнита Cu₂ZnSnS₄ при исследовании его электрических свойств.

Поскольку рассчитанные оптические свойства весьма чувствительны к величинам межзонных переходов, в настоящей работе мы сообщаем расчёты главных оптических параметров CZTS, используя приближение HSE+U. На основе расчётов тензора диэлектрической проницаемости с использованием приближения HSE+U были определены главные оптические спектры: показателя преломления коэффициентов экстинкции $k(\omega),$ коэффициентов отражения $R(\omega)$, $n(\omega)$. коэффициентов поглощения $\alpha(\omega)$ и функция энергетических потерь $L(\omega)$ (см. рис. 16). Оптические свойства CZTS в структурах кестерита и станнита слабо зависят от распределения катионов (Cu, Zn). В целом, зонные структуры, кривые диэлектрической проницаемости и основные оптические спектры кестерита и станнита CZTS имеют довольно сходные особенности, несмотря на разные структуры. Согласно кривым коэффициентов отражения $R(\omega)$ (рис. 16в), кестерит и станнит CZTS имеют низкую отражательную способность в видимом диапазоне (менее 30%), что ниже, чем у кремния, который в основном широко используется в качестве фотоэлектрического поглотителя. Как показано на рис. 16г, кестерит и станнит прозрачны в области высоких энергий (около 15 эВ), что не влияет на поглощение видимого света. Также следует заметить, что коэффициент оптического поглощения α (рис. 16д), который пропорционален мнимой части диэлектрической функции, довольно велик в диапазоне энергий видимого света (>10⁴ см⁻¹). Таким образом, в соответствии с указанными выше свойствами, кестерит и станнит CZTS являются перспективными материалами для применения в качестве поглотителя в тонкопленочных солнечных элементах.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Методом пиролитического разложения исходных солей и тиомочевины синтезированы высоко чистые порошки Cu_2ZnSnS_4 и Cu_2SnS_3 . Методами рентгеновского дифракционного анализа и Рамановской спектроскопии исследованы структура и фазовый состав синтезированных образцов. По результатам данных методов установлено, что синтезированные образцы CZTS имеют структуру станнита, а образцы CTS в основном содержат Cu_2SnS_3 с тетрагональной сингонией.

2. Методом высокочастотного нереактивного магнетронного напыления получены пленки на основе Cu_2ZnSnS_4 и Cu_2SnS_3 . Установлено комплексное влияние параметров напыления (мощность, температура подложки, время напыления и процесс сульфуризации) на структуры, морфологию поверхности и оптические свойства сформированных тонких пленок. Ширины запрещенной зоны

сульфуризированных тонкопленочных соединений CZTS станнита И тетрагонального CTS были равны $E_g = 1,33$ эВ и $E_g = 1,62$ эВ, соответственно, что оптимальном диапазоне находится В ширины запрещенной зоны для преобразования солнечной энергии.

3. В объемных образцах станнита Cu_2ZnSnS_4 и тетрагонального Cu_2SnS_3 обнаружен переход от проводимости по ближайшим соседям к Моттовскому типу прыжковой проводимости с переменной длиной прыжка при уменьшении температуры до (180-140) К и ~145 К, соответственно.

электрического 4. Путем анализа поведения сопротивления образцов Cu_2ZnSnS_4 В низкотемпературной области В рамках модели Мотта В лиапазоне низкотемпературном позволили определить значения характеристической температуры, ширины зоны локализованных состояний и также оценить ряд дополнительных макро- и микропараметров, характеризующих электропроводность материала. При этом, были определены значения критической концентрации $N_c \approx 6.5 \times 10^{18}$ см⁻³, Боровского радиуса $a_B \approx 13.4$ Å, усреднённой плотности локализованных состояний $g \approx (2,9-4,4) \times 10^{16}$ мэВ⁻¹см⁻³, энергии центра акцепторной зоны $E_0 \approx 48$ мэВ и диэлектрической проницаемости $\kappa_0 = 11,9$.

5. Для соединения Cu_2SnS_3 значение критической концентрации составило $N_{C} \approx 3,1 \times 10^{18}$ см⁻³, Боровский радиус составил $a_{B} \approx 17,1$ Å, усреднённая плотность равна $g \approx (0, 7-1, 3) \times 10^{17}$ мэВ⁻¹см⁻³. состояний была локализованных a диэлектрическая проницаемость $\kappa_0 = 10,7$. Рассчитанное значение энергии центра акцепторной зоны $E_0 \approx 39,4$ мэВ свидетельствует о природе основных акцепторов как о дефектах V_{Си}. Обнаружено положительное магнитосопротивление в соединении Cu_2SnS_3 в широком температурном интервале T = 2-300 К. Установлено, области низкотемпературной проводимости что В магнитосопротивление подчиняется механизму Мотта в импульсных магнитных полях от 0 до 20 Тл.

6. Предложена схематическая модель плотности состояний дефектной акцепторной зоны, расположенной вблизи валентной зоны, установлено положение уровни Ферми, соответствующее низкой степени компенсации (К <<1). С помощью эффекта Холла установлен тип проводимости полупроводника полученных образцов и определен порядок величины концентрации носителей заряда.

7. Проведены квантово-механические расчёты электронных, структурных и оптических свойств соединения Cu₂ZnSnS₄ для структур кестерита и станнита с программного VASP. Ha основе расчётов помощью пакета тензора диэлектрической были определены проницаемости основные оптические характеристики: коэффициент поглощения, показатель преломления, коэффициент экстинкции, коэффициент отражения, и функция энергетических потерь.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

1. Tiwari, D. Structural and optical properties of layer-by-layer solution deposited Cu_2SnS_3 films / D. Tiwari, T.K. Chaudhuri, T. Shripathi// Journal of Materials Science: Materials in Electronics. – 2014. – Vol. 25. No 9. – P. 3687-3694.

2. Willoughby, A. Solar cell materials: developing technologies / A. Willoughby – Wiley, Chichester: Wiley Series in Materials for Electronic & Optoelectronic Applications. - 2014. – 111869581X.

3. Шкловский, Б. И. Электронные свойства легированных полупроводников / Б.И. Шкловский, А.Л. Эфрос – М.: Наука. – 1979. – 416 с.

4. Ito, K. Copper zinc tin sulfide-based thin film solar cells / K. Ito: Wiley Online Library. - 2014. – 111843787X.

5. Delbos, S. Kesterite thin films for photovoltaics: a review / S. Delbos // EPJ Photovoltaics. – 2012. – Vol. 3. – P. 35004.

6. Orletskii, I. G. Structural, optical, and electrical properties of Cu_2SnS_3 thin films produced by sol gel method / I. Orletskii, M. Solovan, F. Pinna, G. Cicero, P. Mar'yanchuk, // Physics of the Solid State. – 2017. – Vol. 59. No 4. – P. 801-807.

7. Zakaria, Z. Effects of sulfurization temperature on Cu_2ZnSnS_4 thin film deposited by single source thermal evaporation method / Z. Zakaria, P. Chelvanathan, M.J. Rashid // Japanese Journal of Applied Physics. – 2015. – Vol. 54. – P. 08KC18.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ:

В журналах, входящих в перечень рецензируемых научных изданий, рекомендованных ВАК

1. Захвалинский, В.С. Электронная зонная структура и основные оптические свойства структур кестерита и станнита материала для солнечной энергетики Cu₂ZnSnS₄: расчеты из первых принципов / В. С. Захвалинский, Нгуен Тхи Тхам Хонг, А. И. Картамышев, А. С. Сизов // Известия Юго-Западного государственного университета. Серия: Техника и технологии – 2019. Т. 9, № 4. С. 76–92.

2. Захвалинский, В.С. Синтез и исследование электропроводности материалов солнечной энергетики Cu₂SnS₃ и Cu₂ZnSnS₄ / В. С. Захвалинский, Нгуен Тхи Тхам Хонг, Е. А. Пилюк, В. М. Емельянов // Известия Юго-Западного государственного университета. Серия: Техника и технологии – 2020. Т. 10, № 2.

3. Захвалинский, В.С. Влияние нагрева подложек на свойства тонких пленок Cu₂ZnSnS₄ / Захвалинский В.С., Нгуен Тхи Тхам Хонг, Пхам Тхи Тхао, Пилюк Е.А., Кудрявцев Е.А., Захвалинский А.В. // Научные ведомости Белгородского государственного университета. Математика. Физика. – 2016. №6 (227), вып. 42. – С.122-128.

4. Захвалинский, В.С. Получение и исследование электропроводности Cu₂ZnSnS₄ / В. С. Захвалинский, Нгуен Тхи Тхам Хонг, Фам Тхи Тхао, А. Н. Хмара // Современные наукоемкие технологии – 2013. №6. – С.54-56.

5. Захвалинский, В.С. Получение и исследование электропроводности Cu₂SnS₃/ В.С. Захвалинский, Фам Тхи Тхао, Нгуен Тхи Тхам Хонг, А. Н. Хмара // Современные наукоемкие технологии – 2013. №6. – С.58-59.

