На правах рукописи

Allen

ШИШАЦКИЙ Станислав Владимирович

ПРИМЕНЕНИЕ ИМПУЛЬСНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НИЗКОЙ ЧАСТОТЫ В ПРАКТИКЕ ВЕТЕРИНАРНОЙ ХИРУРГИИ У СОБАК

16.00.05 - ветеринарная хирургия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата ветеринарных наук

Работа выполнена на кафедре ветеринарной хирургии и акушерства ФГОУ ВПО «Оренбургский государственный аграрный университет»

Научный руководитель:

доктор ветеринарных наук, профессор

Дмитриева Таисия Александровна

Официальные оппоненты: доктор ветеринарных наук, профессор

Ермолаев Валерий Аркадьевич

кандидат ветеринарных наук,

Давлетбердин Дамир Фархитдинович

Ведущая организация:

ФГОУ ВПО «Уральская государственная

академия ветеринарной медицины»

Защита состоится « 17 » декабря 2004 г. в $\frac{1000}{}$ часов на заседании диссертационного совета Д 220.051.01 при ФГОУ ВПО «Оренбургский государственный аграрный университет» (460795, г.Оренбург, ГСП, ул. Челюскинцев, 18)

С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО «Оренбургский государственный аграрный университет».

Автореферат разослан « 15 » исил да 200 г. сертационного совета, наук, профессор Тайгузин Р.Ш.

Ученый секретарь диссертационного совета, доктор биологических наук, профессор

3

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность темы. В последние годы большое внимание уделяется собаководству. Количество собак, используемых только для службы в Вооруженных Силах РФ, достигает 20 тысяч. Велика роль собак-поводырей в жизни людей, утративших зрение, собак-спасателей, а также специально обученных собак для работы на таможне, в сторожевой службе и многих других отраслях.

Травматизм в собаководстве имеет очень широкое распространение, особенно среди служебных собак. К наиболее распространенным механическим травмам относятся такие, как ушибы, раны, ожоги, вывихи суставов, разрывы связок и сухожилий, переломы и трещины костей и другие виды травм (Веремей Э.И., Карамалак А.И., 2002). Все это требует внедрение новых и совершенствование старых методов лечения.

В ветеринарной практике в настоящее время пока еще мало используют физические методы лечения и профилактики болезней животных. Хотя, в 1994 году Департамент ветеринарии Минсельхозпрода России внес в Программу аграрной реформы в Российской Федерации раздел разработки эффективной системы получения экологически чистой продукции животноводства, основанной на применении физических методов профилактики и лечения незаразных болезней животных с использованием электромагнитных токов УВЧ, КВЧ и лазеров различных модификаций, а также других безмедикаментозных способов лечения. Использование этих методов физиотерапии при самых различных заболеваниях дает хорошие результаты.

В хирургической практике физические методы применяют для лечения артритов у свиней (Издепский В.П., Рубленко М.В., 1987), огнестрельных ран у собак (Тимофеев С.В., 1995), при асептических тендовагинитах у лошадей (Петраков К.А., 1998) и др. Использование этих методов физиотерапии дает хорошие результаты и при акушерских заболеваниях (Балковой И.И. и др., 1991; Иноземцев В.П. и др., 1996; Комарова Н.К., Чернова О.Л., 1996; Аверкиев А.А., Баловнева Е.Г., 1998). Так, например, лечение коров, больных маститом, антибиотиками и другими химиотерапевтическими средствами приводит к значительному загрязнению молока. Физические методы лечения лишены этих недостатков. Кроме того, они намного дешевле лекарственных препаратов, а по терапевтической эффективности не только не уступают, но в ряде случаев их превосходят.

Одним из новых, малоизученных методов физиотерапевтического воздействия на организм животных является импульсное электромагнитное поле низкой частоты. Ранее такими полями пренебрегали, считая их низкоэнергетическими и не способными влиять на патологический очаг. Однако исследования

РОС. НАДООНАЛЬНАЯ БИБЛИОТЕКА С.СетерСург 2017/3 последних лет показали ошибочность такого мнения (Заславский А.Ю., Маркаров Г.С., 1994; Богомильский М.Р., Сапожников Я.М. и др., 1996; и др.).

Положительные результаты, полученные в выше перечисленных исследованиях, подчеркивают научную и практическую ценность исследований в этом направлении,

Цель и задачи исследований. Цель исследований состоит в том, чтобы определить возможность использования импульсного низкочастотного электромагнитного поля (ЭМП) в сочетании с медикаментозными средствами при лечении собак с гнойными ранами, а также в послеоперационном периоде при полостных операциях, в частности гастротомии.

Для достижения цели исследования были поставлены следующие задачи:

- Изучить действие импульсного низкочастотного ЭМП различных параметров на клинические, гематологические показатели клинически здоровых собак, а также на факторы неспецифической защиты организма и общий белок.
- Изучить терапевтическое действие импульсного низкочастотного ЭМП в сочетании с 10%-ным раствором димексида на течение раневого процесса у собак.
- 3. Изучить терапевтическое действие импульсного низкочастотного ЭМП в сочетании со споробактерином на течение раневого процесса у собак.
- Гистологическими методами изучить особенности регенеративных процессов в гнойной ране у собак при применении выще указанных методов лечения и сравнить динамику процесса заживления.
- 5. Изучить терапевтическое действие импульсного низкочастотного ЭМП на течение восстановительных процессов в послеоперационном периоде после гастротомии у собак.

Научная новизна работы состоит в том, что впервые, основываясь на результатах клинических, гематологических показателей, гистологических исследований, показателей факторов неспецифической защиты и общего белка, установлено положительное влияние импульсного ЭМП низкой частоты на течение регенеративных процессов у собак. Определено терапевтическое действие импульсного ЭМП низкой частоты на течение послеоперационного периода после гастротомии у собак.

Теоретическая и практическая значимость работы.

Предложен новый метод физиотерапевтического воздействия импульсным ЭМП низкой частоты при лечения инфицированных ран и в восстановительный период после гастротомии у собак. На основании клинических, гематологических данных и данных факторов неспецифической защиты организма доказано преимущество сочетания медикаментозного лечения с воздействием импульсного низкочастотного ЭМП, по сравнению с традиционными (только медикаментозными) методами лечения.

Апробация работы.

Материалы диссертации доложены, обсуждены и одобрены: на итоговых научно-практических конференциях факультета ветеринарной медицины и биотехнологии Оренбургского государственного аграрного университета (2001-2003); на Региональной научно-практической конференции молодых ученых и специалистов (Оренбург, 2003); Международной научно-практической конференции «Актуальные проблемы ветеринарной медицины» (Ульяновск, 2003); Международной научно-практической конференции «Актуальные проблемы ветеринарной медицины и биологии» (Оренбург, 2003).

Результаты научной работы внедрены в ООО «Вет НПО «Зоосфера» (г.Оренбург) и в Центре кинологической службы при УВД Оренбургской области.

Публикации результатов исследований.

По теме диссертации опубликовано пять научных статей, отражающих основное содержание работы.

Основные положения, выносимые на защиту.

- Импульсное низкочастотное электромагнитное поле с различными параметрами не оказывает значительного влияния на клинические, гематологические показатели клинически здоровых собак, а также на факторы неспецифической защиты организма и общий белок.
- 2. Сокращение сроков лечения инфицированных ран у собак под влиянием импульсного электромагнитного поля низкой частоты в сочетании с медикаментозным лечением.
- 3. Импульсное электромагнитное поле низкой частоты благоприятно влияет на течение послеоперационного периода у собак, подвергнутых гастротомии.

