На правах рукописи

Pégopolos

Фёдорова Анна Александровна

Синтез и строение анионных нитратных комплексов d-металлов и их термолиз в жидком NH₄NO₃ с целью получения каталитически активных оксидных материалов

Специальность 02.00.01 - неорганическая химия

¢

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Москва – 2005

Работа выполнена в лаборатории направленного неорганического синтеза кафедры неорганической химии Химического факультета Московского Государственного Университета им. М.В. Ломоносова.

Научный руководитель:	кандидат химических наук, доцент Морозов Игорь Викторович
Официальные оппоненты:	кандидат химических наук,
	старший научный сотрудник
	Михайлов Юрий Николаевич
	доктор химических наук, профессор
	Романовский Борис Васильевич
Ведущая организация:	Институт катализа им. Г.К. Борескова
	Сибирского отделения РАН

Защита диссертации состоится «21» июня 2005 г. в 14 час. 00 мин. на заседании диссертационного совета Д 501.002.05 по химическим и физикоматематическим наукам при Московском Государственном Университете им. М.В. Ломоносова по адресу; 119992, г. Москва, Ленинские Горы, дом 1, строение 3, МГУ, Химический факультет, аудитория 446.

С диссертацией можно ознакомиться в библиотеке Химического факультета МГУ им. М.В. Ломоносова

Автореферат разослан

«20» мая 2005 г.

Учёный секретарь диссертационного совета, кандидат химических наук

Сфина Е.А./

2147239

2006

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Анионные нитратные комплексы переходных металлов или нитратометаллаты являются важными объектами фундаментальной и прикладной химии. Так, в нитратометаллатах реализуются полиздры с необычным координационным окружением. B которых атомыкомплексообразователи проявляют рекордно высокие координационные числа. Особенностью анионных нитратных комплексов является существование нитратометаллатных анионов с различной размерностью (островных, ленточных и слоистых). Однако эти соединения всё ещё остакотся малоизученными, главным образом, из-за ограниченного набора подходящих методов синтеза. Особенно мало данных о строении и свойствах нитратометаллатов многовалентных металлов (трёх- и четырёхвалентных).

Между тем, нитратометаллаты являются интермедиатами в ходе получения оксидных материалов с использованием расплавленных нитратов щелочных металлов. Синтез и рентгеноструктурное исследование нитратометаллатов щелочных металлов и аммония позволит лучше понять механизм процессов, протекающих в расплавленных нитратах.

Особый интерес представляет изучение взаимодействия нитратов 3d-металлов с нитратом аммония, так как данный метод может оказаться перспективным для получения не содержащих примесей сложных оксидных образцов с равномерным распределением компонентов и развитой удельной поверхностью, что является ценным для их использования в качестве катализаторов. Актуальность данной задачи вызвана необходимостью разработки новых методов «мягкой» химии с целью получения каталитически активных материалов.

Цель работы. Цель работы заключалась в синтезе новых анионных нитратных комплексов d-металлов, определении их кристаллического строения, а также изучении термического разложения растворов нитратометаллатов в жидком нитрате аммония для получения каталитически активных оксидных материалов. В соответствии с этим в ходе выполнения работы решались следующие задачи:

1. Разработать методы синтеза анионных нитратных комплексов 3d-металлов (Cr, Mn, Fe, Co, Cu) и циркония(IV) с однозарядными катионами и изучить их кристаллическое строение методом рентгеноструктурного анализа (PCA).

2. Выявить основные закономерности в изменении состава и строения нитратометаллатных комплексов в зависимости от природы центрального атома и присутствующих в структуре противоионов.

3. Синтезировать оксидные материалы разложением растворов нитратов переходных металлов в расплавленном нитрате аммония и определить их каталитическую активность в реакции глубокого окисления метана. Используя методы электронного парамагнитного, резонанса (ЭПР) и электронной спек-

троскопии диффузного отражения (ЭСДО) изучить характер распределения ионов меди в полученных образцах CuO-ZrO₂.

Научная новизна.

1. Разработан новый метод синтеза анионных нитратных комплексов 3d-металлов из расплавов нитратов щелочных металлов и аммония. Применяя новый метод, а также модифицируя известные синтетические подходы, впервые получены и изучены методом PCA 12 новых нитратных комплексов.

2. Выявлены основные закономерности в изменении состава и строения нитратометаллатных комплексов в зависимости от природы центрального атома и присутствующих в структуре противоионов. Обнаружено структурное разнообразие координационных полиэдров атома Со, в которых центральный атом проявляет необычные КЧ 7 и 8 и образует бесконечные цепочечные анионы наряду с островными. В новых нитратных комплексах циркония содержатся пентанитратоцирконатные анионы [Zr(NO₃)₅], в которых атом Zr(IV) проявляет необычно высокое координационное число (КЧ) 10.

3. Показана возможность получения оксидных образцов с однородным распределением компонентов и развитой удельной поверхностью путём разложения растворов нигратов переходных металлов в жидком нитрате аммония. Полученные образцы проявляют высокую каталитическую активность в реакции глубокого окисления метана. Методами ЭПР и ЭСДО показано, что в образцах CuO-ZrO₂ формируются меднооксидные кластеры, играющие важную роль в реакции окисления метана.

Практическая значимость. Разработанный метод синтеза анионных нитратных комплексов переходных металлов из расплава нитратов шелочных металлов и аммония может использоваться в качестве препаративной методики. Результаты рентгеноструктурного анализа полученных нитратометаллатов вносят вклад в фундаментальную неорганическую химию нитратов и могут быть использованы в качестве справочных данных. Показана перспективность использования расплава нитрата аммония для синтеза различных оксидных систем на основе d-металлов с гомогенным распределением компонентов и развитой поверхностью, проявляющих высокую каталитическую активность в реакции глубокого окисления метана.

Апробация работы. Основные результаты работы были представлены на 3-ей Национальной кристаллохимической конференции (п. Черноголовка, Моск. Обл., 2003), Международных конференциях студентов и аспирантов по фундаментальным наукам «Ломоносов-2002», «Ломоносов-2003», «Ломоносов-2004» (Москва, 2002, 2003 и 2004), Международной конференции «Функционализированные материалы: синтез, свойства и применение» (Киев, Украина, 2002), 1-ой Международной Школе-конференции молодых учёных по катализу (Новосибирск, 2002), 21-ой Международной Чугаевской конференции по координационной химии (Киев, Украина, 2003), 16-ой Международной конференции по химическим реакторам (CHEMREACTOR-16, Berlin, Germany, 2003), 3-ем Российско-китайском семинаре по катализу (Новоси-

2

бирск, 2004), 2-ой Международной конференции по высокоорганизованным каталитическим системам (HOCS-2004, Москва, 2004), 7-ой Международной конференции по высокотемпературным сверхпроводникам и разработке новых неорганических материалов (MSU-HTSC VII, Москва, 2004), Международной конференции по общим вопросам физической химии (Донецк, 2004), 6-ой Международной конференции по химии твёрдого тела (SSC-2004, Prague, Czech Republic, 2004).

Публикации. По результатам диссертации опубликовано 5 статей в российских и зарубежных журналах, а также 17 тезисов докладов на международных конференциях и национальной кристаллохимической конференции.

Структура и объём диссертации. Диссертация состоит из введения, четырёх глав, выводов и списка цитируемой литературы. Работа изложена на 196 страницах машинописного текста, включая 41 таблиц и 43 рисунка. Список литературы содержит 162 ссылки.

СОДЕРЖАНИЕ РАБОТЫ

Во **ВВЕДЕНИИ** обоснована актуальность проблемы, сформулированы цель и основные задачи исследования, показана научная новизна работы.

І. ОБЗОР ЛИТЕРАТУРЫ

Литературный обзор состоит из пяти частей. В первой части приведён обзор основных методов синтеза нитратометаллатов, а также рассмотрены примеры различных типов структур нитратных комплексов. Во второй и третьей частях описаны физические и химические свойства нитрата аммония, а также приведены данные о строении и термических свойствах гидратов нитратов 3d-металлов, алюминия и циркония. В четвёртой части описан синтез оксидов в расплавленных нитратах щелочных металлов, а также собраны данные по свойствам индивидуальных оксидов, оксидов со структурой шпинели и оксидных систем на основе ZrO₂, проявляющих каталитическую активность в реакции глубокого окисления метана. В пятой части рассмотрено электронное состояние меди(II) в оксидных системах.

<u>II. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ</u> II. 1. Исходные реактивы и методы исследования

В работе использовались следующие реактивы марки «х.ч.», если не указано особо: M^1NO_3 ($M^1 = Na, K, Cs$), NH_4NO_3 , $AgNO_3$ («ч.д.а.»), $M^2(NO_3)_3 \cdot 9H_2O$ ($M^2 = Al, Cr, Fe$), $(NH_4)_2Cr_2O_7$, $Mn(NO_3)_2 \cdot 6H_2O$, $M(NO_3)_2 \cdot 6H_2O$ («ч.д.а.»; M = Co, Ni), $Cu(NO_3)_2 \cdot 3H_2O$, $ZrO(NO_3)_2 \cdot 2H_2O$, $\gamma - Al_2O_3$ (Engelhard de Meern B.V., Chem. Catalysts division; удельная поверхность 185 M^2/r), P_2O_5 , 96 %-ый раствор H_2SO_4 и Zr. Использованный в работе ZrCl₄ получен прямым хлорированием металлического циркония.

Определение фазового состава образцов проводилось *методом рентгенофазового анализа* (РФА). Для предохранения от влаги воздуха гигроскопичные образцы помещали в сухом боксе на держатель под полистирольную плёнку, смоченную вазелиновым маслом. Анализ образцов проведён на приборах STADI/P (Stoe, Германия) и FR-552 (Enraf-Nonius, Голландия) и в ряде случаев на дифрактометрах ДРОН-3М (Россия) и URD7 (Seifert, Германия). Идентификация фаз проводилась с помощью банка данных PCPDFWIN, Version 2.2, June 2001, JCPDS-ICDD.

Кристаллическое строение соединений было определено *методом рентсеноструктурного анализа* монокристаллов (PCA). Из-за гигроскопичности полученных соединений кристаллы отбирались под слоем вазелинового масла и запаивались в тонкостенные стеклянные капилляры. Эксперимент проводился с использованием дифрактометров IPDS (Stoe, Германия), STADI-4 (Stoe, Германия) или CAD4 (Enraf-Nonius, Голландия) (структура Na₂[Co(NO₃)₄]). Кристаллографические расчёты проводились при помощи программ SHELXS-86 (прямые методы) SHELXS-93 (уточнение методом наименьших квадратов).

Термическое разложение ряда образцов изучалось с помощью *методов термогравиметрического* (ДТА) и *дифференциально-термического* (ДТА) *анализов* на приборе "Derivatograph Q-1500 D" (МОМ, Венгрия) при скорости нагревания 5 °С/мин в токе азота.

Морфологию порошкообразных оксидных образцов изучали *методом сканирующей электронной микроскопии* на электронном микроскопе JEM – 2000FXII (Jeol, Япония), а морфологию и состав поверхности спрессованных в таблетки образцов CuO-ZrO₂ – на электронном микроскопе JEOL JSM 840A (Jeol, Япония) с приставкой для *рентгеноспектрального микроанализа* (PCMA).

Три серии образцов CuO-ZrO₂ с содержанием меди от 0.5 до 95 ат.% (по 20 образцов в каждой серии), отожжённые в течение 2 ч при 500, 600 или 700 °С, были исследованы методами электронной спектроскопии диффузного отражения (ЭСДО) и электронного парамагнитного резонанса (ЭПР). Спектры ЭСДО снимали на спектрометре UV-2501 PC (Shimadzu, Япония). Спектры ЭПР получены с помощью прибора Bruker 200D (Bruker, Германия) при 77 и 300 К.

٩

Измерения удельной поверхности оксидных образцов проводились с использованием сравнительного метода тепловой десорбции азота на газометре ГХ-1, а также в ряде случаев на приборе ASAP 2020 (Micromeritics, США).

Проведена оценка каталитической активности ряда оксидных образцов в реакции глубокого окисления метана (состав газовой смеси 20 об. % СН₄ и 80 об. % О₂, скорость пропускания 12 мл/мин, время контакта – 2 сек). Состав конечной газовой смеси определяли методом газовой хроматографии на хроматографе GC-17A (Schimadzu, Япония).

Инфракрасные (ИК) спектры нитратных комплексов циркония регистрировали на Фурье-спектрометре PE-1600 FTIR (Perkin Elmer, США). Образцы растирали в сухом боксе, смешивали с вазелиновым маслом и помещали в полиэтиленовые пакеты, которые герметично запаивали.

<u>II. 2. Синтез нитратных комплексов d-металлов</u> с однозарядными противононами

Полученные в работе нитратные комплексы представлены в таблице 1.

Таблица 1.

условия синтеза нитратных комплексов, полученных в данной рабо	У СЛОВИЯ	ия синтеза нитт	ратных комплек	сов, полученных	с в даннои г	заооте.
--	----------	-----------------	----------------	-----------------	--------------	---------

		Условия синтеза			
Нитратные комплексы	Метод синтеза	Реагенты M(NO ₃) _x ·yH ₂ O, ANO ₃	v(M) v(A)	Т, ℃ (длитель- ность)	
Cs ₂ [Cu(NO ₃) ₄]		Cu(NO ₃) ₂ ·3H ₂ O CsNO ₃	1:4	100-140 (3-12 ч)	
(NH ₄) ₃ [Cu(NO ₃) ₄](NO ₃)		Cu(NO ₃) ₂ ·3H ₂ O NH ₄ NO ₃	1:5	100-140 (3-12 ч)	
K ₃ [Cu(NO ₃) ₄](NO ₃)	Из расплава	Cu(NO ₃) ₂ ·3H ₂ O KNO ₃	1:5	100-140 (3-12 ч)	
(NH ₄) ₃ [Mn(NO ₃) ₄](NO ₃)	нитратов	Mn(NO ₃) ₂ ·6H ₂ O NH ₄ NO ₃	1:3 ; 1:4	100-110 (2-3 суток)	
Cs[Fe(NO ₃) ₄]		Fe(NO ₃) ₃ ·9H ₂ O CsNO ₃	1:4	100-120 (1.5-2 суток)	
Cs ₃ [Cr(NO ₃) ₆]		Cr(NO ₃) ₃ ·9H ₂ O CsNO ₃	1:3	100-120 (1.5-2 суток)	
(NH ₄) ₃ [Co(NO ₃) ₄](NO ₃) ³		Co(NO ₃) ₂ ·6H ₂ O NH ₄ NO ₃	1:3; 1:4	20-25 (3 недели)	
Ag[Co(NO ₃) ₃]	Из азотно- кислого рас-	Co(NO ₃) ₂ ·6H ₂ O AgNO ₃	1:3	20-25 (3 недели)	
Na ₂ [Co(NO ₃) ₄]	твора над Р ₂ О ₅	Co(NO3)2.6H2O NaNO3	1:3	20-25 (3 недели)	
(NO ₂) _{0.23} (NO) _{0.77} [Zr(NO ₃) ₅]		ZrCl ₄ или ZrO(NO ₃) ₂ ·2H ₂ O		20-25 (7 недель ^ь)	
NO ₂ [Zr(NO ₃) ₃ (H ₂ O) ₃] ₂ (NO ₃) ₃	Из азотно-	ZrCl ₄ или ZrO(NO ₃) ₂ ·2H ₂ O		20-25 (6 недель ^ь)	
(NH4)[Zr(NO3)5](HNO3)	кислого рас- твора над	ZrCl ₄ NH ₄ NO ₃	1:2	20-25 (2 недели)	
Cs[Zr(NO ₃) ₅]	H ₂ SO ₄	ZrCl ₄ CsNO ₃	1:2	20-25 (6 недель)	

^а – состав приписан на основании сходства параметров элементарной ячейки с параметрами комплекса (NH₄)₃[Cu(NO₃)₄](NO₃), ^b – при использовании ZrO(NO₃)₂ 2H₂O время синтеза сокращалось до четырёх суток из-за более высокой концентрации исходного раствора.

