ЛОГВИНОВА ВЕРА БОГДАНОВНА

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОНАТОВ СВИНЦА(II) С АНИОНАМИ АМИНОПОЛИКАРБОНОВЫХ КИСЛОТ

Специальность 02.00.01 - неорганическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

г. Владивосток – 2003 г.

175614

Работа выполнена в лаборатории химии редких металлов Института химии Дальневосточного отделения Российской академии наук,

г. Владивосток.

Научный руководитель:

доктор химических наук, профессор

Р.Л. Давидович

Официальные оппоненты:

доктор химических наук, профессор

Н.П. Шапкин

кандидат химических наук старший научный сотрудник

С.А. Полищук

Ведущая организация -

Защита состоится

Институт элементоорганических

соединений им. А.Н. Несмеянова РАН

вчасов

на заседании регионального диссертационного совета Д 005. 001. 01 в Дальневосточном отделении Российской академии наук по адресу: 690022 г. Владивосток-22, пр-т 100-летия Владивостока, 159, Институт химии ДВО РАН
С диссертацией можно ознакомиться в научной библиотеке Дальневосточного отделения РАН

«.....»...........200...r.

Ученый секретарь диссертационного совета,

кандидат химических наук

Н.С. Блищенко

2003-A 19371

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Координационные соединения металлов с комплексонами в качестве лигандов нашли широкое применение не только в аналитической химии, где они используются для определения практически всех элементов, но и в различных областях науки и техники. В последние годы комплексонаты металлов привлекают внимание исследователей как перспективные объекты для биологии и медицины.

Широко применяемыми и наиболее известными комплексонами являются: моноаминные (иминодиуксусная — H_2 Ida, нитрилотриуксусная - H_3 Nta), диаминные (этилендиаминтетрауксусная — H_4 Edta) и триаминные (диэтилентриаминпентауксусная - H_5 Dtpa) кислоты.

Наиболее полно изучены комплексонаты щелочных и двухвалентных металлов, редкоземельных элементов, а также сурьмы и висмута. В отличие от них, комплексные соединения свинца(II) с аминополикарбоксилатными лигандами практически не изучены. Имеющиеся в литературе сведения о комплексонатах свинца(II) немногочисленны и противоречивы. В то же время комплексоны представляют значительный интерес для связывания токсичного металла свинца(II) и вывода его из организма. На пути целенаправленного поиска новых соединений с заданными свойствами очень важно получить сведения о способе образования, а также выявить основные кристаллохимические закономерности их формирования.

<u>Цель работы:</u> синтез и исследование новых координационных соединений свинца(II) с анионами аминополикарбоновых кислот (H₂Ida, H₃Nta, H₄Edta, H₅Dtpa), установление связи между условиями образования, составом и строением синтезированных комплексонатов. Для решения поставленной в диссертационной работе задачи необходимо оынвлиотека слагербург у ре

- 1. Провести систематическое исследование по разработке методов синтеза комплексонатов свинца(II) с анионами наиболее часто применяемых на практике аминополикарбоновых кислот с различными внешнесферными катионами.
- 2. Разработать методы получения и синтезировать новый класс смешанных комплексонатов свинца(II).
- 3. Исследовать строение полученных комплексонатов свинца(II).
- 4. Установить связь между условиями образования, составом и строением синтезированных комплексонатов.

Научная новизна исследования определяется следующими положениями:

- 1. Разработаны методы получения и впервые синтезированы новые комплексные соединения свинца(II) с анионами аминополикарбоновых кислот с различными внешнесферными катионами.
- 2. Синтезирован и исследован новый класс смешанных комплексонатов свинца(II) с анионами этилендиаминтетрауксусной кислоты и тио-карбамидом.
- 3. Установлена зависимость комплексообразования от рН среды, а также связь между условиями образования, составом и строением комплексонатов свинца(II) с анионами аминополикарбоновых кислот.
- 4. Изучено строение 13 комплексонатов свинца(II), выявлены новые мотивы их строения.

Практическая значимость работы. Синтезированы и детально исследованы 32 новых комплексоната свинца(II) с анионами аминополикарбоновых кислот, а также со смешанными лигандами. ИК-спектроскопические, рентгенометрические и термогравиметрические характеристики исследованных комплексонатов свинца(II) могут быть использованы в качестве справочного материала при изучении координационных соединений свинца(II) с органическими лигандами. Полученные в работе данные

представляют интерес для установления фундаментальных закономерностей строения комплексонатов Pb(II) с органическими лигандами и направленного синтеза новых соединений свинца с заданными свойствами.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 96-03-32255а).

На защиту автор выносит:

- 1. Закономерности и особенности синтеза новых комплексонатов свинца(II) с различными внешнесферными катионами и со смешанными лигандами.
- 2. Состав, ИК-спектороскопические исследования, структура, термические свойства полученных комплексонатов свинца(II).

<u>Апробация работы.</u> Основные результаты работы докладывались на XX Международной Чугаевской конференции по координационной химии (Росгов-на-Дону, 2001).

<u>Публикации.</u> По материалам диссертации опубликовано 9 статей в научных журналах.

<u>Структура и объем диссертации.</u> Диссертационная работа состоит из: введения, 5 глав, заключения, выводов, списка литературы, включающего 107 наименований, и приложения. Диссертация изложена на 150 страницах, содержит 29 рисунков и 16 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во <u>введении</u> дана общая характеристика работы, обоснована актуальность, сформулирована основная цель исследования, указана практическая значимость и новизна полученных результатов.

<u>В первой главе</u> проведен анализ научной литературы, свидетельствующий о том, что комплексным соединениям Pb(II) с аминополикарбоновыми лигандами посвящено относительно небольшое число работ. Как правило, публикации ограничиваются лишь описанием кристаллических структур.

