ВЛИЯНИЕ КРИОКОНСЕРВИРОВАННЫХ ФЕТАЛЬНЫХ НЕРВНЫХ КЛЕТОК НА РЕПАРТИВНЫЕ ПРОЦЕССЫ В ПАТОЛОГИЧЕСКИ ИЗМЕНЕННОЙ СЕТЧАТКЕ (экспериментально-клиническое исследование)



Название:
ВЛИЯНИЕ КРИОКОНСЕРВИРОВАННЫХ ФЕТАЛЬНЫХ НЕРВНЫХ КЛЕТОК НА РЕПАРТИВНЫЕ ПРОЦЕССЫ В ПАТОЛОГИЧЕСКИ ИЗМЕНЕННОЙ СЕТЧАТКЕ (экспериментально-клиническое исследование)
Альтернативное Название: ВПЛИВ КРІОКОНСЕРВОВАНИХ ФЕТАЛЬНИХ НЕРВОВИХ КЛІТИН НА РЕПАРАТИВНІ ПРОЦЕСИ В ПАТОЛОГІЧНО ЗМІНЕНІЙ СІТКІВЦІ
Тип: Автореферат
Краткое содержание:

У роботі були використані 88 статевозрілих кролів породи Шиншила масою 1,5-2,5 кг, які утримувались в стандартних умовах віварію Харківської медичної академії післядипломної освіти при нормальному освітленні і годівлі ad libitum. Дослідження проводилися відповідно до «Загальних етичних принципів експериментів на тваринах» (29.09.01.), що узгоджуються з положеннями «Європейської конвенції про захист хребетних тварин, які використовуються для експериментальних та інших наукових цілей» (Страсбург, 1985).


Для вивчення впливу застосування КФНК на репаративно-регенеративні процеси в сітківці була обрана модель лазерного опіку сітківки (Ченцова Е.В. та співавт., 2005). Лазерне ушкодження сітківки здійснювали за допомогою аргонової лазерної установки Visulas-532 (CARL ZAISS, Німечіна). На нижню половину очного дна кожного експериментального ока через грань 3-дзеркальної лінзи наносили по 10-15 коагулятів. Ушкодженню піддавали праві очі, а контроль здійснювали на лівих очах тварин. Середня потужність випромінювання 400мВт, тривалість експозиції 0,1 сек., діаметр плями 100 мкм. За класифікацією L'еsреrаnсе світловий опік відповідав III ступеню (Ченцова Е.В., Пак Н.В., Иванов А.Н., Сухих Г.Т., 2005).


Для досліджень використали імунобіологічний препарат «Cryocell», розроблений в Інституті проблем кріобіології і кріомедицини НАН України, м. Харків (Грищенко В.І. та співавт., 2001). Сертифікат про державну реєстрацію імунобіологічного препарату «Cryocell» № 371/03-3002 00 000 від 29.05.2003 р. та № 604/06-300200000 від 04.07.2006 р.


Вивчали вплив нейротрофічних факторів на репаративні процеси в сітківці після лазерного опіку.


Неспецифічним ростовим фактором вважали рівень продукції TGF β-1, а специфічним ростовим фактором для нервової тканини – рівень продукції GNF.


Показники продукції нейротрофічних факторів у плазмі крові кролів досліджували на 3, 7, 14, 21-шу добу і у віддалений термін спостереження (один та шість місяців).


Нейротрофічні фактори визначали за допомогою тест – систем: SPECIAL INFORMATION REGARDING BIOTRAK TGF β-1 (Transforming Growth Factor Beta-1) and GNF (Growth Neural Factor) human, ELISA System фірми Аmersham Pharmacia Biotech.


 


Експерименти проводили на 36 кролях, які розподілили на три групи: 1) перша – інтактна; 2) друга – основна; 3) третя – контрольна.


Інтактна група – кролям не виконували лазерного опіку сітківки. Основна група – внутрішньовенне і парабульбарне введення КФНК після лазерного опіку сітківки. Контрольна група – кролі з мимовільним загоєнням лазерного опіку та група кролів, яким лікування проводили за стандартною схемою: внутрішньовенне введення препаратів милдронату і тренталу, а також їх місцеве введення разом з емаксипіном.