Объем и структура диссертации.

Диссертация изложена на 142 страницах компьютерного набора и состоит из введения, обзора литературы, собственных исследований, обсуждения результатов, заключения, выводов, практических предложений и библиографического списка использованной литературы, содержащего 188 источников (из них 151 отечественных и 37 иностранных). Текст диссертации иллюстрирован 22 таблицами и 27 рисунками.

2. СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

2.1. Материал и методика исследований

Экспериментальная и клиническая часть работы по изучению влияния низкочастотного импульсного электромагнитного поля была выполнена в период 2001-2003 годы на кафедре ветеринарной хирургии и акушерства Оренбургского государственного аграрного университета.

Источником низкочастотного импульсного электромагнитного поля служил аппарат «Каскад». Аппарат создан Московским государственным техническим университетом им. Н.Э.Баумана.

В первой серии опытов мы провели изучение влияния разных параметров импульсного ЭМП низкой частоты на клинические, гематологические показатели клинически здоровых собак, а также на факторы неспецифической защиты организма и общий белок.

По принципу аналогов были подобраны 10 беспородных собак, обоих полов, в возрасте от 1 до 3 лет, разделенных на 2 равные группы.

На животных первой группы воздействовали ЭМП следующих параметров: частота импульсов — 1,2 Гц; форма импульсов — 1:2; уровень выходного сигнала — 9; экспозиция — 10 минут. На вторую группу животных воздействовали ЭМП с другими параметрами: частота импульсов — 2,5 Гц; форма импульсов — 1:2; уровень выходного сигнала — 10; экспозиция — 15 минут. Воздействующую часть электромагнитного аппарата «Каскад» накладывали на корпус животного. Воздействие проводили в течение десяти дней. Опыты с животными проводились утром, перед кормлением.

Клинические показатели у подопытных животных (общая температура тела, количество пульсовых ударов, количество дыхательных движений) измерялись до воздействия, через 15 минут и через 1 час после прекращения процедуры, а также через 1, 2, 3 дня после завершения всего курса воздействия.

Перед опытом, а затем через 1, 5 и 10 дней после начала воздействия ЭМП, а также через 3 дня после прекращения опыта брали кровь для гематологических исследований и для определения уровня факторов неспецифической защиты организма.

Во второй серии опытов проводили изучение влияния импульсного ЭМП низкой частоты в установленных нами параметрах на течение раневого процесса. Для этого 20 клинически здоровых беспородных собак в возрасте от 1 до 3 лет разделили на 4 группы по 5 голов в каждой.

Кожно-мышечные раны воспроизводили на фоне премедикации 2%-ным раствором рометара из расчета 0,15 мл/кг живой массы. В каждой группе в заостной области лопатки моделировали инфицированные раны путем рассечения кожи и подлежащих мягких тканей длиной 5 см и глубиной 1 см бсз соблюдения правил асептики и антисептики.

Раны инфицировали путем наложения на раневую поверхность марлевой салфетки, смоченной взвесью микробных культур S. aureus и E. coli, взятых в равных количествах в концентрации 1 млрд. микробных тел в 1 мл. Для фиксации салфетки на рану накладывали провизорные швы.

Через двое суток провизорные швы снимали, удаляли инфицированные салфетки и начинали лечение.

Животные первой группы служили контролем. Им проводили орошение раны 10%-ным раствором димексида. Животным второй группы (опытные) назначали такое же лечение с сочетанием действия низкочастотного импульсного ЭМП, создаваемого аппаратом «Каскад». Лечение животных третьей группы проводили орошением раны споробактерином (контрольная группа). Животных четвертой группы кроме споробактерина подвергали воздействию импульсного ЭМП низкой частоты, создаваемого аппаратом «Каскад» (опытная группа). Во второй фазе раневого процесса применялась стрептоцидовая мазь.

Димексид — это нестероидный противовоспалительный препарат, проявляющий также выраженное местно обезболивающее и антимикробное действие.

Споробактерин жидкий — пробиотик, изготавливаемый на основе штамма Bacillus subtilis 534. Представляет собой взвесь культуры штамма Bacillus subtilis 534 в 1-7% растворе натрия хлорида.

Применение аппарата «Каскад» осуществлялось в следующих режимах: частота импульсов — 1,2 Гц; форма импульсов — 1:2; уровень выходного сигнала — 9; экспозиция — 10 минут. Воздействие проводили ежедневно в течение 10 дней, затем перерыв 3 дня и далее в том же режиме до выздоровления.

Течение раневого процесса и уровень факторов неспецифической защиты организма у контрольных и опытных животных во второй серии опытов изучали по следующим показателям:

- 1. Оценка клинического состояния, которое включало наблюдение за общим состоянием, измерение общей температуры тела, пульса, частоты дыхательных движений.
- 2. Динамика гематологических показателей у контрольных и подопытных животных до опыта, а затем на 1, 5, 10, 15 и 20 сутки после моделирования раневого процесса.
- 3. Динамика общего белка, бета-лизина, лизоцима и бактерицидной активности сыворотки крови животных до и в процессе лечения.
- 4. Оценка течения регенеративных процессов соединительной ткани при экспериментальных инфицированных кожно-мышечных ранах в различных условиях их заживления.

Для оценки заживления экспериментальных кожно-мышечных ран регулярно проводили морфометрию раневого дефекта по методике Л.Н. Поповой (1942), фотографирование ран. Фиксировали сроки полного заживления, за которое принимали полное покрытие раневого дефекта слоем эпителия.

Для гистологических исследований проводили биопсию тканей через 3, 7, 12 и 17 дней после нанесения ран. Кусочки тканей фиксировали в 10%-ном растворе формалина. Серийные целлоидиновые срезы окрашивали гематоксилинэозином. В третьей серии опытов мы проводили изучение влияния импульсного низкочастотного ЭМП на течение послеоперационного периода после гастротомии у собак. Материалом для эксперимента послужили клинически здоровые беспородные собаки обоих полов в возрасте от 1 до 3 лет в количестве 6 голов. Всем животным было проведено хирургическое вмешательство – гастротомия на фоне премедикации 2%-ным раствором рометара из расчета 0,15 мл/кг живой массы и местного обезболивания. На желудок накладывали двухэтажный шов. Первый – шов Шмидена, второй – шов Садовского. Рану брюшной стенки закрывали прерывистым узловатым швом, накладываемым на брюшину и белую линию живота, и затем на кожу.

Животных разделили на 2 группы. Собак одной группы (контрольная) лечили следующим образом: послеоперационные раны первые четыре дня обрабатывали 5%-ным спиртовым раствором йода и ихтиоловой мазью, а затем только ихтиоловой мазью. Раны животных другой группы (опытная) лечили по той же схеме, но дополнительно проводили воздействие импульсным ЭМП низкой частоты, создаваемым аппаратом «Каскад» в указанных режимах. Воздействие проводили ежедневно в течение 10 дней.

Динамику гематологических показателей крови животных контрольной и подопытной групп, а также уровень факторов неспецифической защиты организма и общего белка сыворотки крови, изучали до операции, а затем через 1, 4, 8 и 12 суток.

Кровь для исследований во всех сериях опытов брали в утреннее время перед кормлением из подкожной вены предплечья.

Для гематологических исследований полученные пробы крови стабилизировали 10%-ным раствором этилендиаминтетрауксусной кислоты натриевой соли (ЭТДА-натрия, трилон Б).

Количество лейкоцитов и эритроцитов подсчитывали в камере Горяева по общепринятым методикам (Егоров А.П., 1954; Смирнов А.М., 1978; Муха С.М., 1984; Кондрахин И.П., 1985).