Во второй главе приводятся данные об использованных в работе реагентах, описание методик получения координационных соединений, а также отражено приборное оформление экспериментов. Комплексные соединения свинца(II) с аминополикарбоновыми кислотами изучены методами химического, термогравиметрического, рентгенофазового и рентгеноструктурного анализов, а также ИК-спектроскопии.

<u>Третья глава</u> посвящена описанию методов получения впервые синтезированных и исследованных моноаминных комплексонатов свинца(II): иминодиацетатов и нитрилотриацетатов.

Моноаминные комплексонаты свинца(ІІ)

Нами впервые разработаны методы получения иминодиацетатов свинца(II) в кристаллическом состоянии в системе (Pb^{2+} - H_2Ida) и определены их составы. Установлена зависимость состава от мольного отношения реагирующих компонентов в растворе и от кислотности среды. В системе PbO - H_2Ida - H_2O в интервале мольных отношений компонентов PbO : H_2Ida 1:1–1:5 установлено образование трех индивидуальных иминодиацетатов свица(II): Pb(Ida) (1:1, pH=4.7), $Pb(HIda)_2$ H_2O (1:2-1:3, pH=3.6-3.3) и $Pb(HIda)_2$ GH_2O (1:4-1:5, GH=3) (рис. 1).

Из кристаллогидратов $Pb(HIda)_2 \cdot 6H_2O$ и $Pb(HIda)_2 \cdot H_2O$ в щелочной среде образуется безводный Pb(Ida). Последний же в присутствии избытка H_2Ida легко превращается в моно- и гексагидрат в зависимости от количества кислоты, т. е. при соотношении 1:1 образуется $Pb(HIda)_2 \cdot H_2O$, а при отношении 1:3- $Pb(HIda)_2 \cdot 6H_2O$. Моногидрат и гексагидрат взаимопревращаются в зависимости от условий: $Pb(HIda)_2 \cdot H_2O$ в избытке H_2Ida (отношение 1:2) превращается в $Pb(HIda)_2 \cdot 6H_2O$, последний же согласно термогравиметрии при нагревании до 135° С теряет 5 молекул воды с образованием $Pb(HIda)_2 \cdot H_2O$.

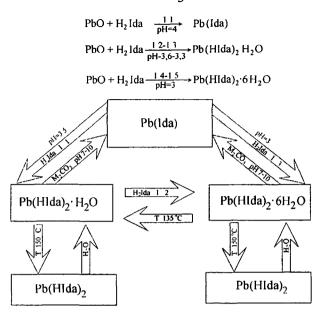


Рис.1. Схема образования и взаимопревращения иминодиацетатов свинца(II)

Исследование термической устойчивости иминодиацетатов показало, что комплексонат Pb(Ida) не претерпевает изменений при нагревании его до 250°C, а дальше начинается разложение соединения.

Дегидратация $Pb(HIda)_2 \cdot H_2O$ протекает в одну стадию при сравнительно высокой температуре 150 - 200° С (рис. 2). Образующийся в процессе дегидратации безводный $Pb(HIda)_2$ представляет собой индивидуальное соединение с характерной дифрактограммой.

На термограмме $Pb(HIda)_2 \cdot 6H_2O$ (рис. 3) в интервале температур от 20 до 300°C наблюдаются 4 эндотермических эффекта. Первый небольшой эндотермичекий эффект при 70° C связан с плавлением вещества. Одновременно при этой температуре начинается дегидратация комплексоната, которая протекает в две стадии. На первом этапе, судя по термограмме, в

интервале температур 70-135° С отщепляются 5 молекул H_2O с образованием $Pb(HIda)_2 \cdot H_2O$.

Как и в случае $Pb(HIda)_2 \cdot H_2O$, удаление шестой молекулы воды из $Pb(HIda)_2 \cdot 6H_2O$ происходит при 135 - 170° C, а разложение образовавшегося безводного $Pb(HIda)_2$ начинается при 210° C. Представляется интересным то, что при температуре 150° C оба соединения, теряя молекулу воды, превращаются в безводный $Pb(HIda)_2$, а при взаимодействии обезвоженного соединения с водой образуется то соединение, из которого оно было получено, что подтверждено ИК-спектроскопическими исследованиями (рис. 4-6).

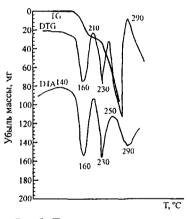


Рис.2. Термограмма $Pb(HIda.)_2$ · H_2O .

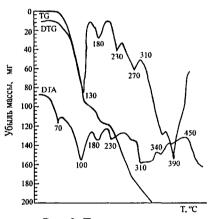


Рис .3 Термограмма $Pb(HIda)_2 \cdot 6H_2O$.

В синтезированных иминодиацетатах свинца (II) связи Pb-O преимущественно ионные. Асимметричные валентные колебания $\nu_{as}(COO)$ в ИКспектре Pb(Ida) (рис. 4) представлены двумя полосами поглощения: сравнительно узкой полосой поглощения средней интенсивности с максимумом при 1620 см⁻¹ и весьма интенсивной уширенной полосой 1560 см⁻¹. Валентные колебания связей C-N в ИК-спектре Pb(Ida) представлены полосой средней интенсивности с максимумом при 1092 и 1096 см⁻¹, в то

время как в $Pb(HIda)_2 \cdot H_2O$ и $Pb(HIda)_2 \cdot 6H_2O$ атомы азота в координации с металлом не участвуют (рис.5-6).

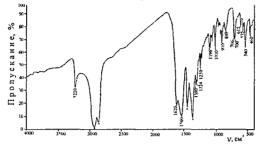


Рис. 4. ИК-спектр Pb(Ida).

*- здесь и дальше звездочками отмечены полосы поглощения вазелинового масла

B комплексонате $Pb(HIda)_2 H_2O$ содержатся

три набора длин связей Pb-O: 2.34-2.41, 2.51-2.67 и 2.81-3.09Å [1], и они более прочные по сравнению с Pb(Ida), на что указывает значительный сдвиг полосы валентного колебания $v_{as}(COO)$ в высокочастотную сторону.

ИК-спектр Pb(HIda) $_2$ · 6H $_2$ O сходен с Pb(HIda) $_2$ · H $_2$ O и отличается только значительно более уширенной полосой в области валентных колебаний воды 2700 - 3500см $^{-1}$

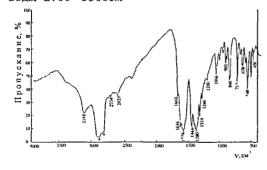


Рис. 5. ИК-спектр Pb(HIda)₂· H₂O.

Это сходство позволяет заключить, что оба соединения имеют близкое строение и одинаковый способ

координации HIda. Удаление молекул H_2O из $Pb(HIda)_2$: $6H_2O$ и $Pb(HIda)_2$: H_2O не приводит к каким-либо существенным изменениям в кристаллической структуре этих комплексонатов, на что указывает практически полное сходство ИК-спектров обезвоженных соединений со спектрами соответствующих гидратированных соединений в области 400 - 3200 см⁻¹.

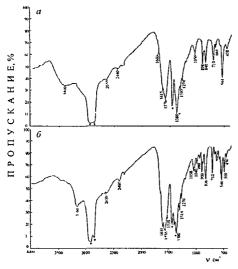


Рис .6 ИК-спектры

а - Pb(HIda)₂· 6H₂O

б - Pb(HIda)₂

С анионами H_3 Nta катионы Pb^{2+} , как и с анионами H_2 Ida, образуют два типа соединений: кислый комплексонат Pb(HNta) и средние комплексонаты MPb(Nta) и $M^{II}[Pb(Nta)_2]$ · nH_2O . Впервые синтезированы и исследованы средние комп-

лексонаты MPb(Nta) с катионами Rb^+ , Cs^+ , NH_4^+ , и Tl^+ .

Установлено, что комплексообразование происходит при pH 7-8, при увеличении pH идет гидролиз, а при pH меньше 7 кристаллизуется исходная H_3 Nta. Исследованы кристаллические структуры CsPb(Nta) и (NH₄)Pb(Nta).

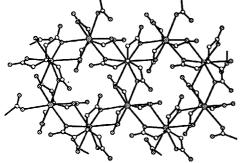


Рис. 7. Фрагмент структуры CsPb(Nta).

Установлено, что комплексонаты RbPb(Nta) и TlPb(Nta) изоструктурны $(NH_4)Pb(Nta)$.

Сравнение кристаллических структур KPb(Nta), NH₄Pb(Nta), CsPb(Nta) (a=7.873, 7.926, 7.950; c= 8.781, 18.012, 27.946 Å пр. гр. P3ml, P6₃, R3, соответственно) показывает, что при переходе от K к NH₄ и далее к Cs параметра сохраняется, в то время как параметр $\bf c$ удваивается и утраивается.

Структуры KPb(Nta), (NH₄)Pb(Nta) и Cs Pb(Nta) слоистые (рис. 7), в слое находятся комплексы [Pb(Nta)] и один из двух кристаллографически независимых внешнесферных катионов, второй внешнесферный катион находится между слоями.

Во всех соединениях атом свинца образует ковалентую связь с нитрильным атомом азота и связан с четырьмя лигандами Nta³⁻. Синтезированные комплексонаты относятся к типу 1:1 и образуют полимерные структуры.

КЧ свинца(II) равно 4+3 и координационный полиэдр ближайшего окружения атома Рb(II)- Ч-тригональная бипирамида с вакантной аксиальной вершиной, что впервые обнаружено для соединений постпереходных элементов в неполновалентном состоянии.

Расщепление полосы v_{as}(COO) в ИК-спектре NaPb(Nta) на компоненты свидетельствует о неэквивалентности связей Pb-O в структуре соединения. Характеристические частоты (см-1) в ИК-спектрах MPb(Nta): NaPb(Nta) -1603 c., 1578 o.c. (v (COO)), 1114 cp. (v (CN)), KPb(Nta) - 1592 o.c. (v (COO), 1114 cp. (v (CN), RbPb(Nta) – 1590 o.c. (v (COO), 1110 cp. (v (CN)), CsPb(Nta) - 1590 o.c (v (COO), 1110 cp. (v (CN)), NH₄Pb(Nta) -1588 о.с. (v (COO), 1118 сл.-ср. (v (CN), TlPb(Nta) - 1578 о.с. (v (COO), 1113 сл.-ср. (ν (CN)). Валентные колебания ν_{as} (COO) в ИК-спектрах нитрилотриацетатных соединений, за исключением NaPb(Nta), представлены интенсивной, сравнительно узкой полосой поглощения в области 1578-1603 см⁻¹. Полоса v_{as}(COO) в ИК-спектре NaPb(Nta) расщеплена на компоненты с максимумами при 1578 и 1603 см-1, причем высокочастотная компонента менее интенсивная и значительно более узкая. Это указывает на то, что в синтезированных нитрилотриацетатных комплексных соединениях свинца(II) связи Рb-О преимущественно ионные, что согласуется с рентгеноструктурными исследованиями. Полосой средней интенсивности v(CN) 1110-1118 см⁻¹ представлены валентные колебания связей C-N в ИК-спектре соединений MPb(Nta), указывающие на то, что в этих структурах связи Pb-N, как и связи Pb-O, слабые.

<u>В четвертой главе</u> приводятся данные о впервые синтезированных диаминных комплексных соединениях свинца(II) на основе этилендиаминтетрауксусной кислоты с одно-и двухвалентными катионами, а также со смешанными серусодержащими лигандами.