В журналах, индексируемом в базе данных Scopus и Web of Science

6. Nguyen, Hong T T. Structural properties and variable-range hopping conductivity of Cu_2SnS_3 / Hong T T Nguyen, Zakhvalinskii V.S., Thao T Pham, N. T. Dang, Tuan V Vu, Pilyuk E.A. and Rodriguez G.V. // Materials Research Express. – 2019. – Vol. 6. – P. 055915-055924.

7. Zakhvalinskii, V.S. Structural, Optical and Electrical Conductivity Properties of Stannite Cu_2ZnSnS_4 / Zakhvalinskii V.S., Thi Tham Hong Nguyen, Thi Thao Pham, Ngoc Toan Dang, Piliuk E.A., Taran S.V.// Journal of Electronic Materials. – 2017. –Vol. 46, No6. – P. 3523-3530.

В других изданиях

8. Захвалинский, В.С. Влияние температуры подложки на формирование тонких пленок Cu₂SnS₃ / Захвалинский В.С., Фам Тхи Тхао, Нгуен Тхи Тхам Хонг, Пилюк Е.А., Кудрявцев Е.А., Кузьменко А.П. // XIII Международной конференции «Перспективные техно-логии, оборудование и аналитические системы для материаловедения и наноматериалов», Курск. – 2016. – С.250-256.

9. Нгуен, Тхи Тхам Хонг. Расчет из первых принципов атомной структуры Cu₂ZnSnS₄ / Нгуен Тхи Тхам Хонг, Хоанг Вьет Хунг. // L Школы ПИЯФ по физике конденсированного состояния (ФКС-2016), Санкт-Петербург. – 2016. – С.189.

10. Zakhvalinskii, V.S. Structural, optical and electrical properties of stannite Cu_2ZnSnS_4 / Zakhvalinskii V.S., Nguyen Thi Tham Hong, Pham Thi Thao, Dang Ngoc Toan, Piliuk E.A., Taran S.V. // The ^{3rd} International Conference on Advanced Materials and Nanotechnology, Hanoi. – 2016. – C.29-35.

11. Захвалинский, В.С. Синтез и исследование электропроводности материалов солнечной энергетики Cu₂SnS₃, Cu₂ZnSnS₄ / Захвалинский В.С, Фам Тхи Тхао, Нгуен Тхи Тхам Хонг // VII Всероссийская конференция «Научная инициатива иностранных студентов и аспирантов российских вузов», Томск - Сборник докладов Том 2. – 2014 – C.295-301.

12. Захвалинский, В.С. Синтез нано кристаллического Cu₂SnS₃ методом пиролитического разложения / Захвалинский В.С., Фам Тхи Тхао, Нгуен Тхи Тхам Хонг, Родригес В.Г., Данг Нгок Тоан // Современные тенденции в образовании и науке. Сборник научных трудов по материалам, Тамбов. –2014 – C.140-141.

13. Захвалинский, В.С. Исследовние структурных характеристик и электропроводности станнита Cu₂ZnSnS₄ / Захвалинский В.С., Нгуен Тхи Тхам Хонг, Фам Тхи Тхао, Родригес В.Г., Данг Нгок Тоан // Современные тенденции в образовании и науке. Сборник научных трудов по материалам, Тамбов. –2014. – C.89-92.

14. Zakhvalinskii, V.S. Preparation and investigation of Cu_2ZnSnS_4 / Zakhvalinskii V.S., Nguen Thi Tham Hong, Fam Thi Thao, Hmara A.N., Taran S.V., Ivanchikhin S.V. // Научные ведомости Белгородского государственного университета. Экспериментальная и прикладная физика. – 2014. № 7 (178) – C.42-46.

15. Нгуен, Тхи Тхам Хонг. Синтез кистерита Cu₂ZnSnS₄ и получение плёнок на его основе / Нгуен Тхи Тхам Хонг. Н.рук. Захвалинский В.С./ / Вестник СНО. Сборник студенческих научных работ. Выпуск XVI. Раздел 6: Физика. – 2012. – С. 234-238.

Подписано в печать 22.10.2020 г. Формат 60х84/16. Гарнитура Times. Усл. п. л. 1,22. Тираж 100 экз. Заказ №____ Оригинал-макет подготовлен и тиражирован в ИД «Белгород» НИУ «БелГУ» 303015, г. Белгород, ул. Победы, 85