Процентное соотношение отдельных видов лейкоцитов определяли в мазках, изготовленных из нативной крови (Кудрявцев А.А., Кудрявцева Л.А., 1974).

Содержание гемоглобина устанавливали на ФЭКе.

Скорость оседания эритроцитов учитывали по методу Н.С. Поликарпова и Т.А. Дмитриевой (1965), устанавливая пипетки Панченкова под углом 50°.

Сыворотку крови получали после ретракции кровяного сгустка. В ней определяли бактерицидную активность по методу О.В. Бухарина и В.Л. Созыкина (1979) с использованием тест-культуры Е. coli 111.

Уровень лизоцима устанавливали с использованием суточной культуры Micrococcus lysodeicticus штамм 2665 ГКИ им. Л.А. Тарасевича по О.В. Бухарину.

Бета-литическая активность сыворотки крови определялась фотонефелометрическим методом по О.В. Бухарину и соавт. (1972). В качестве тест-культуры использовали В. subtillis штамм 83 ГКИ им. Л.А. Тарасевича.

Определение количества общего белка проводили с помощью рефрактометра ИРФ-23.

Полученные статистические данные подвергали математической обработке на ПЭВМ «Celeron – 433», с использованием прикладной программы Microsoft Excel – 97 (пакет анализа), с применением критерия Стьюдента.

2.2. Результаты собственных исследований

2.2.1. Влияние импульсного электромагнитного поля низкой частоты на клинические и гематологические показатели здоровых животных

Для изучения влияния импульсного ЭМП низкой частоты нами использовались два основных режима. Для этого было сформировано две группы клинически здоровых животных (по 5 голов в каждой). На животных первой группы воздействовали ЭМП следующих параметров: частота импульсов — 1,2 Гц, форма импульсов — 1:2, уровень выходного сигнала — 9, экспозиция — 10 мин. На вторую группу животных воздействовали ЭМП с другими параметрами: частота импульсов —2,5 Гц, форма импульсов — 1:2, уровень выходного сигнала — 10, экспозиция — 15 мин. Воздействие проводилось в течение 10 дней.

Во время проведения процедуры животные обеих групп не проявляли признаков беспокойства, а у некоторых уже после первых минут отмечались признаки легкой сонливости. Такое состояние сохранялось в течение всего времени воздействия. После процедуры общее состояние собак оставалось в норме, они активно двигались, проявляли интерес к окружающему, охотно участвовали в играх с другими животными.

Мы наблюдали за изменениями клинических данных животных на протяжении всего срока воздействия, а так же в течение трех дней после прекращения процедур.

Температура тела подопытных животных после воздействия импульсным ЭМП низкой частоты претерпевает незначительные изменения в обеих группах. А именно, отмечалась тенденция к увеличению температуры тела через 15 минут после воздействия ЭМП. Эти изменения не достоверны и не превышали 0,22°С. Через 1 час этот показатель возвращается к исходным данным. Это связано, скорее всего, с колебанием свободных ионов в тканях под действием ЭМП и выделением при этом кинетической энергии.

Частота пульса и дыхания в течение 15 минут и 1 часа после воздействия ЭМП в обеих группах во все дни исследования колебалась в пределах физиологической нормы. Не было выявлено изменений и в характере дыхания.

Изучение гематологических показателей проводили до воздействия ЭМП, после 1, 5 и 10 сеансов, а так же через 3 дня после прекращения процедур (таблица 1).

Таблица 1. Динамика гематологических показателей собак под действием пизкочастотного импульсного ЭМП ($\overline{x} \pm S \overline{x}$, n=5 в каждой группе)

Режимы ЭМП	Choses score	ПОКАЗАТЕЛИ					
	Сроки иссле- довання	Лейкоциты, 10 ⁹ /л	Эритроциты, 10 ¹² /л	Гемоглобин, г/л	СОЭ, мм/час		
Частота им-	Норма	8,31±1,038	5,37±0,403	124,8±5,88	25,2±3,22		
пульсов – 1,2 Гц; форма им-	1 сеанс	8,83±0,499	5,97±0,429	109,2±8,23	20,8±4,72		
пульса 1:2; уро-	5 сеансов	9,08±0,322	6,16±0,351	113,6±7,33	26,4±7,08		
вень вых, сиг- нала – 9; экспо-	10 сеансов	9,30±0,860	5,98±0,362	110,0±7,33	29,4±5,58		
зиция – 10 мин.	Через 3 дня после возд.	8,98±0,603	5,89±0,198	121,6±3,62	27,0±4,29		
Частота им-	Норма	9,95±0,849	5,15±0,224	123,2±4,21	33,4±6,87		
пульсов — 2,5 Гц; форма им- пульса 1:2; уро- вень вых. сиг- нала — 10; экс-	1 сеанс	9,02±0,642	5,43±0,411	126,8±3,78	23,0±6,22		
	5 сеансов	9,14±0,679	5,52±0,294	104,4±7,55	30,4±5,15		
	10 ссансов	9,99±0,886	5,22±0,263	105,2±2,52 *	30,6±6,22		
позиция – 15 мин.	Через 3 дня после возд.	10,16±0,672	5,23±0,221	107,6±5,20	39,8±3,22		

^{* -} достоверность разности результатов по сравнению с фоном (р<0,05)

Количество лейкоцитов в крови после первого сеанса в первой группе повышалось на 6,3%, а во второй, наоборот, понижалось на 9,3%. Далее наблюдалась тенденция к увеличению и через 3 дня после 10-го сеанса этот показатель был незначительно выше фоновых данных.

В обеих группах было зафиксировано незначительное повышение количества эритроцитов до 5-го сеанса в среднем на 10,9%, а затем плавное снижение этого показателя. Но даже через 3 дня после прекращения воздействия ЭМП количество эритроцитов оставалось выше фоновых данных в среднем на 5,6%.

Следует отметить тенденцию снижения количества гемоглобина в течение всего опыта. Более четко это проявилось во второй группе и к 10-му дню этот показатель снизился на 14,6%. В первой группе снижение было не столь значительным и в этот же срок содержание гемоглобина снизилось на 11,9%. После прекращения воздействия ЭМП этот показатель в первой группе увеличивался и через 3 дня находился на уровне, близком к исходным данным. Во

второй же группе через 3 дня после прекращения воздействий ЭМП количество гемоглобина все еще было ниже фоновых данных на 12,7%.

Эти изменения, по видимому, связаны с влиянием данного физического фактора на эритропоэз, стимуляция которого ведет к выходу в кровяное русло незрелых форм эритроцитов. Увеличение синтеза количества эритроцитов, повидимому, ведет к снижению в них гемоглобина.

Скорость оседания эритроцитов в обеих группах имеет тенденцию к снижению после первого сеанса, но далее приближается к исходным данным и больше существенно не отклоняется.

Показатели лейкограммы во все сроки исследования в обеих группах не выходили за пределы физиологической нормы и достоверных отличий от фоновых данных не имели.

Мы наблюдали за изменениями факторов неспецифической защиты под действием импульсного ЭМП низкой частоты. Исследования проводили в те же сроки, что гематологические показатели.

Наши наблюдения показали, что факторы неспецифической защиты собак во все дни наблюдений существенно от фоновых данных не отличались.

Таким образом, мы склонны считать, что импульсное низкочастотное электромагнитное поле с изученными нами параметрами не способно вызвать отрицательные изменения в клинических и гематологических показателях здоровых собак и факторах неспецифической защиты организма, за исключением содержания гемоглобина, ЭМП вызывает стойкое его снижение.