Для получения нитратометаллатов с однозарядными катионами (щ.м., NH₄) был разработан новый *метод синтеза кристаллизацией из расплава*, заключающийся в выдерживании расплавленной смеси гидрата нитрата d-металла и нитрата щелочного металла и аммония при 100-140 °C на открытом воздухе. Метод позволяет получать нитратометаллаты A_mM(NO₃)_{n+m} (M –

3d-металл) с однозарядными относительно крупными по размеру катионами $A^+ = Cs^+$, Rb^+ , K^+ , NH_4^+ по следующей схеме:

 $M(NO_3)_n \cdot xH_2O + mANO_3 \rightarrow A_mM(NO_3)_{n+m} + xH_2O$

Равновесие удаётся сместить вправо за счёт удаления воды и создания избытка ионов NO₃⁻. Побочной является реакция термогидролиза, которую можно подавить путём добавления HNO₃ или использования при синтезе избытка ANO₃. Основными достоинствами этого метода являются простота оборудования и возможность синтеза нитратометаллатов за относительно короткое время (от 12 часов до 2-3 суток). Ограничением метода является невозможность получения нитратных комплексов с катионами сравнительно небольшого радиуса (Li⁺, Na⁺), а также производных нитрония и нитрозония. Кроме того, этот метод не позволяет получить нитратоцирконаты из-за склонности солей Zr(IV) к гидролизу.

Для получения термически неустойчивых нитратометаллатов был применён метод синтеза, заключающийся в выдерживании растворов нитратов в безводной HNO₃ в эксикаторе в присутствии P₂O₅, разработанный в нашей научной группе. В ряде опытов вместо Р₂O₅ использовалась концентрированная H₂SO₄. В результате были созданы менее жёсткие условия дегидратации, и стало возможным получение гидратов нитратов с пониженным содержанием воды. Так. помощью этого метода удалось получить С (NO₂)[Zr(H₂O)₃(NO₃)₃]₂(NO₃)₃. Сопоставление рентгенограмм образцов с теоретическими, рассчитанными по данным РСА, подтвердило наличие новых фаз нитратометаллатов во всех полученных кристаллических образцах.

II. 3. Синтез оксидных образцов с использованием расплава NH4NO3

Индивидуальные оксиды M_xO_y (M = Cr, Mn, Co, Ni, Cu, Al, Zr), сложные оксиды со структурой шпинели, а также серия образцов CuO-ZrO₂ с содержанием меди от 0.5 до 95 ат. % получены разложением смесей нитратов 3dметаллов, алюминия или циркония с трёх - пятикратным мольным избытком NH₄NO₃ в печи или на песчаной бане при температуре 200-250 °C. В ряде случаев в расплав добавляли порошок γ -Al₂O₃ для получения нанесённых образцов. При синтезе некоторых образцов использовали добавку (NH₄)₂Cr₂O₇ (1 мол. %) для снижения температуры разложения смеси. Полученные оксиды M_xO_y, а также сложные оксиды со структурой шпинели отжигали в печи при температуре 500 °C (1 ч), а образцы CuO-ZrO₂ – при 500, 600 или 700 °C (2 ч).

<u>III. НИТРАТНЫЕ КОМПЛЕКСЫ 3d-МЕТАЛЛОВ И ЦИРКОНИЯ</u> III. 1. Рентгеноструктурные исследования нитратных комплексов

Кристаллографические данные и условия съёмки полученных в работе соединений представлены в таблице 2.

В комплексном анионе $[Fe(NO_3)_4]^-$, входящем в состав соединения Cs[Fe(NO₃)₄], атом Fe имеет слабоискажённое додекаэдрическое окружение (рис. 1). В додекаэдре каждая NO₃-группа занимает по одной вершине типа A и типа B так, что вершины типа B располагаются на более коротких расстояниях от атома Fe (среднее расстояние 2.12 Å для Fe(1) и 2.10 Å для Fe(2)), чем вершины типа A (среднее расстояние 2.16 Å для Fe(1) и 2.17 Å для Fe(2)) (тип координации 4B+4A) (обозначения даны по работе *Киперт Д.* Неорганическая стереохимия. М.: Мир. 1985. 280 с.). Анионы [Fe(NO₃)₄] образуют колонки с расстояниями Fe-Fe 5.90 Å; расстояние между колонками составляет 6.44-7,31 Å.

Рис. 1. Анион $[Fe(1)(NO_3)_4]^-$ в структуре Cs $[Fe(NO_3)_4]$ (аналогичное строение имеет анион $[Mn(NO_3)_4]^{2-}$ в структуре $(NH_4)_3[Mn(NO_3)_4](NO_3))$.

В структуре (NH₄)₃[Mn(NO₃)₄](NO₃) в анионах [Mn(NO₃)₄]²⁻ атом Mn имеет слабоискажённое додекаэдрическое окружение. Причём, также как и в Cs[Fe(NO₃)₄], расстояния M-O до вершин типа B (среднее 2.27 Å) короче расстояний до вершин типа A (среднее 2.31 Å).

Комплексные анионы $[Mn(NO_3)_4]^{2-}$ образуют колонки, параллельные оси *a*, с расстоянием Mn····Mn внутри колонок 6.10 Å, а между колонками 7.56 Å. С помощью катионов NH₄⁺ колонки объединяются в слои, параллельные плоскости *a*0*c*. Слои разделены прослойкой, в которой располагаются анионы NO₃⁻, не связанные с атомами Mn (рис. 2). Расстояние между слоями соответствует параметру ячейки *b* = 7.91 Å.

В структурах изотипичных между собой $A_3[Cu(NO_3)_4](NO_3)$ (A = K, NH₄) анионы $[Cu(NO_3)_4]^{2-}$ имеют сходное псевдододекаэдрическое строение. Ближайшее квадратное окружение атома Cu из атомов O четырёх нитратных групп (расстояния Cu-O 1.97-2.00 Å) дополняется атомами O из тех же нитратных групп на больших расстояниях – 2.45-2.64 Å (A = NH₄) и 2.38-2.66 Å (A = K) (координация типа 4+1+3) (рис. 3). Эти структуры, также как и (NH₄)₃[Mn(NO₃)₄](NO₃), построены из слоёв состава A₂[Mn(NO₃)₄], разделённых слоями ANO₃. Различие состоит в том, что кристаллические ячейки нитратокупратов аммония и калия имеют моноклинную сингонию, и слои в этих структурах несколько сдвинуты друг относительно друга.

Nz	соединение	сингония, пр.гр.	параметры a, b, c (Å)	углы а, β, γ (°)	V (Å ³), Z, d _{выч} (г/см ³)	Т (К), μ (мм ⁻¹), θ _{max} (°)	N ₁ ^a N ₂ ^b N ₃ ^c	R ₁ , wR ₂
I	Cs[Fe(NO3)4]	Ромбическая <i>Pbca</i>	18.938(5) 11.730(3) 18.971(5)	90 90 90_	4214 3(2) 16 2.754	180(2) 4.912 24.0	3298 2352 326	0.0598 0.1051
II	(NH ₄) ₃ [Mn(NO ₃) ₄](NO ₃)	Ромбическая Рса2 ₁	12.194(4) 7.906(3) 14.756(4)	90 90 90	1422 6(8) 4 1.957	160(2) 1 032 27.0	1646 1392 266	0.0402 0.1056
III	K3Cu(NO3)5	Моноклинная <i>P2₁/c</i>	8.163(2) 14.107(2) 11.611(2)	90 90.42(2) 90	1337.0(4) 4 2 439	200 26.67 26.0	2395 1611 217	0.037 0.078
IV	(NH4)3Cu(NO3)5	Моноклинная P2 ₁ /c	8.271(3) 14.658(4) 12.105(3)	90 90.92(3) 90	1467 4(8) 4 1.936	293 15 90 24.0	2164 1861 217	0.038 0.095
v	Cs2Cu(NO3)4	Триклинная <i>Р</i> 1	7.866(4) 12.448(6) 13.696(6)	104.61(3) 92.05(3) 105.12(3)	1245(1) 4 3.080	293 75.83 23.5	3580 2504 344	0.044 0.098
VI	Cs ₃ [Cr(NO ₃) ₆]	Тригональная <i>Р</i> 3	14.604(4) 14.604(4) 13.667(3)	90 90 120	2524 3(7) 6 3.247	180(2) 7 183 22.5	2209 1335 255	0.0826 0.1309

Таблица 2. Основные кристаллографические данные, детали съёмки и уточнения структур I-XII.

 N_1^* - количество независимых рефлексов, N_2^b - количество рефлексов с I > 2 σ (I), N_3^c - число уточняемых параметров

^

***** 1

Таблица 2. (продолжение).