Шлях і час міграції КФНК визначали за допомогою генетичної мітки методом ПЦР. Було використано 21 кроль.


Приготовували зразки клітин, які містять у геномі локус гена SRY, що визначає стать. Спочатку визначали в зразках методом ПЛР присутність локусу гена SRY, і клітини позитивні по Y-хромосомі далі використовували для введення лабораторним самкам кролів.


Клітини, що містять Y-хромосому, вводили кролям парабульбарно в дозі 0,5 мл, з кількістю 20-30×106 ядерних клітин. Проводили забій кролів експериментальних груп через 6, 12, 24 години і на третю добу після застосування КФНК.


За наявністю специфічного фрагмента ампліфікації розміром 336 пар нуклеотидів судили про присутність фетальних клітин з Y-хромосомою в досліджуваних тканинах.


Для ідентифікації і визначення шляхів міграції КФНК після введення використовували метод суправітального фарбування при використанні флюоресцентного зонда DDC, розробленого в НТК „Інститут Монокристалів НАН України (Егоров М.І., Дюбко Т.С., Ліннік Т.П. та співав., 2005; Боровой И.А., Малюкин Ю.В., Семиноженко В.П. , 2006).


У цьому експерименті було використано 15 кролів, по три кроля у кажному періоді спостереження. Перед введенням КФНК проводили суправітальне фарбування клітин розчином барвника DDC і вводили клітини кролям парабульбарно з лазерним опіком в дозі 0,5 мл, з кількістю 20-30×106 ядерних клітин. Забій кролів проводили через 24 години, на 3-, 7-, 14- та 21-шу добу.


Було проведено патоморфологічне дослідження сітківки після ушкодження протягом періоду відновлення у двох експериментальних груп (16 кролів). Попередньо усім тваринам зроблено опік сітчастої оболонки правого ока. Дослідження гістологічних препаратів проводили на 1-, 3-, 7- і 14-ту доби.


Гістологічні препарати виготовляли з парафінових зрізів і фарбували гематоксилін-еозином. Вивчали препарати за допомогою світлової мікроскопії при довжині хвилі 380 нм., на мікроскопі PZO № 21940 (Німечіна) з об'єктивом 20, при окулярі ×15.


Клінічні спостереження. Ми спостерігали за 37 пацієнтами з дистрофічною патологією органа зору (60 очей), внаслідок сухої форми ЦХРД.


Хворі були розподілені на дві групи: контрольна група – 18 пацієнтів (29 очей), у яких лікування проводилось традиційним методом, основна група – 19


 


пацієнтів (31 око), лікування проводилось з застосуванням КФНК на фоні стандартної терапії.


Усім пацієнтам проводили повне офтальмологічне обстеження: візометрія, периметрія з визначенням сумарного поля зору і центральних скотом, офтальмоскопія очного дна, электроокулографія і ретинальна томографія, які повторювали через 10 діб, один, три і шість місяців.


Для більш детального огляду центральних і периферичних відділів очного дна застосовували налобний офтальмоскоп „Скепенс” його вітчизняний аналог НВО-2 з набором асферичних лінз, ретинальний томограф HRT-II. Для аналізу стану макули використовували програму HRT-II Macula Edema Software (конфокальна лазерна скануюча система для зйомки та аналізу трьохмірних зображень заднього сегмента ока).


Гостроту зору з корекцією та без неї визначали за таблицями Головіна-Сивцева на апараті Рота, сумарне поле зору і площу центральних скотом – на проекційно-реєстраційному периметрі ПРП – 60.


Границі поля зору на біле світло діаметром 3 мм визначали при постійній швидкості пересування об'єкта 1-2 см/сек, у восьми меридіанах із інтервалом 45°.


Окулографію проводили  методикою G.B. Arden (1962) при використанні спеціальної камери для обстеження хворого в незатемненій кімнаті. Електроокулографія дозволяє дослідити й оцінити функціональний стан пігментного епітелію і свідчить про рівень кровообігу в хоріокапілярному шарі.