Однако надо сказать, что параметры ЭМП второй группы животных обуславливают более заметные отклонения гематологических показателей, особенно в содержании гемоглобина. В связи с этим для дальнейшей работы были избраны более щадящие параметры ЭМП первой группы.

2.2.2. Клиническое состояние животных и динамика гематологических показателей при различных методах лечения инфицированных кожномышечных ран

Во второй серии опытов проводили изучение влияния импульсного ЭМП низкой частоты в установленных нами параметрах на течение раневого процесса. Для этого 20 клинически здоровых собак разделили на 4 группы по 5 голов в каждой.

В каждой группе в заостной области лопатки моделировали инфицированные кожно-мышечные раны путем рассечения кожи и подлежащих мягких

тканей длиной 5 см и глубиной 1 см на фоне премедикации 2%-ным раствором рометара.

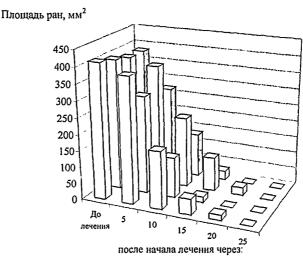
Раны инфицировали взвесью микробных культур S. aureus и E. Coli.

На третьи сутки начинали лечение.

Животные первой группы служили контролем. Им проводили орошение раны 10%-ным раствором димексида. Животным второй группы (опытные) назначали такое же лечение с сочетанием действия низкочастотного импульсного ЭМП. Лечение животных третьей группы проводили орошение раны споробактерином (контрольная группа). Животных четвертой группы кроме споробактерина подвергали воздействию ЭМП (опытная группа). Во второй фазе раневого процесса применялась стрептоцидовая мазь.

На третий день после нанесения ран, перед началом лечения, у всех животных наблюдались сходные клинические признаки: угнетение, снижение и потеря аппетита. Окружающие рану ткани гиперемированы, болезненные при прикосновении, края и дно раны отечные, полость раны заполнена гноем сметанообразной консистенции, грязно-желтого цвета, местная температура повышена.

У животных группы №1 на 3-ий день лечения отечность краев и дна ран несколько снизилась, менее выражена болезненность. На 5-6 сутки экссудация заметно снизилась, отечность краев и дна ран значительно выражена, появились единичные грануляции. К 10-му дню лечения раны очищались от экссудата и полностью покрывались грануляциями. Полное заживление ран наступало через 22-23 дня.


У собак 2-ой группы на 3-ий день лечения отечность краев и дна ран практически исчезала, резко снижалась экссудация и болезненность. На 4-5 сутки появились первые участки грануляции. К 10-му дню раны значительно уменьшались по своим линейным размерам, раневой дефект полностыю заполнялся грануляционной тканью. Полное заживление ран наступало на 17-18 день.

На 3-ий день лечения в группе №3 (контрольная) ткани вокруг раи были покрасневшие, отечность краев и дна ран несколько снижена, болезненная реакция на прикосновение менее выражена. На 5-6 сутки заметно снизилась экссудация и местная температура, несколько сократилась отечность, встречались единичные грануляции. К 10-му дню лечения размер раны хотя и сокращался, но зияние ран было ярко выражено. Сохранялась отечность краев ран. Полное заживление ран наступало на 22-23 день.

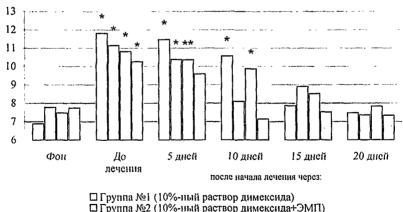
У животных группы №4 течение раневого процесса визуально было более благоприятным, чем у контрольных животных. Быстрее спадала отечность краев и дна ран (на 3-4 сутки после начала лечения), в эти же сроки значительно снижалась экссудация и болезненность. На 4-5 сутки появлялись первые участки грануляций. К 10-му дню линейный размер ран значительно уменьшался, раневой дефект почти полностью заполнен грануляционной тканью. Полное заживление ран наступало на 18-19 день.

Таким образом, отмечалось сокращение сроков течения раневого процесса у собак, на которых воздействовали импульсным ЭМП низкой частоты. Мы считаем, что это связано с влиянием данного физического фактора на функционирование нейроэндокринной системы. Центр воспаления и прилегающие к нему ткани становятся мощным очагом патологической импульсации. Низкочастотное импульсное ЭМП создает в тканях импульсы, аналогичные импульсам здоровой ткани и является средством патогенетической терапии.

Динамика суточного уменьшения площади ран всех групп животных, анализируемой по методу Л.Н. Поповой (1942), представлена на рисунке 1. Как видно, во всех группах животных наблюдалась стойкая тенденция к уменьшению площади ран. Более быстрое заживление ран у животных подопытных групп подтверждается измерением площади раневой поверхности и динамикой

□ Группа 1 (контроль) □ Группа 2 (опыт) □ Группа 3 (контроль) □ Группа 4 (опыт)

Рис. 1. Динамика уменьшения площади ран.


суточного уменьшения площади ран. Так, уже через 5 дней лечения площадь ран у животных, обрабатываемых 10%-ным раствором димексида и воздействием на животное импульсным ЭМП низкой частоты, была ниже, чем у животных, которые подвергались воздействию только 10%-ного раствора димексида, на 22,3% (p<0.01). У собак, обрабатываемых споробактерином, наблюдались сходные изменения. Площадь раны у опытных животных на 5-е сутки лечения была ниже, чем у контрольных животных на 26,1% (p<0,05). Достоверная разница площади ран в контрольных и подопытных группах сохранялась до полного их заживления.

Общая температура тела животных после нанесения ран повышалась до 39,4-39,6 °C. Это объясняется тем, что развивающиеся воспалительные процессы в местах ранения, являются источниками пирогенов, которые, воздействуя на теплорегулирующие центры головного мозга, вызывают нарушение их функции.

Общая температура тела у собак контрольной группы №1 приходила в норму к 13-му дню, а у собак подопытной группы №2 - к 8-му дню, у собак группы №3 – на 12-ые сутки, а у собак группы №4 – на 11-е сутки.

Гематологические показатели изучались до опыта, а затем на 1, 5, 10, 15 и 20 сутки с момента начала лечения ран.

После нанесения ран у всех животных отмечалось достоверное увеличение общего количества лейкоцитов (рис.2). Это связано с развитием воспали-

- □ Группа №2 (10%-ный раствор димексида+ЭМП)
- □ Группа №3 (споробактерин)
- □ Группа №4 (споробактерин + ЭМП)
- * достоверность разности по сравнению с фоном (p<0,05)
- ** достоверность разности по сравнению с фоном (p<0,01)

Рис.2. Изменение содержания лейкоцитов в крови собак опытных и контрольных групп $(10^9/\pi)$.

тельного процессов в организме. Постепенно, с уменьшением тяжести воспалительного процесса, снижался и лейкоцитоз. Так, у животных группы №1 количество лейкоцитов приходит к значениям физиологической нормы к 15-м суткам, у животных группы №2 – к 10-м суткам, у собак третьей группы – к 10-му дню лечения, а у собак 4-ой группы – уже к 5-му дню лечения. Это говорит о более быстром снижении тяжести воспалительного процесса у собак опытных групп.

Говоря об увеличении или уменьшении общего числа лейкоцитов в периферической крови необходимо обращать внимание и на изменения хотя бы одной какой-либо группы лейкоцитов (таблица 2).

Базофилы в крови собак нами практически не отмечались.