Диаминные комплексонаты свинца(II)

Катионы Pb^{2+} , как и катионы Bi^{3+} , с H_4Edta в кристаллическом состоянии могут образовывать два типа этилендиаминтетраацетатных комплексных соединений состава 1:1 кислые (протонированные) и средние (полностью депротонированные). В отличие от Pb(II), образующего с H_4Edta только один кислый этилендиаминтетраацетат состава $Pb(H_2Edta) \cdot 1.5H_2O$, Bi(III) с H_4Edta образует три кислых этилендиаминтетраацетата: безводный Bi(HEdta) и два дигидрата $Bi(HEdta) \cdot 2H_2O$ (α - и β - модификации).

Разработаны методы получения и определены условия образования этилендиаминтетраацетатных комплексных соединений свинца(II) с одно- и двухвалентными катионами состава M_2 PbEdta· nH_2O (M - Na, K, Rb, Cs, NH_4 , Tl и CN_4H_7) и M"PbEdta· nH_2O (M"- Mn, Ca, Sr). Кристаллогидраты образуются при мольном соотношении PbO : H_4 Edta 1:1 и pH= 7-8. При увеличении pH идет гидролиз, а при pH< 7 кристаллизуется исходная H_4 Edta.

Количество молекул H_2O в соединении зависит от природы внешнесферного катиона так, в случае соединения с катионом Na^+ , Ca^{2+} - n=2, с катионами K^+ , NH_4^+ - n=2.5, Rb^+ , Cs^+ , $CH_7N_4^+$ - n=3.5, с катионом Tl^+ - n=3, а с катионом Mn^{2+} - n=4.

Анализ ИК-спектров поглощения (табл. 1) показал, что наряду с СООгруппами лиганда в координации с металлом принимают участие и нитрильные атомы азота, что обусловливает длинноволновый сдвиг полосы ν (CN) (1084 - 1106 см⁻¹) свидетельствующий о том, что связи Pb-N в этих соединениях более прочные, чем аналогичные связи в нитрилотриацетатных комплексных соединениях. Исключение составляет соединение Na₂Pb(Edta)·2H₂O, где связи Pb-O и Pb-N более прочные, чем в структуре NaPbNta. Полоса ν_{as} (COO) (1540-1636 см⁻¹) в этилендиаминтетраацетатных комплексных соединениях Pb(II) по сравнению с аналогичной полосой в ИК-спектрах MPb(Nta) несколько более уширена и расщеплена на компоненты, а для Tl_2 Pb(Edta) 3 H₂O имеет три полосы. Деформационные колебания молекул воды также накладываются на эту же полосу.

Таблица 1. Характеристические частоты (см $^{-1}$) в ИК-спектрах M_2 Pb(Edta) $^{\circ}$ n H_2 O

Соединение	v(COO)	v (CN)	ν(H ₂ O)
Na ₂ Pb(Edta)·2H ₂ O	1636 ср	1100 пг	3328 ср.ш
	1588 o.c	1090 сл-ср	
K₂Pb(Edta · 2.5H₂O	1602 пл	1105 сл	3430 ср.ш
	1583 o.c	1086 сл-ср	3196 ср.ш
Rb ₂ Pb(Edta)· 3.5H ₂ O	1576 o.c	1102 сл	3376 пл.ш
	1558 o.c	1086 сл-ср	3200 ср.ш
Cs ₂ Pb(Edta) 3.5H ₂ O	1575 пл	1100 сл	3370 пл.ш
	1562 o.c	1084 сл-ср	3178 ср.ш
	1580 o.c	1106 сл	3418с р.ш
(NH ₄) ₂ Pb(Edta) 2.5H ₂ O	1564 o.c	1088 сл-ср	3188 ср.ш
			ν(N-H)
Tl ₂ Pb(Edta)· 3H ₂ O	1578 o.c	1104 сл	3384 ср.ш
	1566 o.c	1089 сл-ср	3180 ср.ш
	1540 o.c		

Валентные колебания молекул H_2O в ИК-спектрах $M_2^IPb(Edta) \cdot nH_2O$ представлены уширенной полосой средней интенсивности с двумя максимумами. Значительный длинноволновый сдвиг этой полосы указывает на

вовлечение молекул H_2O в $M_2Pb(Edta) \cdot nH_2O$ в водородные связи. В ИКсиектре MnPbEdta $\cdot 4H_2O$ (рис. 8) частота поглощения $v_{as}(COO)$ представлена итенсивной, сравнительно узкой полосой в области 1561см⁻¹ и перегибом при 1600 см⁻¹. С высокочастотной стороны на эту полосу накладывается очень слабая полоса при 1653 см⁻¹ и полосы деформационных колебаний молекул воды.

Значения v(CN) 1100-1039 см⁻¹ свидетельствуют о том, что связи Pb-N более сильные, чем в соединениях с одновалентными катионами (v(CN) 1110-1084 см⁻¹). В области частот валентных колебаний молекул воды в ИК-спектре MnPbEdta- 4H_2O ($^3000-^3600$ см⁻¹) присутствует широкая полоса поглощения средней интенсивности с максимумом при 3237 см⁻¹ и две узкие полосы средней интенсивности с максимумами при 3473 и 3543 см⁻¹.

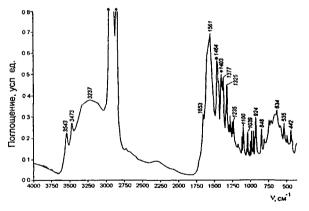


Рис. 8. ИК-спектр поглощения MnPbEdta· 4H₂O.

Эти полосы указывают на наличие в структуре $MnPbEdta\cdot 4H_2O$ двух видов молекул воды.

Широкая полоса поглощения при 3237 см $^{-1}$ отвечает координированным молекулам воды, а две узкие полосы поглощения соответствуют симметричным и антисимметричным валентным колебаниям свободных молекул H_2O . Наличие двух видов молекул воды в структуре MnPbEdta $^{-4}H_2O$ подтверждено при определении структуры соединения.

В отличие от кристаллических структур этилендиаминтетраацетатных комплексных соединений висмута(III) с одно- и двухвалентными катионами, имеющих слоистый и полимерно-цепочечный характер с КЧ атома Ві 8, кристаллические структуры синтезированных комплексонатов Pb(II) с анионом Edta⁴⁻ преимущественно содержат мономерные комплексные анионы [Pb(Edta)]²⁻ с КЧ атома Pb 6. Строение комплексного аниона зависит от размера, заряда и природы катиона.

Нами исследованы кристаллические структуры полученных соединений, они различаются как координационным окружением свинца, так и структурными мотивами. Посредством слабых вторичных связей Pb-О комплексы $[Pb(Edta)]^{2-}$ в структуре $Na_2Pb(Edta) \cdot 2H_2O$ (рис. 9) объединяются в псевдополимерные цепи, а в структуре $(CH_7N_4)_2Pb(Edta) \cdot 3.5H_2O$ (рис. 10) в димерные комплексы (КЧ 6+1). Лишь в кристаллических структурах $Cs_2Pb(Edta) \cdot 3.5H_2O$, $(NH_4)_2Pb(Edta) \cdot 2.5H_2O$ (рис. 11) и $Tl_2Pb(Edta) \cdot 3H_2O$ комплексные анионы $[Pb(Edta)]^{2-}$ сравнительно короткими вторичными связями Pb-O (2.80-3.07 Å) объединяются в сдвоенные полимерные цепи (КЧ атома Pb 6+2).

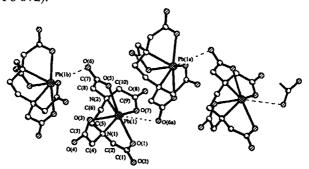


Рис. 9. Фрагмент полимерной цепочки $[Pb(Edta)]^{2n}$ в структуре $Na_2Pb(Edta)$ $2H_2O$.

В этилендиаминтетраацетатах свинца(II) лиганд проявляет свою максимальную дентатность шесть, кроме того, свинец(II) образует одну или две дополнительные связи с карбонильными атомами кислорода лигандов соседних атомов. Соединения $Rb_2Pb(Edta) \cdot 3.5H_2O$ и $Cs_2Pb(Edta) \cdot 3.5H_2O$ изоструктурны между собой, но не изоструктурны $Na_2Pb(Edta) \cdot 2H_2O$, кристаллизуются в моноклинной сингонии с восемью формульными единицами в элементарной ячейке. Кристаллические структуры $Cs_2Pb(Edta) \cdot 3.5H_2O$ и $Tl_2Pb(Edta) \cdot 3H_2O$ построены из катионов M^+ , комплексных анионов $[Pb(Edta)]^{2-}$ и молекул кристаллизационной воды.

Впервые синтезировано соединение свинца(II) с протонированным катионом аминогуанидиния(I) состава (CH_7N_4)₂Pb(Edta)· 3.5H₂O, кристаллическая структура которого образована из катионов (CH_7N_4)⁺, комплексных анионов [Pb(Edta)]²⁻ и молекул кристаллизационной воды. Катионы (CH_7N_4)⁺ и молекулы H₂O участвуют в образовании системы водородных связей, в которых принимают участие все атомы. Связи Pb-O имеют преимущественно ионный характер и сравнительно близкие значения длин (2.520(2), 2.522(1) и2.596(1) Å и 2.728(1) Å).

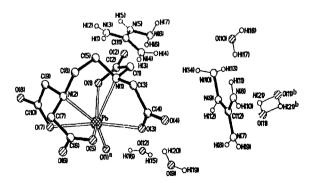


Рис. 10. Фрагмент кристаллической структуры $(CH_7N_4)_2$ Pb(Edta) · 3.5H₂O.

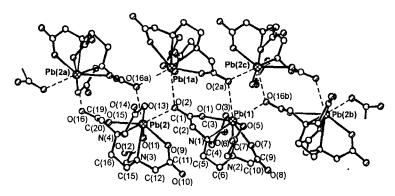


Рис. 11. Фрагмент полимерных цепочек $[Pb(Edta)]_n^{2}$ в структуре $(NH_4)_2Pb(Edta) \cdot H_2O$.

С целью дальнейшего изучения влияния внешнесферного катиона на геометрию лиганда $Edta^{4-}$ определена структура $MnPbEdta\cdot 4H_2O$. Она образована из катионов $Mn(H_2O)_3^{2+}$, комплексных анионов $[Pb(Edta)]^2$ и молекул кристаллизационной воды.

Известны лишь две кристаллические структуры этилендиаминтетраацетатных комплексных соединений свинца, в составе которых содержатся координированные атомом Pb(II) молекулы H_2O . Это $Pb(H_2Edta)$ · 1.5 H_2O (Pb-O (H_2O) 2.930 Å) и MnPb(Edta)· $4H_2O$ (Pb-O (H_2O) 3.223 Å).

Исследованы условия синтеза комплексных соединений свинца(II), содержащих в своем составе смешанные лиганды - этилендиаминтетрауксусную кислоту и тиомочевину(tu). Впервые получены смешаннолигандные комплексонаты Pb(II) состава Pb(H_2Edta)· tu (при отношении исходных компонентов 1:2 и pH=3) (рис. 12) и Pb(H_2Edta)· 2tu· H_2O (при соотношении 1:3-1:6 и pH =4) (рис. 13). Установлено, что комплексообразование зависит от соотношения исходных компонентов, а также от pH среды. При синтезе серусодержащих комплексонатов обязательным условием синтеза

является то, что процесс испарения и кристаллизации должен проходить в затемненном месте и без нагревания растворов.

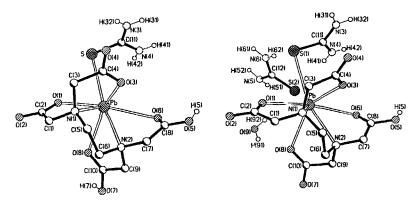


Рис.12. Строение молекулярного комплекса [Pb(H₂Edta)· tu] в структуре Pb(H₂Edta)· tu

Рис. 13. Фрагмент кристаллической структуры $Pb(H_2Edta) \cdot 2tu \cdot H_2O$.

В кислой среде молекула тиосемикарбазида (tsc), присоединяя протон, превращается в однозарядный катион $CH_6N_3S^+$. При взаимодействии $CH_5N_3S^+$ и $Bi(Hedta)\cdot 2H_2O$ в водном растворе (мольное соотношение 1-5:1) получено соединение состава $(CH_6N_3S)Bi(Edta)\cdot H_2O$, содержащее тио-

семикарбазид в виде катиона $CH_6N_3S^+$. Однако синтезированный комплексонат свинца(II) имеет состав [Pb(tsc)]PbEdta· $3H_2O$] и получается независимо от мольного соотношения исходных компонентов (1:1-1:3).

IPb(tsc)]PbEdta·3H₂O является вторым примером этилендиаминтетраацетатных комплексных соединений свинца(II), в которых атомы Pb(II) входят в состав как комплексного аниона, так и катиона. Нами также были получены соединения свинца(II), содержащие в своем составе смешанные лиганды тиосемикарбазид и анион неорганической кислоты. В зависимости от мольного соотношения исходных компонентов (Pb(NO₃)₂: tsc) получены два соединения состава $Pb(NO_3)_2$ tsc (1:1) и $Pb(NO_3)_2$ 2tsc (1:2). В отличие от исследованных структур комплексных соединений ионов двухвалентных переходных металлов с тиосемикарбазидом, имеющих мономерное строение, кристаллическая структура Pb(NO₃)₂·tsc полимерного типа. В структуре Pb(NO₃)₂· tsc атом Pb связан бидентатно-хелатно с нейтральной молекулой тиосемикарбазида через атом S и концевой атом N гидразинового фрагмента с образованием пятичленного цикла. Кроме того, атом Рb образует бидентатные связи с двумя нитрильными группами, а также мостиковые связи с атомами О двух соседних NO₃ групп. КЧ атома Pb равно 9. Длины связей Pb-S и Pb-N в структуре комплексного соединения Pb(NO₃)₂· tsc соответственно равны 2,7057(8) Å и 2.553(3) Å. Связи Pb-S несколько короче, чем в соединении [Pb(tsc)]PbEdta · 3H₂O (2.851(2) Å), а связи Pb-N незначительно длиннее (2.531 Å).

Таким образом, в $Na_2Pb(Edta) \cdot 2H_2O$, $MnPb(Edta) \cdot 4H_2O$, $(CH_7N_4)_2Pb(Edta) \cdot 3.5H_2O$ и $Pb(H_2Edta) \cdot$ ntu (n=1,2) KЧ=6+1, а неподеленная пара занимает позицию в координационном полиэдре, в остальных исследованных этилендиаминтетраацетатоплюмбатах, а также в $(CH_6N_3)_3$ $PbDtpa \cdot H_2O$ и $CsPb(H_2Dtpa) \cdot H_2O$ КЧ=6+2, координационный

полиэдр Ч- пентагональная бипирамида с неподеленной парой в экваториальной плоскости.

<u>В пятой главе</u> описаны условия образования, строение протонированных и полностью депротонированных триаминных комплексонатов свинца(II).

Триаминные комплексонаты свинца(II)

Впервые синтезированы и изучены протонированные диэтилентриаминпентаацетатоплюмбаты(II) состава MPb(H_2 Dtpa)· nH_2 O, где M - Li, Na, Rb, Cs и NH₄ , n = 5, 4, 2, 1, 1. Протонированные комплексонаты образуются при pH=5. В слабощелочной среде кристаллизуется соединение с полностью депротонированным анионом диэтилентриаминпентауксусной кислоты состава (CN_3H_6)₃PbDtpa· H_2 O.

Термические исследования протонированных комплексонатов диэтилентриаминпентаацетатов свинца(II) состава MPb(H_2 Dtpa)· nH_2 O показали, что их дегидратация протекает в интервале температур 80-120 °C (рис. 14).



Рис.14. Термограмма CsPb(H₂Dtpa)·H₂O.

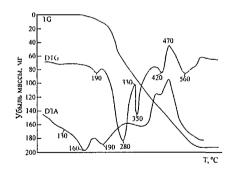


Рис. 15. Термограмма $(CN_3H_6)_3 Pb(Dtpa)$ H_2O .

Процесс дегидратации $CsPb(H_2Dtpa)\cdot H_2O$ является одностадийным. При температуре 230° C начинается интенсивное разложение комплексоната

Комплексонат состава (CN_3H_6) $_3Pb(Dtpa) \cdot H_2O$ устойчив при нагревании до 100° С. В интервале температур 120-150° С протекает его дегидратация, а выше 265° С соединение интенсивно разлагается. Конечным продуктом является PbO (рис. 15). Сравнив термическую стабильность $C_5Pb(H_2Dtpa) \cdot H_2O$ и (CN_3H_6) $_3Pb(Dtpa) \cdot H_2O$, можно сделать вывод о том, что она зависит от степени протонирования комплексоната. Чем меньше протонов находится в комплексонате, тем он стабильнее, что согласуется с литературными данными, а также с термическими исследованиями иминолиацетатов.

Анализ ИК-спектров показывает, что в синтезированных комплексонатах атом свинца(II) образует связи как с атомами О, так и с атомами N лиганда Dtpa⁵⁻. Наличие полосы поглощения в области 1710 см⁻¹ (рис. 16) свидетельствует о том, что в синтезированных комплексонатах присутствуют протонированные карбоксильные группы, не координированые свинцом.

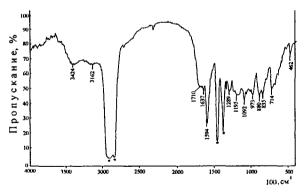


Рис. 16. ИК-спектр CsPb(H₂Dtpa)·H₂O.

Этот вывод подтвержден результатами PCA кристаллов CsPb(H_2 Dtpa) · H_2 O. ИК-спектр (CN_3H_6)₃Pb(Dtpa) · H_2 O (см⁻¹): 3386 ос (vNH), 3140 с (vNH), 2873 ср (vCH), 1665 ос (vNH), 1583 ос

(v_{as} COO), 1399 oc (v_{s} COO), 1332 cp, 1276 cp, 1108 cp (vCH), 1096 cp (vCH), 707 cp (vNH).

В ИК-спектре (CN_3H_6)₃Pb(Dtpa) H_2O полоса при $1710cm^{-1}$ отсутствует. Карбоксильные группы полностью депротонированы. По сравнению со связями Pb-O, которые в структуре (CN_3H_6)₃Pb(Dtpa) H_2O практически ионные, связи Pb -N (2.573(2) -2.709(2)Å) в значительной степени ковалентные, что характерно и для других исследованных кристаллических структур комплексонатов свинца(II) [1]. Все атомы водорода катионов $CN_3H_6^+$ и атомы водорода молекулы воды участвуют в образовании системы водородных связей, объединяющих структурные элементы в трехмерный каркас.

Кристаллическая структура $CsPb(H_2Dtpa)\cdot H_2O$ построена из катионов Cs^+ , комплексных анионов $[Pb(H_2Dtpa)]^-$ и молекул кристаллизационной воды и проявляет определенное сходство со структурой $Pb(H_3Dtpa)\cdot 2H_2O$. Обе структуры имеют островное строение, лиганд H_3Dtpa^{2-} октадентатен, КЧ атома Pb равно 8-9, атом Pb образует связи как с депротонированными атомами кислорода карбоксильных групп, так и с карбонильными атомами кислорода протонированных ацетатных ветвей лиганда.

Кристаллическая структура (CN_3H_6) $_3\text{Pb}(\text{Dtpa})$ $^{\text{H}}_2\text{O}$ построена из катионов CN_3H_6^+ , островных комплексных анионов $[\text{Pb}(\text{Dtpa})]^3$ и молекулы воды. Анион Dtpa^5 является потенциально октадентатным лигандом. В исследованной структуре все восемь донорных центра лиганда (5O+3N) координированы атомом Pb. Координационный полиэдр свинца(II) в структуре представляет собой искаженную квадратную антипризму. Длины связей Pb-N в полиэдре находятся в интервале 2.573(2) - 2.709(2) Å, а расстояния Pb-O изменяются в большем интервале значений от 2.4483(18) до 2.934(2) Å.

Таким образом, аминополикарбоновые кислоты в зависимости от мольного соотношения исходных компонентов и рН среды образуют со свинцом и различными внешнесферными катионами кислые и средние комплексонаты. Как правило, кислые образуются при рН= 4-5, а средние при рН=7-8. Анализ исследованных кристаллических структур этилендиаминтетраацетатных комплексных соединений свинца(ІІ) показывает, что во всех изученных структурах лиганд Edta⁴ гексадентатен. Атом свинца(II), кроме связей с донорными атомами лиганда, в большинстве случаев образует одну или две связи с атомом кислорода соседних комплексов. При этом КЧ центрального атома возрастает от 6 до 7 и 9 и формируются различные мотивы строения комплексных анионов. Островные комплексные анионы выявлены в структурах MnPb(Edta)· 4H₂O и Pb(H₂Edta)· tu, димерные - в структурах (CH_7N_4)₂Pb(Edta)· 3.5H₂O и Pb(H_2 Edta)· 2tu· H_2 O, одинарные полимерные цепи - в Na₂Pb(Edta). 2H₂O, сдвоенные полимерные цепи Cs₂Pb(Edta)· 3.5H₂O, (NH₄)₂Pb(Edta)· 2.5H₂O структурах Tl₂Pb(Edta) 3H₂O. Как правило, кристаллические структуры хорошо растворимых комплексонатов являются островными.

Выволы

1. Разработаны методы получения и впервые целенаправленно синтезированы и исследованы комплексонаты свинца(II) с анионами аминополикарбоновых кислот: иминодиуксусной, нитрилотриуксусной, этилендиаминтетрауксусной и диэтилентриаминпентауксусной с катионами щелочных металлов, аммония и таллия, с протонированными катионами органических оснований, а также с рядом двухвалентных катионов. Впервые синтезированы смешаннолигандные комплексонаты Pb(II) — (тиокарбамид)этилендиаминтетраацетатные комплексные соединения Pb(H₂Edta)· п tu (n=1, 2), комплексные соединения нитрата Pb(II) с тиосемикарбазидом состава Pb(NO₃)· ntsc(n=1, 2), а также этилендиаминтетраацетатное ком-

плексное соединение свинца(II) с тиосемикарбазидсодержащим комплексным катионом Pb^{2+} состава [$Pb(tsc)(H_2O)$][$Pb(Edta)(H_2O)$]· H_2O . Всего синтезировано и исследовано 32 комплексоната, 28 из них получены и изучены впервые.

- 2. Методом ИК-спектроскопии и рентгеноструктурного анализа изучено строение синтезированных комплексонатов и смешанных комплексонатов Рb(II), а также комплексных соединений нитрата Pb(II) с тиосемикарбазидом. Исследованы кристаллические структуры 13 впервые полученных комплексных соединений Pb(II). Установлены мотивы строения комплексных анионов, входящих в состав изученных соединений: мономерные и димерные комплексы, одинарные полимерные цепи, сдвоенные полимерные цепи и полимерные слои.
- 3. Установлена зависимость координационного числа (КЧ) и координационного полиэдра (КП) атома в исследованных комплексонатах от дентатности лиганда аниона аминополикарбоновой кислоты, природы и размера внешнесферного катиона.
- 4. Найдено, что катионы щелочных металлов и аммония обусловливают формирование полимерных структур этилендиаминтетраацетатоплюмбатов(II), протонированные катионы органических оснований способны к образованию водородных связей, а комплексные катионы двухвалентных металлов способствуют формированию кристаллических структур с мономерными комплексами [Pb(Edta)]²-.
- 5. Сопоставлены составы и строение синтезированных и исследованных комплексонатов и смешанных комплексонатов Pb^{2+} с ранее полученными и исследованными комплексонатами изоэлектронного катиона Bi^{3+} . Показано, что комплексонаты Pb(II) с анионами аминополикарбоновых кислот, в отличие от близких по составу комплексонатов Bi(III), характеризуются

более низкими КЧ и более низкой степенью ассоциации комплексных анионов, входящих в состав этих соединений.

Цитированная литература:

1. Илюхин А.Б., Позняк А.Л., Сергиенко В.С., Стополянская Л.В. Кристаллическая структура комплексонатов свинца(II) с анионами иминодиуксусной, гидроксиэтилиминодиуксусной, нитрилотриуксусной и диэтилентриаминпентауксусной кислот // Кристаллография. 1998. Т. 43. № 5. С. 812-828.

Основное содержание работы изложено в следующих публикациях:

- 1. Давидович Р.Л., Логвинова В.Б.. Кайдалова Т.А. Синтез и исследование иминодиацетатов свинца(II) // Коорд. химия. 1999. Т. 25. № 9. С. 684-689.
- 2. Давидович Р. Л., Логвинова В.Б., Кайдалова Т.А. Нитрилотриацетатные и этилендиаминтетраацетатные комплексные соединения свинца(II) с однозарядными катионами // Коорд. химия. 1998. Т. 24. № 7. С. 499-505.
- 3. Илюхин А.Б., Логвинова В.Б., Давидович Р.Л. Строение нитрилотриацетатов и этилендиаминтетраацетатов свинца(II) // Журн. неорган. химии. 1999. Т. 44. № 10. С. 1654-1660.
- 4. Давидович Р.Л., Герасименко А.В., Логвинова В.Б.Кристаллическая структура комплексоната висмута(III) со смешанными HIda⁻ и Ida²⁻ лигандами // Журн. неорган. химии. 2001. Т. 46. № 8. С. 1311-1316.
- 5. Давидович Р.Л., Логвинова В.Б., Самсонова И.Н. Нитрилотриацетатные комплексные соединения олова(IV) и висмута(III) с Nta³⁻ и HNta²⁻ лигандами // Коорд. химия. 1998. Т. 24. № 5. С. 400.
- 6. Илюхин А.Б, Давидович Р.Л., Логвинова В.Б. Нитрилотриацетатные комплексные соединения с кислыми и средними лигандами. Кристаллическая структура Cs[Sn(Nta)(HNta)]· H_2O и K_2 [Bi(Nta)(HNta)]· H_2O // Журн. неорган. химии. 1999. Т. 44. № 11. С. 1931-1934.
- 7. Ilyukhin A.B., Davidovich R.L., Logvinova V.B. et al. Complexes of bismuth(III) with aminoholycatboxylic acids. Cryctal structures of guanidinium

- aqua(ethylenediaminetetraacetato) bismuthate(III) and aminoguanidinium ethethylendiamineatetraacetatobismuthate(III) // Main Group Metal Chemistry. 1999. V. 22. No. 5. P 275-281.
- 8. Давидович Р.Л., Герасименко А.В., Логвинова В.Б. Синтез и кристаллическая структура моногидрата этилендиаминтетраацетатовисмутата(III) цезия // Журн. неорган. химии. 2001. Т. 46. № 10. С. 1673-1678.
- 9. Давидович Р.Л., Герасименко А.В., Логвинова В.Б. Влияние кислотности раствора на состав этилендиаминтетраацетатовисмутатов(III) щелочных металлов и аммония // XX Международная Чугаевская конференция по координационной химии. Тез. докл. Ростов на Дону. 2001. С. 199-200. 10. Давидович Р. Л., Герасименко А.В., Логвинова В.Б. Синтез и кристаллическая структура моногидрата диэтилентриаминпентаацетатоплюмбата(II) гуанидиния // Журн. неорган. химии. 2001. Т. 46. № 5. С. 770-776.

Вера Богдановна Логвинова

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОНАТОВ СВИНЦА(II) С АНИОНАМИ АМИНОПОЛИКАРБОНОВЫХ КИСЛОТ

АВТОРЕФЕРАТ

Изд. лиц. ИД.№05497 от 01.08.2001 г. Подписано к печати 28.10.2003 г. Формат 60х84 / 16. Печать офсетная.

Усл. п..л. 1.5. Уч.- изд. л. 0,96.

Тираж 100 экз. Заказ 150

Отпечатано в типографии ГУП «Издательство "Дальнаука"» ДВО РАН 690041, г. Владивосток, ул. Радио, 7

2003-A 19371