Результати вимірів усіх досліджених показників статистично обробляли за методом Стьюдента, за допомогою критерію Стьюдента визначали рівень вірогідності середнього значення (р<0,95; >0,95; >0,99; >0,999).


Обстежені групи хворих після лікування різними способами представляли у виді дисперсійних комплексів, за допомогою двохфакторного дисперсійного аналізу визначали ступінь впливу різних факторів на результати дослідження.


За допомогою кореляційного аналізу була встановлена наявність і сила зв'язку між парами досліджених показників у процесі лікування і відновного періоду, тобто ступінь зв'язку між рядами регресії, що відбивають динаміку досліджених показників.


Статистичну обробку результатів досліджень робили з використанням комп'ютерних програм “STATGRAPHICS Plus” і “Microsoft Office Excel”.


Використані в дисертаційній роботі матеріали і методи були розглянуті та узгоджені з комісією з біоетики ІПК і К НАН України.


 


Результати досліджень та їх обговорення


 


Найбільш інформативним критерієм оцінки функціональної повноцінності та розподілу КФНК є їх ідентифікація після введення в організмі реципієнта.


Для ідентифікації, вивчення шляху і часу міграції клітин у ранній термін


 


спостереження використовували генетичну мітку, яка досить консервативна, тому що не піддається розпаду, і для неї не характерні явища обміну між клітинами.


Така генетична мітка залишається в дочірніх клітинах і при розподілі в організмі доказує присутність утримуючих Y-хромосому клітин у патологічному осередку.


В експериментальному оці при парабульбарному введенні КФНК через шість годин, клітини що містять Y-хромосому, визначаються в склері, радужці, зоровому нерві, у судинній і сітчастій оболонці ока, тоді як у тканинах контрольного ока в цей термін спостереження клітини не визначаються.


До 12-ї години спостереження картина змінилася. У судинній, сітчастій оболонці і зоровому нерві експериментального ока зберігаються клітини, які утримують Y-хромосому. На цьому етапі спостереження, клітини, що утримують У-хромосому з'являються в головному, довгастому мозку, мозочку, кістковому мозку, а також у судинній і сітчастій оболонках контрольного ока.


Через 24 години після введення клітин, що містять Y-хромосому, визначаються тільки у судинній і сітчастій оболонках експериментального ока, а також зберігаються в структурах головного, довгастого мозку, мозочку і кістковому мозку, тоді як у контрольному оці клітки утримуючі Y-хромосому відсутні. Через 72 години спостереження картина залишається без змін.


У результаті проведених досліджень встановлено, що введені нервові клітини володіють високою тропністью до патологічного осередку і вірогідно визначаються в травмованому оці протягом 3-х діб. Отримані нами дані свідчать про розподіл нервових клітин протягом 72 годин після введення. Однак, важливо встановити, чи зберігають вони свою функціональну активність і як розподіляються в організмі КФНК у більш тривалий період спостереження. Для цього ми провели експериментальні дослідження з використанням флюоресцентного зонда DDC.


В проміжки спостереження від 3 до 21-ї доби відзначалося скупчення мічених клітин, що мають інтенсивне зелене світіння, це свідчить про проникнення нервових клітин через гематоофтальмічний бар'єр та про їх спрямованість до осередку поразки і проникнення в сітчасту оболонку реципієнта. Найбільш інтенсивне зелене світіння сітчастої оболонки спостерігалось у препаратах з 3-ї до 7-ї доби, тоді як до 21-ї доби відзначалася тенденція до зниження його інтенсивності.


Даний метод дозволяє реєструвати високий рівень флюоресценції у осередку поразки, що може свідчити про наявність в ньому нервових клітин протягом тривалого часу.


Безумовним об'єктивним доказом ефективності проведеної терапії є патоморфологічне дослідження органів, клітин і тканин. Гістологічне дослідження показало, що після лазерного впливу в 1-шу добу відновного періоду відзначаються альтеративні зміни в шарі пігментного епітелію і мембрані Бруха. Гранули пігменту виходять у шар фоторецепторів і судинну оболонку і щільність зерен пігменту стає неоднорідною.