Таблица 2. Лейкограмма собак опытных и контрольных групп $(\overline{x} \pm S \, \overline{x}, \, n=5 \, \text{в каждой группе})$

		показатели, %							
} ≅	Сроки не-		,	l	Ісйтрофилы				
Группы	следования	Базо- филы	Эозино- филы	Юные	Палочкоя дерные	Сегмен- тоядер- ные	Лимфо- циты	Моно- циты	
	Фон	0	8,2±1,05	0	2,4±0,43	57,2±5,68	29,4±2,81	2,8±0,86	
15 (a)	До лечения	0	6,8±1,29	3,2±0,43	6,2±0,86 *	50,2±3,49	30,0±2,24	3,6±0,64	
] E B	Через 5 дн.	0	6,2±1,72	2,4±0,64	5,0±0,64 *	48,2±2,61	36,6±1,73	1,6±1,07	
巨星	Через 10 ди	0	4,6±2,58	0,8±0,22	2,4±0,64	59,6±1,92	31,4±2,61	1,2±0,43	
Группа № (контроль	Через 15 дн	0	13,2±1,50	0	3,6±0,43	44,4±2,46	34,6±3,07	4,2±0,64	
	Через 20 дн	0	7,2±1,29	0	5,4±0,64 *	57,2±2,24	26,4±4,12	3,8±1,29	
<u> </u>	Фон	0	6,2±0,86	0	2,0±0,86	55,0±3,27	35,2±3,91	1,6±1,72	
Fpynna Ne2 (onerr)	До лечения	0	4,0±1,72	3,4±0,64	6,8±0,64 *	52,2±3,70	30,8±5,46	2,8±0,43	
ynna N	Через 5 дн.	0	4,6±1,29	1,8±0,43	7,0±0,64 *	50,6±1,37	32,6±2,68	3,2±1,29	
15 5	Через 10 ди	0	6,6±1,50	0	2,6±0,43	52,8±1,91	36,4±1,72	1,6±0,64	
ر جا	Через 15 ди	0	8,6±1,50	0	4,8±0,64	48,6±2,68	36,0±1,72	1,2±1,29	
L	Через 20 дн	0,2±0,22	4,8±2,58	0	3,4±0,86	56,0±2,46	34,2±2,24	1,4±1,50	
	Фон	0_	6,6±1,29	0	2,0±0,43	55,2±2,46	32,4±3,90	3,8±0,64	
13 E	До лечения	0	5,4±1,05	2,8±0,64	5,6±0,86 *	53,0±3,74	28,8±3,90	4,4±1,07	
Группа №3 (контроль)	Через 5 дн.	0	4,4±0,86	2,6±0,43	4,6±0,64	60,2±2,68	25,6±3,07	2,6±0,43	
E E	Через 10 дн	0,2±0,22	1,6±1,50	0,4±0,22	1,6±0,43	68,8±3,44	20,0±5,46	4,4±0,86	
E 3	Через 15 дн	0	3,6+1,07	0	4,2±0,43	58,6±1,36	28,2±4,12	5,4±1,07	
	Через 20 дн	0	4,8±2,58	0	1,8±1,29	56,2±5,61	34,0±2,68	3,2±1,72	
	Фон	0	5,6±1,50	0	2,2±0,64	50,4±3,22	39,0±2,81	2,8±1,50	
13 ~	До лечения	0	5,4±1,72	3,0±0,43	4,6±0,43 *	45,8±5,63	35,8±2,25	5,4±1,07	
Группа №4 (опыт)	Через 5 дн	0	2,0±1,07	0,6±0,22	3,6±0,64	67,2±3,46	24,2±2,83	3,0±1,29	
II E	Через 10 ди	0	3,2+1,07	0	1,6±0,43	57,6±2,47	35,2±4,17	2,4±0,86	
ر قرا	Через 15 дн	0	4,0±1,29	0	2,6±1,07	51,4±2,25	38,8±1,75	3,2±0,43	
	Через 20 дн	0,2±0,22	4,4±1,50	0	1,4±0,86	56,4±3,20	34,8±3,07	2,8±0,64	

^{* -} достоверность разности по сравнению с фоном (р<0,05)

Уровень эозинофилов после ранения у животных во всех группах снижался. Это связано главным образом с тем, что они выходят в соединительную ткань и осуществляют функцию макрофагов. Эозинофилы повышают защитные свойства тканей к воздействию инфекционных агентов.

Нами установлено достоверное увеличение количества палочкоядерных нейтрофилов в 2-3 раза после нанесения ран животным и появление юных нейтрофилов, что говорит о течении патологического процесса в организме. Со снижением тяжести патологического процесса снижалось и количество данных видов нейтрофилов.

Количество сегментоядерных нейтрофилов в наших исследованиях сразу после ранения незначительно уменьшалось во всех группах, но постепенно возвращались к исходным данным.

Количество лимфоцитов в мазках крови собак во всех группах после ранения незначительно снижалось, но увеличивалось в опытных группах после 10 суток лечения, а в контрольных — после 15 суток, что связано с освобождением организма от микробных агентов.

Количество моноцитов в наших исследованиях недостоверно увеличивалось после нанесения ран, но к завершению лечения возвращалось к исходным данным.

В содержании эритроцитов достоверных изменений нами зафиксировано не было.

Количество гемоглобина в крови собак контрольных групп в процессе лечения ран изменялось по-разному (таблица 3). У животных, раны которых подвергались обработке 10%-ным раствором димексида (группа №1), количество

Таблица 3. Динамика содержания гемоглобина (г/л) в крови собак опытных и контрольных групп (n=5 в каждой группе).

		Сроки исследования					
	[Перед ле- После начала лечения:				
<u> </u>		Фон	чением	5 дней	10 дней	15 дней	20 дней
Группа №1	$\overline{\mathbf{x}}$	124,0	134,0	141,7 *	146,7 *	148,0 *	142,0
(контроль)	Sx	±3,36	±4,20	±4,20	±2,52	±3,36	±6,71
Группа №2	\overline{x}	123,3	117,0	130,7	124,0	121,3	125,3
(олыт)	Sx	±3,36	±5,04	±7,55	±12,59	±5,88	±2,52
Группа №3	$\overline{\mathbf{x}}$	137,7	128,7	113,3 *	116,7 *	125,3	131,3
(контроль)	$S\bar{x}$	±3,78	±6,71	±4,20	±3,36	±5,04	±5,88
Группа №4	$\overline{\mathbf{x}}$	133,7	136,7	133,3	127,3	123,3	127,3
(опыт)	$S\overline{x}$	±5,88	±3,36	±7,55	±5,88	±3,36	±2,52

^{* -} достоверность разности по сравнению с фоном (р<0,05)

гемоглобина было незначительно выше исходных данных, а у животных, обрабатываемых споробактерином (группа Ne3) — ниже фоновых значений. У животных обеих опытных групп количество гемоглобина находилось в пределах фоновых данных и достоверно не изменялось. Это говорит о корректирующем действии ЭМП на гемостаз организма.

Скорость оседания эритроцитов определяли по методу Н.С.Поликарпова и Т.А.Дмитриевой (1965), устанавливая пипетки Панченкова под углом 50°. Этот метод исследования крови, наряду с другими исследованиями, позволяет судить о тяжести патологических процессов в организме. Результаты наших исследований представлены в таблице №4.

В наших исследованиях отмечено ускорение СОЭ в разных группах в разные сроки. У животных, обрабатываемых 10%-ным раствором димексида, независимо от применения импульсного ЭМП низкой частоты, СОЭ повышалась на 5-ый день после ранения, а у животных, обрабатываемых споробактерином на 10-ый день. Это увеличение мы объясняем количественным повышением в эти сроки общего белка в плазме крови, что говорит о воспалительном процессе в организме. В последующие дни СОЭ постепенно снижалось.

Таблица 4. Динамика скорости оседания эритроцитов (мм/ч) в крови собак опытных и контрольных групп (n=5 в каждой группс)

		Сроки исследования						
			Перед ле- После начала лечения:					
		Фон	чением	5 дней	10 дней	15 дней	20 дней	
Группа №1	$\overline{\mathbf{x}}$	26,3	20,7	29,0	24,0	20,7	13,3 *	
(контроль)	$S\overline{x}$	±2,52	±2,10	±3,36	±0,84	±1,26	±2,10	
Группа №2	$\overline{\mathbf{x}}$	24,7	22,3	32,0 *	30,7 *	30,7	28,0	
(опыт)	$S\bar{x}$	±1,26	±2,10	±0,84	±1,26	±2,10	±0,84	
Группа №3	$\overline{\mathbf{x}}$	20,3	24,3	21,7	25,7	17,7	20,0	
(контроль)	SX	±1,68	±4,20	±1,68	±4,62	±3,36	±3,36	
Группа №4	$\overline{\mathbf{x}}$	22,7	24,7	24,3	30,0	24,7	27,7	
(опыт)	SX	±2,94	±6,29	±4,20	±2,10	±1,68	±2,10	

^{* -} достоверность разности по сравнению с контролем (p<0,05)

Таким образом, применение импульсного ЭМП низкой частоты, в сочетании с разными методами лечения инфицированных ран у собак, способствует ускоренному снижению воспалительной реакции, более быстрой нормализации гематологических показателей и сокращает сроки заживления инфицированных ран.

2.2.3. Динамика факторов неспецифической защиты организма и общего белка в сыворотке крови собак при различных методах лечения инфицированных кожно-мышечных ран

Для определения возможности организма противостоять действию вредных агентов, мы изучали такие факторы неспецифической защиты, как бактерицидная и лизоцимная активность сыворотки крови, определяли содержание бета-лизина в сыворотке крови.

Факторы неспецифической защиты организма в сыворотке крови собак опытных и контрольных групп в процессе лечения находились на близких друг к другу уровнях. Отличия наблюдались только между группами, которым применялось разное медикаментозное лечение. Так, бактерицидная активность сыворотки крови у всех животных после нанесения ран и перед началом лечения несколько снижалась (таблица 5). В последующие дни лечения под действием споробактерина БАСК увеличивалась и находилась на уровне фоновых данных, в то время как под действием 10%-ного раствора димексида несколько ниже исходных данных до конца лечения. Уровень бета-лизина изменялся иначе (таблица 6). Под действием 10%-ного раствора димексида значение бета-лизина было выше фоновых данных на 5-е и 10-е сутки, а к завершению лечения находилось на уровне исходных данных. Под влиянием споробактерина, наоборот, на 5-е и 10-е сутки уровень бета-лизина значительно снижался и к концу лечения все еще оставался ниже фоновых значений. Содержание лизоцима в сыворотке крови во всех группах изменялось одинаково. После кратко-

Таблица 5. Динамика бактерицидной активности сыворотки крови (%) собак опытных и контрольных групп (л=5 в каждой группе)

		Сроки исследования							
	ĺ		Перед ле-		После нача	Іосле начала лечения:			
		Фон	чением_	5 дней	10 дней	15 дней	20 дней		
Группа №1	$\overline{\mathbf{x}}$	62,9	55,5	58,1	58,7	54,8	58,2		
(контроль)	Sx	±2,27	±5,37	±2,31	±2,69	±0,38	±2,22		
Группа №2	x	60,4	57,7	59,0	55,0	56,9	57,3		
(опыт)	Sx	±1,55	±2,10	±0,59	±2,85	±3,61	±1,01		
Группа №3	$\overline{\mathbf{x}}$	61,8	58,2	63,6	55,9	61,9	61,1		
(контроль)	SX	±2,31	±2,27	±0,42	±2,22	±1,55	±1,14		
Группа №4	x	58,2	60,3	60,6	55,6	61,8	59,2		
(опыт)	$S\overline{x}$	±3,42	±3,61	±2,98	±2,71	±0,56	±1,01		

временного недостоверного снижения, наблюдаемого сразу после ранения, отмечалось увеличение уровня лизоцима в сыворотке крови, максимальное значение которого наблюдалось на 10-е сутки лечения.

> Таблица 6 Динамика содержания бета-лизина в сыворотке крови (%) собак опытных и контрольных групп (n=5 в каждой группе)

		Сроки исследования						
			Перед ле- После началом лечения:					
		Фон	чением	5 дней	10 дней	15 дней	20 дней	
Группа №1	x	20,8	21,6	22,1	23,9	19,8	19,0	
(контроль)	SX	±1,01	±0,13	±1,18	±0,25	±1,26	±1,22	
Группа №2	$\overline{\lambda}$	19,3	23,6	20,5	21,07	17,5	20,1	
(опыт)	$S\overline{x}$	±0,92	±1,47	±1,59	±0,80	±1,09	±1,59	
Группа №3	$\overline{\mathbf{x}}$	21,7	19,2	12,9	14,5	15,8	16,1	
(контроль)	SX	±1,66	±2,01	±2,43	±2,20	±1,30	±2,22	
Группа №4	$\overline{\mathbf{x}}$	22,0	19,5	14,3	13,7	17,9	15,6	
(опыт)	Sx	±1,90	±1,12	±2,13	±0,92	±0,60	±0,77	

2.2.4. Влияние импульсного низкочастотного электромагнитного поля на течение регенеративных процессов у собак

Для гистологических исследований проводили биопсию тканей через 3, 7, 12 и 17 дней после нанесения ран.

При чтении гистологических срезов из кусочков биопсированной ткани, окрашенных гематоксилин-эозином, нами были отмечены следующие особенности. Течение регенеративных процессов в группах собак, на которых воздействовали импульсным ЭМП низкой частоты (как с лечением 10%-ным раствором димексида, так и лечением споробактерином), происходило однотипно. Стадии раневого процесса в этих группах совпадали по времени.

У животных опытных групп на 3-ий день после начала лечения непосредственно возле раны мы обнаруживали травматический отек окружающих тканей, в состав которого входили нейтрофилы и гистнопиты. В полости кровеносных сосудов регистрировался краевой стаз лейкоцитов. В непосредственной близости к раневому участку сосудистая реакция была более выражена. Границы между здоровыми и отмирающими тканями были размыты. Регистрировались участки начала формирования грануляционной ткани.

На 7-ой день лечения непосредственно возле краев раны воспалительный отек был умеренно выражен и заметен только в периваскулярной зоне. Грануляционная ткань местами имела слабовыраженную волокнистую структуру.

Отмечалось интенсивное образование капилляров. С краев раневого участка начиналась эпидермизация.

К 12-ому дню лечения у краев ран мы обнаруживали грануляции, дифференцирующиеся в волокнистую рубцовую соединительную ткань. Волокна имели разную направленность. Количество морфологически выраженных капилляров сокращалось, и часть из них переходили в нефункционирующие. Наряду с имеющимися капиллярами появлялись артериолы, собирательные и мышечные венулы. Местами встречались малочисленные группы макрофагов. Отмечалась гипертрофическая регенерация сосочкового слоя дермы и эпидермиса.

На 17-е сутки раневой дефект был полностью эпителизирован. Сосочковый слой эпидермиса имел различную длину и форму, а иногда и сложную систему разветвлений. В эпидермисе слабо выражено ороговение. Кровеносные сосуды соединительной ткани были отчетливо видны. На месте раны формировалась зрелая соединительная ткань. Отмечалось присутствие фиброцитов, ретикулярных клеток, единичных макрофагов и лимфоцитов. Коллагеновые волокна имели типичную для них структуру.

Развитие раневого процесса у животных контрольных групп протекало аналогично описанным у подопытных животных, но отставало от них на двоетрое суток. Задерживало течение раневого процесса наличие карманов, свищей и т.п.

Таким образом, на основании гистологических исследований можно сделать вывод, что импульсное электромагнитное поле низкой частоты благоприятно влияет на течение раневого процесса, способствует сокращению сроков лечения и предупреждает развитие осложнений.

2.2.5. Влияние импульсного электромагнитного поля низкой частоты на течение послеоперационного периода при гастротомии у собак

В третьей серии опытов мы проводили изучение влияния импульсного низкочастотного ЭМП на течение послеоперационного периода после гастротомии у собак. Материалом для эксперимента послужили клинически здоровые собаки в количестве 6 голов. Всем животным было проведено хирургическое вмешательство – гастротомия.

Животных разделили на 2 группы. Собак одной группы (опытная) лечили следующим образом: послеоперационные раны обрабатывали 5%-ным спиртовым раствором йода и ихтиоловой мазыо и воздействовали импульсным ЭМП в указанных режимах. Раны животных другой группы (контрольная) лечили по

той же схеме, но без воздействия импульсного ЭМП низкой частоты. Воздействие проводили ежедневно в течение 10 дней.

Сразу после оперативного вмешательства отмечалось угнетение, потеря аппетита, вялость. Местные изменения в области раневого дефекта в первые сутки после операции характеризовались следующими признаками: окружающие шов ткани гиперемированы, болезненные при прикосновении, умеренно отечные. Местная температура тела повышена.

У животных группы №1 (с воздействием ЭМП) на 5-6 день лечения заметно спадал отек, снижалась гиперемия и местная температура тканей, практически исчезала болезненная реакция на прикосновение. По мере формирования рубцовой ткани размеры раневого дефекта уменьшались. На 8-ой день лечения у животных были сняты швы. Рубец образовывался мягкий, ровный, эластичный.

В группе №2 (без воздействия ЭМП) на 6-8-е сутки ослабевала болезненная реакция на прикосновение, снижалась гиперемия и местная температура тканей, спадал отек. Швы снимали по показаниям на 10-ый день лечения. Рубец был утолщенным, неровным.

Температурная реакция в опытной группе (лечение с использованием импульсного ЭМП низкой частоты) была выражена только в первые двое суток после операции. Температура тела у контрольных животных снижалась до уровня физиологической нормы к 4-м суткам послеоперационного периода.

В обеих группах отмечалось увеличение частоты сердечных сокращений на 10-17 ударов в минуту, а частоты дыхания на 3-4 дыхательных движений в минуту. Постепенная нормализация этих показателей происходила в подопытной группе на 2-3-и сутки после операции, а в контрольной группе — на 3-4-и сутки.

Изменения гематологических показателей животных до операции и в послеоперационном периоде представлены в таблице 7.

Количество эритроцитов в первые дни послеоперационного периода снижалось, что связано, видимо, с кровопотерей при операции. Незначительное увеличение скорости оседания эритроцитов связано с увеличением количества общего белка в сыворотке крови. Увеличение лейкоцитов свидетельствует о воспалительном процессе в организме. Это также подтверждается изменением лейкограммы животных, которые характеризовались появлением юных и увеличением палочкоядерных нейтрофилов, а также снижением количества лимфоцитов.

У собак, на которых воздействовали импульсным ЭМП низкой частоты,

гематологические показатели раньше приходили к норме, чем у собак без воздействия таким фактором. Наиболее заметно это было в изменениях количества лейкоцитов. Максимальное увеличение этого показателя отмечалось нами через 1 день после операции. На 4-е сутки лечения у подопытных животных количество лейкоцитов было выше фоновых данных на 35,9%, в то время как у контрольных животных превышало фоновые значения на 51,2%. Под действием импульсного ЭМП низкой частоты менее значительными и продолжительными по времени были отклонения от нормы и в лейкограмах животных.

Таблица 7. Динамика гематологических показателей собак опытной и контрольной групп после гастротомин ($\overline{x} \pm S \, \overline{x}$, n=3 в каждой группе)

		.0.0.0111111111111111111111111111111111					
Режимы ЭМП	Cnown	ПОКАЗАТЕЛИ					
	Сроки исследования	Лейкоциты, 10 ⁹ /л	Эритроциты, 10 ¹² /л	Гемоглобин, г/л	СОЭ, мм/час		
Группа №1	Фон	7,65±0,815	5,30±0,416	117,3±4,20	28,3±1,26		
(опыт)	После операци	и:					
Лечение с при-	1 день	13,85±0,884 *	5,12±0,224	127,0±1,68	29,0±3,36		
менением им- пульсного ЭМП низкой частоты.	4 дня	10,40±0,763	4,62±0,463	115,7±4,20	26,7±6,29		
	8 дней	8,95±0,971	5,23±0,134	125,3±2,52	27,3±0,84		
	12 дней	7,50±0,507	5,16±0,185	125,0±5,04	29,3±2,10		
Группа №2	Фон	8,20±0,491	5,69±0,165	120,0±6,71	28,0±3,36		
(контроль)	После операци	и:					
Лечение без применения импульсного	1 день	13,60±0,826 *	4,66±0,294	130,3±3,36	30,3±2,10		
	4 дня	12,40±0,815 *	4,70±0,338	127,7±3,78	32,3±2,94		
ЭМП низкой	8 дней	9,90±0,723	5,42±0,296	112,7±4,20	29,6±1,68		
частоты.	12 дней	8,40±0,399	5,22±0,150	116,3±2,52	30,3±4,62		

^{* -} достоверность разности результатов по сравнению с фоном (p<0.05)

Изменения факторов неспецифической защиты организма у собак в послеоперационном периоде представлены в таблице 8.

Бактерицидная активность сыворотки крови у животных, на которых в послеоперационный период воздействовали импульсным низкочастотным ЭМП (группа №1), через 1 день после операции оставалась на уровне фона. На 4-е сутки после операции бактерицидная активность сыворотки крови собак достоверно увеличивалась на 14,3% (р<0,05).

К 8-ым суткам этот показатель был выше фона на 1,5%. На 12-е сутки БАСК достоверно увеличилась относительно фоновых данных на 13,2%.

У собак группы №2 (контрольная), на которых не воздействовали ЭМП, бактерицидная активность сыворотки снижалась уже через сутки после операции. Такая тенденция сохранялась вплоть до 12-х суток послеоперационного периода. Наименьшее значение бактерицидной активности сыворотки

крови было через сутки после операции. В этот срок она достоверно снизилась от фоновых данных на 18,6% (p<0,05), а относительно опытной группы она была ниже на 16,4% (p<0,05). На 4-ые сутки в контрольной группе бактерицидная активность сыворотки крови была ниже фона на 10,0%, а относительно опытной группы была достоверно меньше на 25,9% (p<0,01). На 12-е сутки БАСК была достоверно ниже в контрольной группе, чем в опытной на 14,4% (p<0,05).

Таблица 8. Динамика факторов неспецифической защиты собак опытной и контрольной групп после гво потомин (\$\tilde{x} \pm S \tilde{x}, \tilde{p} \sigma B кажлой группе)

после гастротомии ($x \pm 5 x$, $n=3$ в каждои группе)								
Режимы ЭМП	Сроки	ПОКАЗАТЕЛИ						
		БАСК, %	Лизоцим,	0 200000 0/	Общий бе-			
	исследования	DACK, 70	мкг/мл	β-лизин, %	лок, г/л			
Группа №1	Фон	58,2±2,10	2,27±0,115	15,8±1,01	79,3±1,30			
(опыт)	После операци	и:						
Лечение с при-	1 день	58,2±0,56	1,60±0,237	19,1±1,30	80,4±2,31			
менением им-	4 дия	67,9±1,14 *	2,55±0,493	16,7±2,22	77,7±1,13			
низкой частоты.	8 дней	59,1±2,31	2,31±0,084	21,3±0,77 *	81,7±2,01			
	12 дней	65,9±1,01 *	2,42±0,165	18,7±2,00	73,4±1,13 *			
Группа №2	Фон	59,3±1,55	2,50±0,165	15,5±0,92	75,8±2,52			
(контроль)	После операци	и:						
Лечение без	1 день	50,0±2,10 *	1,74±0,251	20,8±1,59	81,7±1,13			
применения импульсного	4 дня	53,9±2,27	2,12±0,165	20,1±0,60 *	81,7±0,38 *			
ЭМП низкой	8 дней	57,9±3,61	1,98±0,196	15,0±1,59	71,4±3,78			
частоты.	12 дней	57,6±1,55	2,14±0,429	17,4±0,92	76,4±2,48			

^{* -} достоверность разности результатов по сравнению с фоном (р<0,05)

Содержание лизоцима в сыворотке крови собак опытной и контрольной групп через 1 день после операции снижалось. В опытной группе это снижение было достоверным и составило 41,9% (р<0,05). В последующие дни уровень лизоцима в группе №1 увеличивался и до последнего дня исследований был выше фоновых данных. Наибольший его уровень отмечался на 4-е сутки и был выше исходных данных на 12,3%.

У собак контрольной группы (группа №2), послеоперационный период у которых протекал без воздействия импульсным ЭМП низкой частоты, содержание лизоцима в сыворотке крови во все сроки исследований не поднималось выше фоновых данных.

Содержание бета-лизина в сыворотке крови у собак опытной группы было больше фоновых данных во все сроки исследований. Наибольшее ее значение наблюдалось на 8-ые сутки после операции. Этот показатель достоверно увеличился на 34,8% (p<0,05). В контрольной группе собак содержание бета-

лизина также было выше фоновых данных практически во все сроки исследований. Исключение составил 8-ой день послеоперационного периода. Здесь этот показатель был ниже фона, но всего на 3,3%.

Содержание общего белка в сыворотке крови собак опытной и контрольной групп изменялось следующим образом. В сыворотке крови у собак опытной группы через 1 день после операции содержание общего белка увеличивалось. К 8-м суткам его значение еще поднималось, но к 12-му дню после операции снижалось и было достоверно ниже фоновых данных на 8,0% (р<0,05).

В контрольной группе количество общего белка у собак в первые дни после операции повышалось и к 4-м суткам достоверно увеличивалось на 7,8% (p<0,05). На 8-е сутки содержание общего белка снижалось ниже фона на 6,2%. Но к 12-м суткам этот показатель находился на уровне, близком к фону.

Таким образом, воздействие импульсным ЭМП низкой частоты в послеоперационном периоде после гастротомии у собак оказывает положительное влияние на клиническое показатели животных, скорость заживления операционной раны, а также способствует более быстрой нормализации гематологических показателей.

3. ВЫВОДЫ

- Импульсное низкочастотное электромагнитное поле при воздействии на здоровых собак не вызывает у них отклонений общего состояния, признаков беспокойства, а у некоторых уже после нескольких минут наблюдается легкая сонливость.
- 2. Электромагнитное поле с частотой импульсов 2,5 Гц, формой импульсов 1:2, экспозицией 15 минут обуславливает у здоровых собак стойкое снижение гемоглобина, некоторое снижение количества лейкоцитов и скорости оседания эритроцитов.
- Оптимальными параметрами электромагнитного поля, не вызывающего заметных изменения клинических, гематологических показателей и показателей неспецифической резистентности здоровых собак, являются частота импульсов 1,2 Гц, форма импульсов 1:2, экспозиция 10 минут.
- 4. Применение импульсного электромагнитного поля низкой частоты в сочетании с медикаментозным лечением (димексид, споробактерин) способствует ускорению очищения инфицированных ран, более быстрой нормализации гематологических показателей, сокращению сроков выздоровления в среднем на 4-5 дней в сравнении с контролем, что подтверждается и гистомор-

- фологическими исследованиями. Несколько лучший терапевтический эффект получен при сочетанном применении электромагнитного поля и 10%-ного раствора димексида.
- 5. Воздействие импульсным электромагнитным полем низкой частоты в послеоперационном периоде при гастротомии у собак оказывает положительное влияние на клинические показатели животных, а также способствует более быстрой нормализации гематологических показателей. Уже на 4-е сутки после операции у опытных животных количество лейкоцитов в крови снизилось на 24,6%, а у контрольных на 8,9%. Сроки лечения при этом сокращаются на двое суток.

4. ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ

- 1. Импульсное низкочастотное электромагнитное поле (ЭМП) с частотой импульсов 1,2 Гц, формой импульсов 1:2, экспозицией 10 минут необходимо применять при лечении инфицированных ран и в послеоперационном периоде при полостных операциях у собак в сочетании с медикаментозным лечением.
- 2. Основные положения диссертационной работы могут быть использованы в качестве учебного материала по ветеринарной хирургии, а также при проведении научных исследований по хирургической патологии.

5. СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Шишацкий С.В., Дмитриева Т.А. Влияние импульсного низкочастотного электромагнитного поля на клинические и гематологические показатели здоровых собак // Материалы междунар. науч.-практ. конф. «Актуальные вопросы ветеринарной медицины». Ульяновск, 2003. С.179-180.
- 2. Шишацкий С.В. Применение импульсного электромагнитного поля низкой частоты при лечении гнойных ран у собак // Материалы междунар. науч. практ. конф. «Актуальные вопросы ветеринарной медицины». Ульяновск, 2003. С.229-230.
- 3. Шишацкий С.В. Влияние импульсного электромагнитного поля низкой частоты на течение раневого процесса у собак // Материалы региональной науч.-практ. конф. молодых ученых и специалистов Оренбургской области. Часть III. Оренбург: РИК ГОУ ОГУ, 2003. С.76-77.
- Шишацкий С.В., Дмитриева Т.А. Сравнительная характеристика лечения инфицированных ран у собак с применением импульсного электромагнитного поля низкой частоты и без него // Материалы междунар. науч.-практ. конф. «Актуальные проблемы ветеринарной медицины и биологии». - Оренбург, 2003. – С.167-169.
- 5. Шишацкий С.В. Влияние импульсного электромагнитного поля низкой частоты на течение послеоперационного периода при гастротомии у собак // Тр. междунар. науч.-практ. конф., посвященной 75-летию УГАВМ «Актуальные проблемы ветеринарной хирургии». Троицк, 2004. С.176-177.

Оригинал-макет изготовлен с помощью текстового редактора WORD 6. 0. Бумага офсетная. Гарнитура Times. Условных печатных листов 1. Тираж 100. Заказ 1382. Отпечатано в ООО «Офисная полиграфия»

РНБ Русский фонд

2007-4 18345