N₂	соединение	сингония, пр.гр.	параметры a, b, c (Å)	углы α, β, γ (°)	V (Å ³), Z, d _{выч} (г/см ³)	Т (К), μ (мм ⁻¹), θ _{max} (°)	N_1^a N_2^b N_3^c	R ₁ , wR ₂
vn	Ag[Co(NO ₃) ₃]	Моноклинная P2 ₁ /n	7.576(5) 7.312(2) 12.838(5)	90 94.18(4) 90	709.3(6) 4 3.304	180(2) 5.144 28.06	1435 1067 128	0.0431 0.04 5 4
VIII	Nn2[C0(NO3)4]	Моноклинная P2 ₁ /n	10.759(1) 7.7440(8) 11.802(1)	90 92.923(9) 90	982.1(2) 4 2.387	293(2) 15.485 27.0	1860 1097 172	0.0471 0.0565
IX	(NO ₂)[Zr(NO ₃) ₃ (H ₂ O) ₃] ₂ (NO ₃) ₃	Гексагональная Р 3 с1	10.292(2) 10.292(2) 14.850(3)	90 90 120	1362.2(5) 2 2.181	180(2) 0.922 27.84	1089 759 80	0.02 82 0.0775
x	Cs[Zr(NO ₃) ₅]	Моноклинная P2 ₁ /n	7.497(1) 11.567(2) 14.411(3)	90 96.01(2) 90	1242.8(4) 4 2.855	170(2) 3 874 28.00	2986 2607 200	0.0229 0.0527
XI	(NH4)[Zr(NO3)5](HNO3)	Ромбическая <i>Pna</i> 2 ₁	14.852(4) 7.222(2) 13.177(3)	90 90 90	1413.4(6) 4 2.267	170(2) 0.904 26.02	2780 2423 247	0.0393 0.0689
XII	(NO ₂) _{0.23} (NO) _{0.77} [Zr(NO ₃) ₅]	Тетрагональная <i>I</i> 4 ₁ / <i>а</i>	13.675(3) 13.675(3) 25.489(5)	90 90 90	4767(2) 16 2.425	160(2) 1.046 28.99	2488 2224 217	0.0254 0.0568

N1^a - количество независимых рефлексов, N2^b - количество рефлексов с I > 20(I). N3^c - число уточняемых нараметров.

Рис. 2. Проекция структуры $(NH_4)_3[Mn(NO_3)_4](NO_3)$ на плоскость 0*bc* (для ясности на рисунке приведены не все атомы, входящие в ячейку).

Рис. 3. Анион [Cu(NO₃)₄]²⁻ в структуре (NH₄)₃[Cu(NO₃)₄](NO₃).

В структуре Cs₂[Cu(NO₃)₄] атом Cu имеет ближайшее квадратное окружение с расстояниями Cu-O 1.95 – 2.01 Å. Ещё четыре атома О из тех же нитратных групп координируют атом Cu на больших расстояниях Cu-O (2.52-2.74 Å) (координационное окружение 4+4).

Обнаруженные в структуре **Cs₃[Cr(NO₃)₆]** анионы [Cr(NO₃)₆]³⁻ являются первым структурно изученным примером нитратных комплексных

анионов с таким строением. Шесть монодентатных нитратных групп образуют вокруг центрального атома октаэдрические полиэдры, сжатые вдоль оси третьего порядка. Анионы формируют колонки, направленные вдоль оси *с*.

Расстояние между ближайшими атомами Cr, принадлежащими разным колонкам, составляет 8.43 Å, а внутри колонок – 6.84 Å.

В полученном ранее в нашей лаборатории соединении $Cs_2[Cr(NO_3)_5]$ комплексные анионы имеют другой состав: атом Cr октаэдрически окружён пятью нитратным группами, причём одна из них является бидентатной. Оценочные расчёты, проведённые с использованием программного комплекса GAMESS, показали, что устойчивость анионов $[Cr(NO_3)_5]^{2-}$ и $[Cr(NO_3)_6]^3$ сопоставима. Расчёт также показал, что анион $[Cr(NO_3)_4]^-$ с додекаэдрическим окружением атома Cr неустойчив и переходит в анион $[Cr(NO_3)_4]^-$ с октаэдрическим окружением трограмми две бидентатные и две монодентатные нитратные группы в транс–положении.

Нитратокобальтат серебра является первым примером нитратного комплекса d-элемента с цепочечным строением. В структуре $Ag[Co(NO_3)_3]$ бесконечные зигзагообразные цепи [-Co(NO₃)₂-O-N(O)-O-]_nⁿ⁻ расположены вдоль оси b (рис. 4). В анионах псевдододекаэдрическое координационное окружение атома Co образовано тремя бидентатными и одной монодентатной нитратной группой, KЧ(Co) = 7. Длины связей Co-O составляют от 2.13 до 2.23 Å (средняя длина 2.19 Å); для монодентатной NO₃-группы расстояние между атомом Co и атомом O, не связанным с ним, равно 3.01 Å.

Рис. 4. Проекция структуры Ag[Co(NO₃)₃] на плоскость 0bc.

Островная структура Na₂[Co(NO₃)₄] содержит комплексные анионы [Co(NO₃)₄]² ранее строения неизвестного (рис. 5). Координационный полиэдр атома Со представляет собой скрученную тетрагональную призму. В анионе $[Co(NO_3)_4]^2$ нитратные группы несимметричными являются бидентатными, расстояния Со-О составляют 2.06-2.57 Å (среднее расстояние 2.27 Å. КЧ(Со)=8).

В комплексных катионах [$Zr(NO_3)_3(H_2O)_3$]⁺, входящих в состав структуры (NO_2)[$Zr(NO_3)_3(H_2O)_3$]₂(NO_3)₃, атом Zr координирует три молекулы воды и три бидентатные нитратные группы (рис. 6а).

Рис. 5. Анион [Co(NO₃)₄]²⁻ в структуре Na₂[Co(NO₃)₄].

Координационный полиэдр представляет собой искажённую трёхшапочную тригональную призму. Комплексные катионы образуют слои, параллельные плоскости *ab*0, чередующиеся со слоями, состоящими из катионов NO_2^+ и анионов NO_3^- , непосредственно не связанных с атомом Zr (рис. 7). Слои связаны между собой за счёт водородных связей (расстояния О…О равны 2.71 и 2.73 Å).

Рис. 6. Катион [Zr(H₂O)₃(NO₃)₃]⁺ в структуре (NO₂)[Zr(NO₃)₃(H₂O)₃]₂(NO₃)₃ (а) и анион [Zr(NO₃)₅]⁻ в структурах Cs[Zr(NO₃)₅], (NH₄)[Zr(NO₃)₅](HNO₃) и (NO₂)_{0 23}(NO)_{0 77}[Zr(NO₃)₅] (б).

 $Cs[Zr(NO_3)_5],$ $(NH_4)[Zr(NO_3)_5](HNO_3)$ В соединениях И (NO₂)_{0.23}(NO)_{0.77}[Zr(NO₃)₅] так же как и в ранее изученном (NO₂)[Zr(NO₃)₅] (Tikhomirov G. et al. // Z. Anorg. Allg. Chem. 2002. B. 628. S. 269.), содержатся анионы [Zr(NO₃)₅]. В анионе [Zr(NO₃)₅] атом Zr(IV), координируя пять слабоискажённых бидентатных нитратных групп, проявляет необычно высокое КЧ 10 (рис. 6б). Координационный полиэдр представляет собой цис-изомер двухшапочной тетрагональной антипризмы. В четырёх структурно охарактеризованных анионах [Zr(NO₃)₅] расстояния Zr-O составляют от 2.23 до 2.41 Å (среднее расстояние Zr-O 2.29 Å). Атомы О, располагающиеся в шапочных вершинах, несколько удалены (Zr-O 2.34 - 2.42 Å, среднее 2.38 Å). Таким образом, анион [Zr(NO3)5] является относительно устойчивым и характерным для кристаллохимии Zr(IV) нитратным комплексным анионом, на строение которого мало влияют природа противоионов и различные упаковочные факторы.

ŧ,

Рис. 7. Кристаллическое строение (NO₂)[Zr(NO₃)₃(H₂O)₃]₂(NO₃)₃.

Структура Cs[Zr(NO₃)₅] состоит из анионов [Zr(NO₃)₅]⁻ и катионов Cs⁺. В структуре (NH₄)[Zr(NO₃)₅](HNO₃), в отличие от Cs[Zr(NO₃)₅], наряду с анионами [Zr(NO₃)₅]⁻ и катионами NH₄⁺ присутствуют молекулы HNO₃.

13

Комплекс (NO₂)_{0.23}(NO)_{0.77}[Zr(NO₃)₅] изотипен изученному ранее комплексу NO₂[Zr(NO₃)₅], в котором примерно три четверти катионов нитрония NO₂⁺ заменено на катионы нитрозония NO⁺. Наличие в структуре (NO₂)_{0.23}(NO)_{0.77}[Zr(NO₃)₅] катионов NO⁺ и NO₂⁺ подтверждено методом ИК-спектроскопии (полосы поглощения 2273 см⁻¹ и 570 см⁻¹ соответственно).

III. 2. Закономерности в строении нитратометаллатов

Благодаря кристаллохимическим особенностям нитратной группы в нитратометаллатах реализуются *максимальные координационные числа*, например: K4(Ln³⁺) = 12; K4(Mn²⁺) = 8; K4(Fe³⁺) = 8; K4(Co²⁺) = 7, 8; K4(Zr⁴⁺) = 10; K4(Cu²⁺) = 8 (4+1+3; 4+4).

Геометрия комплексных анионов и состав образующихся комплексов зависят от ряда факторов, наиболее важным из которых является электронная конфигурация центрального атома. Так, в случае ионов с симметричной электронной конфигурацией Ti⁴⁺ (d⁰); Cd²⁺, Sn⁴⁺ (d¹⁰); Fe³⁺, Mn²⁺ (d⁵, высокоспиновая конфигурация) образуются наиболее симметричные анионы $[M(NO_3)_4]^{n-}$ (в случае M = Ti, Sn нейтральные молекулы) со слабоискажённым додекаэдрическим окружением центрального атома, а в случае Zr (d⁰) – анионы $[M(NO_3)_5]$ с окружением центрального агома в форме двухшапочной тетрагональной антипризмы.

В нитратометаллатных комплексах Cr^{3+} (d³) и Ni²⁺ (d⁸) всегда реализуется октаэдрическое окружение, что объясняется существенной стабилизацией этих катионов в октаэдрическом поле. В случае нитратных комплексов Cu²⁺ (d⁹) формируется ближайшее квадратное окружение, которое дополняется одной – четырьмя более длинными связями Cu-O.

Наибольшее разнообразие геометрии анионных нитратных комплексов наблюдается в случае Co^{2+} (d^7 , высокоспиновая конфигурация), по-видимому, из-за наличия нескольких координационных полиэдров с близкими энергиями стабилизации кристаллическим полем. Так, в структурно изученных нитратокобальтатах атом Co(II) проявляет КЧ 8, 7, 6, образуя не только островные, но и цепочечные нитратные анионы.

Влияние размера противоиона проявляется в том, что уменьшение радиуса противоиона может приводить к изменению состава комплекса, например. появлению дополнительных молекул (HNO₃ структуре в $(NH_4)[Zr(NO_3)_5](HNO_3)$ по сравнению с Cs[Zr(NO_3)_5]) или ионов (например, NH₄⁺ и NO₃⁻ в структурах (NH₄)₃[M(NO₃)₄](NO₃) по сравнению с Cs₂[M(NO₃)₄], где M = Mn, Cu). Также может происходить изменение строения комплексного аниона вплоть до изменения КЧ центрального атома. Так, в тетранитратокобальтатах A₂[Co(NO₃)₄] при уменьшении размера катиона КЧ(Co²⁺) уменьшается от 8 (A=Ph₄As) до 7 (A=Cs) и 6 (A=NO). Кроме того, возможен переход от цепочечным структур $(Ag[Co(NO_3)_3]),$ островных ленточным ĸ $((NH_4)_3[Ni_7(NO_3)_7])$ и слоистым структурам (NO[M(NO_3)_3], где M = Cu, Mn).

<u>IV. СИНТЕЗ ОКСИДНЫХ СИСТЕМ В РАСІІЛАВЕ NH4NO3</u> <u>IV. 1. Взаимодействие гидратов нитратов 3d-металлов,</u> Al и Zr с нитратом аммония при нагревании.

Показано, что взаимодействие гидратов нитратов 3d-металлов, алюминия и цирконила, а также их смесей с нитратами щелочных металлов и аммония при медленном нагревании (0.5 °С/мин) протекает в две стадии. На первой стадии (100-140 °С) происходит дегидратация и формирование нитратных комплексов. Состав и строение анионов в нитратометаллатах, кристаллизацией из расплавов, хорошо коррелируют со спектральными данными о строении анионов, присутствующих в расплавах нитратов щелочных металлов и аммония (таблица 3). В большинстве случаев образуются анионы состава [M(NO₃)₄]ⁿ⁻. Можно предположить, что ленточные [Ni₂(NO₃)₇]_{n³ⁿ⁻ и цепочечные [Co(NO₃)₃]_{nⁿ⁻} анионы, обнаруженные в структурах (NH₄)₃[Ni₂(NO₃)₇] и Ag[Co(NO₃)₃] соответственно, могут образовываться на промежуточных стадиях разложения растворов нитратометаллатов в NH₄NO₃.}

Таблица 3.

Анионные нитратные комплексы 3d-металлов [M(NO₃)_n]^{m-}, присутствующие в растворах расплавленных нитратов и в комплексах, полученных кристаллизацией из расплавов.

м	Расплав	Анионы в расплавах нитра- тов (150-250 °C) [*]		Кристаллизация из расплава				
		состав	строение	Комплекс⁵	анион	строение		
Ma	NH ₄ NO ₃	$\left[\mathrm{Mn}(\mathrm{NO}_3)_4\right]^2$	додекаэдр	(NH4)3Mn(NO3)5	$[M_{\rm m}(N]O)$ 1^{2-}			
IVIII	CsNO ₃	-		$Cs_2[Mn(NO_3)_4]$		додеказдр		
	NH ₄ NO ₃	-		(NH4)3 Co(NO3)5	$[Co(NO_3)_4]^{2-}$			
Co		$[Co(NO_3)_4]^{2-}$	додекаэдр			F005 10 10 10		
	(Li,K)NO3	$[Co(NO_3)_4]^{2-}$	куб	$Cs_2[Co(NO_3)_4]$	$[Co(NO_3)_4]^{2-}$	псевдододе-		
			$\left[\operatorname{Co}(\operatorname{NO}_3)_n\right]^{(n-2)-}$	октаэдр			каздр, К 1-7	
	NH ₄ NO ₃	$[Ni(NO_3)_4]^{2-}$	октаэдр	$(NH_4)_3Ni_2(NO_3)_7$	$[Ni_2(NO_3)_7]_n^{3n-1}$	беск. ленты		
	a : 2000	$[Ni(NO_3)_4]^{2-}$	куб					
Ni	$(LI,K)INO_3$	$[Ni(NO_3)_4]^{2-}$	октаэдр					
	ANO ₃ , А = щ.м.	[Ni(NO ₃) ₃] ⁻	октаэдр	Cs ₂ [Ni(NO ₃) ₄]	[Ni(NO ₃) ₄] ²⁻	октаэдр		
Cu	NH₄NO ₃	[Cu(NO ₃) ₄] ²⁻	иск. окта-	A ₃ Cu(NO ₃) ₅ , A= NII ₄ , K, Rb	$\left[\mathrm{Cu}(\mathrm{NO}_3)_4\right]^2$	4+1+3		
	(Li,K)NO ₃		эдр	$Cs_2[Cu(NO_3)_4]$	$[Cu(NO_3)_4]^{2-}$	4+4		
72	NH ₄ NO ₃	-		$(NH_4)_2[Zn(NO_3)_4]$	$\left[\operatorname{Zn}(\operatorname{NO}_3)_4\right]^2$			
ZII	(Li,K)NO ₃	$[Zn(NO_3)_4]^{2-}$	тетраэдр	$Cs_2[Zn(NO_3)_4]$	$[Zn(NO_3)_4]^{2-}$	4+4		
Fe	CsNO ₃	-		$Cs[Fe(NO_3)_4]$	$[Fe(NO_3)_4]$	додекаэдр		
Cr	CsNO ₃	-		$Cs_3[Cr(NO_3)_6]$	$[Cr(NO_3)_6]^{3-}$	октаэдр		

^а – Волков С.В., Яцимирский К.Б. Спектроскопия расплавленных солей. Киев: Наукова думка. 1977. 223 с.; ^b – курсивом выделены соединения, полученные в данной работе.

Получение из расплава NH_4NO_3 нитратных комплексов с участием Fe(III), Cr(III), Al(III) и Zr(IV) осложнено из-за сильной склонности их солей к гидролизу, а в случае хрома ещё и к повышению степени окисления.

При дальнейшем нагревании расплавов при температуре 170-250 °С происходит разложение нитратометаллатов, характер которого зависит от природы растворённых нитратов и скорости нагревания. При медленном нагревании расплавов (0.5 °С/мин) в ряде случаев удаётся зафиксировать образование промежуточных соединений, например, $(NH_4)_2CrO_4$ (при разложении расплавов $NH_4NO_3+Cr(NO_3)_3$ ·9H₂O или $NH_4NO_3+(NH_4)_2Cr_2O_7$), $Ni_3(NO_3)_2(OH)_4$, $Cu(NH_3)_2(NO_3)_2$, AlO(OH).

Разложение смесей гидратов нитратов 3d-металлов, цирконила и алюминия с NH₄NO₃ при большей скорости нагревания (5 °С/мин) изучено методами ТГА и ДТА. На всех термограммах присутствует стадия большой потери массы, которая соответствует совместному разложению присутствующих в расплаве нитратов и нитрата аммония. Эта стадия сопровождается экзо-эффектом на ДТ-кривых и заканчивается образованием оксидных образнов при температуре T_{end} < 250 °C (потеря веса составляет 96-98 % от теоретически рассчитанной).

Обнаружено, что добавки нитратов 3d-металлов или $(NH_4)_2Cr_2O_7$ уменьшают температуру разложения NH_4NO_3 в следующем ряду: Cr^{3+} (или $Cr_2O_7^{2-}$) (73) > Mn^{2+} (41) $\approx Co^{2+}$ (34) > Cu^{2+} (14). В скобках приведена разность температур T_{end} чистого NH_4NO_3 (253 °C) и смесей $NH_4NO_3+M(NO_3)_n$.

Во всех изученных системах, содержащих одновременно два или три нитрата 3d-металла и NH₄NO₃, при быстром нагревании процесс разложения протекает с высокой скоростью и имеет одностадийный характер. Одновременное разложение всех компонентов расплава, сопровождающееся сильным газовыделением, способствует формированию гомогенных оксидных образцов с развитой удельной поверхностью. Особенно благоприятно сказывается присутствие в смеси Cr(NO₃)₃·9H₂O (или (NH₄)₂Cr₂O₇) или Mn(NO₃)₂·6H₂O.

IV. 2. Свойства оксидов, полученных с использованием расплавленного NH₄NO₃.

Свойства оксидных образцов на основе 3d-металлов.

Индивидуальные оксиды 3d-металлов, полученные разложением раствора нитратов в жидком NH₄NO₃, состоят из частично спёкшихся частиц с размерами от 20÷50 нм (NiO, CuO (рис. 8а)) до 500 нм (MnO₂). Образец CuO, полученный в расплаве KNO₃, состоит из гораздо более крупных частиц с размерами около 2 мкм, что связано с относительно малой скоростью разложения раствора Cu(NO₃)₂ в расплаве KNO₃.

Оксидные образцы I-X (таблица 4), полученные совместным разложением двух или трёх нитратов 3d-металлов в расплаве NH₄NO₃, имеют сходную морфологию и состоят из частиц с размерами около 10-50 нм, которые образуют агломераты (2-10 мкм) в результате частичного спекания (рис. 8б). Согласно результатам РФА образцы III – X являются однофазными (таблица 4) и имеют структуру типа шпинели, а образцы I и II помимо фазы $CuCr_2O_4$ содержат Cr_2O_3 . Кристаллическая фаза γ -Al₂O₃ присутствует во всех нанесённых образцах. РСМА ряда образцов показал однородный характер распределения компонентов, соответствующий их среднему содержанию в образце.

Рис. 8. Микрофотографии оксидов, полученных в расплаве NH₄NO₃: $\mathbf{a} - \text{CuO}$; $\mathbf{6} - \text{CuO+Cr}_2\text{O}_3$ (мольное соотношение CuO:Cr₂O₃=1:2) (образец I).

Полученные образцы проявляют высокую каталитическую активность в реакции глубокого окисления метана (таблица 4). Образцы I и VII являются наиболее активными среди двойных шпинелей I-VIII. Скорость окисления R₁ на образце I почти в 20 раз превышает скорость окисления на образце СиСг₂O₄, полученном в работе (Поповский В.В. // Кинетика и катализ. 1972. Т. 13. Вып. 5. С. 1190.). Трёхкомпонентные образцы IX-X гораздо активнее образцов I-VIII, причём наиболее активным является образец IX.

Таблица 4.

Скорости окисления метана при 300 °С на смешаннооксидных катализаторах, отнесённые к площади поверхности образца (R_1) или к его массе (R_2), удельные поверхности образцов (S_{yg}), массы навесок катализаторов и температуры 50 %-ой ($T_{50\%}$) конверсии метана.

образец	соотношение 3d- металлов (ат. %)	S _{уд} м²/г	т _{кат} мг	R ₁ ×10 ³ , ммоль· м ⁻² ·мин ⁻¹	R ₂ ×10 ⁴ , ммоль г ⁻¹ ·мин ⁻¹	T _{50%} , ℃
I,	Cu:Cr=1:4	35	384	35	124	362
II ^{a, b}	Cu:Cr=1:4	97	321	9	89	395
III	Cu:Mn=1:1	34	436	26	88	380
IV ⁴	Cu:Mn=1:1	28	400	26	73	380
V ^{a, c}	Cu:Mn=2:3	125	277	7	91	386
VI	Cu:Co=1:1	8	776	95	76	375
VII ^{a, b}	Co:Cr=3:2	105	339	25	261	370
VIII	Co:Mn=2:1	48	362	44	213	350
IX	Mn:Ni:Co=3:2:2	80	244	81	648	310
X	Mn:Cu:Co=3:2:2	60	304	56	335	335

^а – образцы, синтезированные с добавкой (NH₄)₂Cr₂O₇, ⁶ – образцы, содержащие 50 вес % γ-Al₂O₃, ⁶ – образец, содержащий 60 вес. % γ-Al₂O₃

Свойства образцов СиО-ZrO2

Согласно данным РФА введение оксида меди(II), позволяет стабилизировать метастабильную тетрагональную (t) модификацию ZrO_2 вплоть до 600-700 °C, причём линии CuO появляются на рентгенограмме только начиная с содержания меди в образце ~ 20-25 ат. %. Величина удельной поверхности образцов CuO-ZrO₂ увеличивается с ростом содержания меди и составляет от 10 до 80 м²/г. Измерение пористости образцов состава 60 и 80 ат. % Си показало, что они являются мезопористыми и имеют узкое распределение пор по размерам (7-10 нм).

Образцы состоят из относительно крупных частиц с размерами 10-100 мкм с однородным распределением компонентов, на поверхности которых видны каналы (рис. 9). Содержание Си на поверхности образцов, по данным РСМА, превышает среднее содержание примерно на 17 %, причем, для образцов, со-держащих более 25 ат. % Си это различие увеличивается до 30 %, одновременно на рентгенограммах появляются линии СиО. Можно предположить, что на поверхности частиц ZrO_2 образуется тонкий слой СиО. Обработка образца 40 ат. % Си концентрированной HNO₃ приводит к понижению содержания Си на поверхности до 25 ат. %, и исчезновению линий СиО на рентгенограмме. Таким образом, около 20-25 ат. % Си входят в образец в форме, отличной от СиО.

На примере образца, содержащего 15 ат. % Сu, показано, что отжиг при 700 °С приводит к переходу t-ZrO₂ в m-ZrO₂ и сегрегации CuO на поверхности образца (удельная поверхность уменьшается от 56.6 до 0.9 M^2/Γ , появляются линии CuO, увеличивается содержание меди на поверхности).

Рис. 9. Морфология образца CuO-ZrO2, содержащего 25 мол. % CuO.

С помощью *методов ЭСДО и ЭПР* выявлены особенности распределения меди в образцах CuO-ZrO₂ в зависимости от их состава и температуры отжига (рис. 10, 11; таблица 5). Показано, что лишь незначительная часть от общего содержания меди в образце находится в виде изолированных ионов Cu²⁺, имеющих тетрагонально-искажённую октаэдрическую координацию. В спектрах ЭПР в области g_{\perp} можно выделить спектр обменносвязанных ионов без сверхтонкой структуры (рис. 10), интенсивность которого увеличивается при увеличении

температуры отжига образцов. Особенности этого спектра ЭПР свидетельствуют о возможном упорядочении ионов Cu²⁺ за счет кооперативного эффекта Яна-Теллера (таблица 5; рис. 10, часть А спектра). Основная часть меди в системах CuO-ZrO₂ стабилизируется в виде оксидных кластерных структур (включений), не проявляющихся в ЭПР и дающих в ЭСДО полосы переноса заряда (ППЗ) в области 27000-32000 см⁻¹ (рис. 11, область А). С ростом содержания меди до 20-25 ат. % растут только размеры меднооксидных кластеров без образования областей CuO. Меднооксидные кластеры стабилизируются на поверхности или между кристаллитами ZrO₂ в виде межблочных границ с заметным взаимным упорядочением ионов Cu²⁺. Энергия ППЗ таких оксидных кластеров в системе CuO-ZrO₂ слабо меняется при увеличении температуры отжига от 500 до 700 °C, поскольку при этом не происходит заметное изменение межслоевых пространств ZrO₂. Появление интервалентных переходов Cu⁺²-Cu⁺¹ (рис. 116) за счёт частичного восстановления оксидных кластеров, возможно, является характерной особенностью стабилизации оксидных кластерных структур меди в системе CuO-ZrO₂. Максимальная степень вхождения CuO в ZrO₂ в виде меднооксидных кластеров равна 20-25 ат. %. Аналогичный способ стабилизации больших концентраций меди в виде оксидных кластеров был обнаружен ранее в низкотемпературных катализаторах синтеза метанола CuO-ZnO в работе Плясовой Л.М. и др. (Кинетика и катализ. 1995. Т. 36. № 3. С. 464.), в которой подобные системы было предложено называть аномальными твёрдыми растворами.

١,

Таблица 5.

Область поглощения, см ⁻¹	Изменение спектра при уве- личении содержания CuO и повышении Т _{отякиз}	Отнесение полосы
37000 - 40000	Не выявлено	Край фундаментального поглощения (КФП) ZrO2
13000 - 14000	От 0.5 до 5 ат.% СиО ин- тенсивность растёт	d-d переходы для изолированных ионов Cu ²⁺ в искажённом октаэд- рическом окружении
16000	Появляется в результате отжига при 600 и 700 °C	Интервалентные переходы Cu ²⁺ - Cu ⁺ , возможно образование ли- нейных фрагментов -Cu-O-Cu-O-
27000 - 32000	От 0.5 до 3 ат.% смещение в область $25000-27000 \text{ см}^{-1}$; увеличение интенсивности	Полосы переноса заряда (ППЗ) медно-оксидных кластеров.
12000-20000, большое по- глощение в УФ-области	Линии появляются начиная с 25-30 ат.% Си	Спектры, характерные для СиО

Отнесение основных полос в спектрах ЭСДО образцов CuO-ZrO₂ (рис. 11a, 11б).

Рис. 10. Спектры ЭПР образца CuO-ZrO₂ с 2.5 ат. % Си при разных температурах отжига: 1) 500 °C, 2) 600 °C, 3) 700 °C.

Рис. 11. ЭСДО образцов CuO-ZrO₂, отожжённых при 500 °C (а) и при 700 °C (б): 1 – ZrO₂, 2 – ZrO₂+CuO (0.5 ат. % Cu), 3 – ZrO₂+CuO (1.5 ат. % Cu), 4 – ZrO₂+CuO (3.0 ат. % Cu).

Согласно полученным результатам, каталитическая активность образнов CuO-ZrO₂ в реакции глубокого окисления метана возрастает с увеличением содержания Cu до 30 ат. %, затем она практически не изменяется до 90 ат. % и потом падает (рис. 12). При небольшом содержании меди в образце увеличение активности может быть обусловлено увеличением количества меднооксидных кластеров, которые обладают высокой каталитической активностью в реакции окисления метана (*Ren-xian Zhou et al.* // Appl. Surface Science. 1999. V. 148. P. 263-270.; Kundakovic Lj. et al. // Appl. Catal. A: Gen. 1998. V. 171. P. 13-29.).

Рис. 12. Зависимость температур 50 %-ой и 95 %-ой конверсии метана и скорости окисления метана (R) от содержания CuO в образцах CuO-ZrO₂.

IV. 3. Возможности метода синтеза оксидов в расплавленном NH4NO3

Достоинствами метода синтеза в расплавленном NH₄NO₃, как и метода синтеза в расплаве нитратов щелочных металлов (*Afanasiev P., Geantet C.* // Coord. Chem. Rev. 1998. V. 178-180. P. 1725.), являются быстрота процесса, хорошая воспроизводимость результатов, простота оборудования, а также низкая стоимость используемых реагентов. Кроме того, данный метод позволяет получать чистые оксидные продукты, не содержащие какие-либо примеси. Разложение расплава нитратов при относительно низкой температуре в узком температурном интервале, протекающее с большим газовыделением, позволяет получать высокодисперсные оксидные образцы с равномерным распределением компонентов. Ограничением метода является сложность синтеза оксидных образцов в системах, содержащих нитраты с высокой температурой разложения, например La(NO₃)₃-4H₂O.

выводы

1. Разработан новый метод синтеза анионных нитратных комплексов 3d-металлов из расплавов нитратов щелочных металлов и аммония. Применяя новый метод, а также модифицируя известные синтетические подходы, впервые получены и изучены методом PCA 12 новых нитратных комплексов 3d-металлов (Cr, Mn, Fe, Co, Cu) и циркония(IV).

2. Выявлены основные закономерности в изменении состава и строения нитратометаллатных комплексов в зависимости от природы центрального атома и присутствующих в структуре противоионов. Обнаружено структурное разнообразие координационных полиэдров атома Со, в которых центральный атом проявляет необычные КЧ 7 и 8 и образует бесконечные цепочечные анионы наряду с островными. В нитратных комплексах циркония содержатся пентанитратоцирконатные анионы [Zr(NO₃)₅], в которых атом Zr(IV) проявляет необычно КЧ 10.

3. Изучено термическое разложение растворов гидратов нитратов 3d-металлов и нитрата цирконила в избытке NH₄NO₃. Показано, что образова-

21

ние раствора анионных нитратных комплексов d-металлов в жидком NH₄NO₃ на промежуточной стадии разложения способствует однородному распределению компонентов в получаемых оксидных образцах.

4. Совместное разложение смеси нитратов 3d-металлов и NH₄NO₃ в узком температурном интервале приводит к образованию высокогомогенизированных оксидных образцов на основе оксидов 3d-металлов со структурой шпинели. Разложение раствора нитратов цирконила и меди(II) в жидком NH₄NO₃ приводит к формированию оксидных образцов с необычной морфологией и способами распределения CuO в матрице ZrO₂. Характер распределения ионов меди в полученных образцах CuO-ZrO₂ изучен методами ЭПР и ЭСДО. Полученные образцы проявляют высокую каталитическую активность в реакции глубокого окисления метана.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В РАБОТАХ:

1. Morozov I.V., Fedorova A.A., Trojanov S.I. Synthesis and Crystal Structure of Alkali Metal and Ammonium Nitratocuprates(II): M₃[Cu(NO₃)₄]NO₃ (M-K, Rb, NH₄) and Cs₂[Cu(NO₃)₄]. // Z. Anorg. Allg. Chem. 1998. V. 624. P. 1543-1547.

2. Фёдорова А.А., Чижов П.С., Морозов И.В., Троянов С.И. Синтез и кристаллическое строение новых нитратных комплексов железа(III) и хрома(III): $Cs[Fe(NO_3)_4]$, $Cs_2[Cr(NO_3)_5]$ и $Cs_3[Cr(NO_3)_6]$. // Журн. неорг. хим. 2002. Т. 47. С. 2007-2014.

3. Морозов И.В., Фёдорова А.А., Родионова Т.А., Троянов С.И. Синтез и кристаллическое строение нитратометаллатов аммония $(NH_4)_3[Mn(NO_3)_4]NO_3$, $(NH_4)_2[Zn(NO_3)_4]$ и $(NH_4)_3[Ni_2(NO_3)_7]$. // Журн. неорг. хим. 2003. Т. 48. С. 1094-1101.

4. I.V. Morozov, A.A. Fedorova, A.V. Knotko, O.R. Valedinskaja, E. Kemnitz. Mixed 3d-metal oxides prepared using molten ammonium nitrate. // Mendeleev Commun. 2004. № 4. P. 138-139.

5. Морозов И.В., Фёдорова А.А., Паламарчук Д.В., Троянов С.И. Синтез и кристаллическое строение нитратных комплексов Zr(IV). // Известия РАН. 2005. № 1. С. 92-97.

6. Фёдорова А.А., Морозов И.В. Взаимодействие нитратов переходных металлов с NH₄NO₃. // Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов-2002». Секция «Химия». Москва. Тезисы докладов. 2002. Т. 2. С. 229.

7. Прохоров А.В., Фёдорова А.А. Взаимодействие ZrCl₄ с нитратами цезия и аммония. // Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов-2002». Секция «Химия». Москва. Тезисы докладов. 2002. Т. 2. С. 192.

8. Морозов И.В., Фёдорова А.А. Синтез оксидных материалов в среде нитрата аммония. // Актуальные проблемы современной неорганической химии и материаловедения. II школа-семинар. Дубна (2-5 марта 2002 г.). Тезисы докладов. 2002. С. 44.

9. Фёдорова А.А., Морозов И.В. Синтез оксидных материалов в расплаве нитрата аммония. // Международная конференция "Функционализированные материалы: синтез, свойства и применение". Украина, Киев (24-29 сентября 2002 г.). С. 68-69.

10. Морозов И.В., Фёдорова А.А., Новожилов М.А., Кемнитц Е. Получение оксидных катализаторов на основе ZrO₂, допированного оксидами 3d-металлов с использованием расплава нитрата аммония. // 1-я Международная Школаконференция молодых учёных по катализу. Новосибирск (2-6 декабря 2002 г.). Тезисы докладов. 2002. С. 235-236.

11. Морозов И.В., Фёдорова А.А., Троянов С.И., Прохоров А.В. Новые нитратоцирконаты: синтез и определение их структуры методом РСтА. // Ш Национальная кристаллохимическая конференция. Черноголовка (19-23 мая 2003 г.). Тезисы докладов. 2003. С. 123.

12. Фёдорова А.А., Шимко Р.Ю., Морозов И.В., Троянов С.И. Новые гидраты нитратов лютеция и индия с пониженным содержанием воды. // XXI Международная Чугаевская конференция по координационной химии. Украина, Киев (10-13 июня 2003 г.). Тезисы докладов. 2003. С. 393-394.

13. Фёдорова А.А., Морозов И.В., Кемнитц Е. Синтез катализаторов со структурой шпинели с использованием нитрата аммония. // Актуальные проблемы современной неорганической химии и материаловедения. III школа-семинар. Дубна (26-29 сентября 2003 г.). Тезисы докладов. 2003. С. 42.

14. I.V.Morozov, A.A.Fedorova, M.A.Novozhilov, V.F.Anufrienko, E.Kemnitz. Synthesis of oxide catalysts $CuO+ZrO_2$ for methane combustion with using molten NH₄NO₃. // XVI International Conference on Chemical reactors «CHEMREACTOR-16». Berlin, Germany, December 1-5 2003. Proceedings. 2003. P. 337-340.

15. Паламарчук Д.В., Фёдорова А.А., Морозов И.В. Синтез и исследование новых нитратных комплексов циркония. // Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов-2003». Секция «Фундаментальное материаловедение». Москва. Тезисы докладов. 2003. С. 407.

16. Лучков И.В., Ванецев А.С., Фёдорова А.А. Синтез оксидных катализаторов в микроволновом поле. // Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов-2003». Секция «Фундаментальное материаловедение». Москва. Тезисы докладов. 2003. С. 398-399.

17. Фёдорова А.А., Кузнецова Н.Р., Романов И.А., Паламарчук Д.В. Первые нитратные комплексы d-металлов с цепочечным строением. // Международная конференция студентов и аспирантов по фундаментальным наукам «Ломоносов-2004». Секция «Химия». Москва (12-15 апреля 2004 г.). Тезисы докладов. 2004. С. 33.

18. N.T. Vasenin, A.A. Fedorova, V.F. Anufrienko, T.V. Larina, I.V. Morozov, 7.R. Ismagilov. New synthetic way to CuO-ZrO₂ catalysts and their investigation by EPR and ESDR. // 3-d Russia-China seminar on catalysis. Novosibirsk (April 17-19, 2004). 2004. P. 51-51.

19. Petrov M.N., Lyubushkin R.A., Morozov I.V., Fedorova A.A., Burdeynaya T.N., Tretyakov V.F. New synthetic way to catalysts with spinel structure. // The Second International Conference Highly-organized catalytic systems (HOCS-2004). Moscow, Russia, June 14-17, 2004. Book of abstracts. P. 61.

20. I.V. Morozov, A.A. Fedorova, A.V. Knotko, O.R. Valedinskaja, E. Kemnitz. Preparation of oxide catalysts with spinel structure by using molten ammonium nitrate. // 7-th International Workshop High-Temperature Superconductors and Novel Inorganic Materials Engineering (MSU-HTSC VII). Moscow, Russia (June 20-25, 2004). Proceedings. P-85.

21. Морозов И.В., Фёдорова А.А., Кемнитц Е. Новый метод синтеза ZrO₂-содержащих катализаторов окисления метана. // Материалы международной конференции «Общие проблемы физической химии». Донецк (30 августа – 2 сентября 2004 г.). 2004. С. 13.

22. I.V. Morozov, A.A. Fedorova, A.V. Knotko, O.R. Valedinskaja, E. Kemnitz. Interaction of 3d-metal hydrated nitrates with NH_4NO_3 during heating. // VI. Solid State Chemistry. Prague, Czech Republic (September 13-17, 2004). Book of Abstracts. P. 81.

Работа выполнена при частичной финансовой поддержке фонда Леонарда Эйлера (DAAD, Германия) и при частичной финансовой поддержке РФФИ (гранты № 01-03-33306-а, № 03-03-42965-з, № 04-03-32734-а, № 04-03-42749-з). Авгор диссертационной работы искрение благодарит проф. Э. Кемница (Институт химии Берлинского университета им. Гумбольдтов) за предоставленную возможность для экспериментальной работы и сбора литературных данных: д.х.н., проф. С.И. Троянова за помощь в проведении рентгеноструктурного эксперимента, за ценные советы и помощь в работс; д.х.н.. В.Ф. Ануфриенко и Н.Т. Васенина за съёмку спектров ЭПР и ЭСДО оксидных образцов, помощь в интерпретации полученных спектров, ценные замечания и советы и поддержку в работе; Т.В. Ларину за съёмку спектров ЭСДО оксидных образцов; О.Р. Валединскую и к.х.н. Т.Б. Шаталову за проведение ДТА и ТГА образцов; к.х.н. А.Г. Вересова, к.х.н. А.В. Кнотько, к.х.н. М.А. Новожилова за проведение съёмки микрофотографий оксидных образцов методом электронной микроскопии; к.х.н., доц. Ф.М. Спиридонова и к.х.н. Ю.А. Великодного за проведение РФА; Е. Лиске (Институт химии Берлинского университета им. Гумбольдтов) за измерение каталитической активности образцов в реакции окисления метана. Особенную благодарность автор выражает своему научному руководителю к.х.н., доценту И.В. Морозову за огромную помощь в обсуждении работы, внимательное отношение и моральную поддержку, а также всем сотрудникам, аспирантам и студентам лаборатории направленного нсорганического синтеза за ценные советы и замечания.

• •

10089

РНБ Русский фонд

7

<u>2006-4</u> 6958

Подписано в печать *19.05*, 2005 ода. Заказ № 26. Формат 60х90/₁₆. Усл. печ. л. *1,5*. Тираж *130* экз. Отпечатано на ризографе в отделе оперативной печати и информации Химического факультета МГУ.