 


Між паличками і колбочками розташовуються еритроцити, що вийшли із судин, визначається набряклість міжуточної речовини, яка має вигляд порожніх щілин.


Також у цьому періоді відзначаються тромбоз судин хоріоідеї, часткове руйнування пігментного епітелію і шарів сітківки.


Доведено, що утворення істинного хоріоретинального зрощення пов'язано з утворенням фіброзних волокон у зоні ушкодження.


Через 3-и доби після введення КФНК спостерігаються розсмоктування крововиливів, зменшення набряку міжуточної речовини сітківки.


Зміни, характерні для часткового відновлення сітківки, спостерігаються вже через тиждень. Так, пігментний епітелій проліферує в один чи декілька шарів сітківки; пігментні клітини розташовуються навколо ретинальних судин або мігрують у внутрішні шари сітківки, де утворюють скупчення.


У тварин основної групи на 7-му добу після введення КФНК у сітчастій оболонці відзначаються зменшення набряку міжуточної речовини, перерозподіл гранул пігменту з тенденцією до нормалізації анатомічної структури, тоді як у контрольній групі в цей термін спостереження зберігаються альтеративні зміни з набряком межуточної речовини сітківки, крововиливами, аномальним перерозподілом пігменту.


До 14-ї доби після введення КФНК у тварин дослідної групи зберігається тенденція до нормалізації морфологічної структури сітчастої оболонки. Визначаються мінімальні альтеративні зміни.


Результатом фотокоагуляції сітківки є проліферація пігментного епітелію й утворення хоріоретинального зрощення, що на очному дні при лазерній скануючій томографії має вигляд дистрофічних осередків блідо-жовтого чи білого кольору.


У тварин контрольної групи у відповідний термін спостережень у зоні ушкодження зберігався набряк і перерозподіл пігменту.


Застосування КФНК стимулює репаративні процеси при лазерному ушкодженні сітківки ока в кролів і є високоефективним методом структурного відновлення сітківки.


Ми вивчили вміст окремих нейротрофічних факторів (GNF, TGF β-1), що беруть безпосередню участь у репарації сітківки (рис. 1 та 2).


З отриманих даних видно, що на 3-тю добу після лазерного опіку сітківки у всіх групах піддослідних тварин відзначалося різке підвищення рівня вмісту TGF β-1 у плазмі крові. При цьому мали місце виразні і достовірні розходження в ступені підвищення вмісту даного фактора між групами тварин, що не одержували клітинну терапію (мимовільне загоєння опіку сітківки і лікування за стандартною схемою), і тварин, яким вводили КФНК (внутрішньовенно і парабульбарно).


У контрольній групі відзначено підвищення показника тільки в 2 – 2,5 рази, що склало при спонтанному загоєнні після лазерного опіку сітківки 255%, а за стандартною схемою лікування 239% (p<0,01), відповідно до норми (інтактні кролі -100%). У тварин дослідних груп, із застосуванням КФНК рівень


 


вмісту TGF β-1 підвищувався відповідно норми в 4-5 разів, при внутрішньовенному введенні складав 562%, при парабульбарном введенні 436% (p<0,001) і був у середньому в 2 рази вище показників у контрольній групі.


На 3-ю добу після опіку були зафіксовані розходження рівня вмісту TGF β-1 у залежності від шляху введення КФНК. У групі тварин, яким КФНК вводили внутрішньовенно, вміст ростового фактора TGF β-1 в плазмі крові був достовірно вище у 1,3 рази (p<0,05), ніж у кроликів з парабульбарным введенням (рис. 1.).


 


Отримані дані свідчать, що травматичне ушкодження сітківки ока викликало різкий викид ростового фактора репарації TGF β-1.

 


Обновить код

Заказать выполнение авторской работы:

Поля, отмеченные * обязательны для заполнения:


Заказчик:


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины