Acetylenic Porphyrins: Synthesis of Porphyrin Substituted Tetraethynylethenes and Polytriacetylenes Diplomarbeit carried out



  • Название:
  • Acetylenic Porphyrins: Synthesis of Porphyrin Substituted Tetraethynylethenes and Polytriacetylenes Diplomarbeit carried out
  • Кол-во страниц:
  • 83
  • ВУЗ:
  • Swiss Federal Institute of Technology Zurich
  • Год защиты:
  • 1996
  • Краткое описание:
  • ACKNOWLEDGEMENTS
    I wish to warmly thank Prof. Dr. François Diederich for the particular opportunity to
    work in his research group, the proposition of the interesting and fascinating subject, and all
    his support.
    Furthermore, I want to express my gratitude to Dr. Rik Tykwinski for his very helpful
    support in theory and in practice and for proofreading the manuscipt. His patience and
    encouragement, as well as his remarkable ability to impart scientific knowledge was of
    immense help and allowed me to rapidly deepen my understanding in the subject.
    Special thanks go to Adrien Zingg, Rainer Martin, Martin Schreiber, Tilo Habicher, Dr.
    Kevin Fitzpatrick, Dr. Jean-François Niergarten, Dr. Jennifer Wytko, and all of those who,
    in one way or another, have contributed to aid me during my diploma thesis.
    The exceptionally pleasant environment and working atmosphere in the ‘Diederich
    Group’ helped to make my diploma thesis an unforgettable experience for me.
    Zurich, 12th of June 1996 Volker Berl
    Table of Contents
    - I -
    TABLE OF CONTENTS
    1. ABSTRACT ...............................................................................1
    2. INTRODUCTION ......................................................................2
    3. GENERAL ASPECTS.................................................................5
    3.1. Porphyrins..................................................................................... 5
    3.1.1. General.......................................................................................................5
    3.1.2. Nomenclature ...........................................................................................5
    3.1.3. Some Selected Properties ........................................................................6
    3.1.4. Natural Occurrence..................................................................................8
    3.1.5. Synthetic Porphyrins ...............................................................................9
    3.2. Tetraethynylethenes .................................................................... 11
    3.2.1. Carbon Networks.....................................................................................11
    3.2.2. Tetraethynylethene Nanoarchitecture and Generalities about
    Conjugated Polymers ..............................................................................12
    3.1.3. Tetraethynylethenes and Nonlinear Optics .........................................16
    4. OBJECTIVES .............................................................................18
    5. RESULTS AND DISCUSSION ....................................................24
    5.1. Synthesis of the Iodinated Porphyrins...................................... 24
    5.2. Synthesis of a Tetraethynylethene and a Hex-3-ene-1,5-
    diyne Derivative........................................................................... 30
    5.3. Synthesis of the Bis(porphinyl) Substituted TEE
    Building Block............................................................................... 32
    5.4. Synthesis of a Tetrakis(porphinyl) Substituted TEE............... 38
    5.5. Synthesis of Porphinyl Substituted Polytriacetylene
    Oligomers ...................................................................................... 39
    5.6. Synthetic Approach towards an Interesting Fullerene-
    Porphyrin Macrocycle ................................................................. 41
    Table of Contents
    - II -
    5.7. Synthesis of a Linear Porphyrin-hex-3-en-1,5-diyne
    Polymer.......................................................................................... 44
    6. CONCLUSION AND OUTLOOK ...............................................46
    7. EXPERIMENTAL SECTION .......................................................48
    7.1. General Remarks .......................................................................... 48
    7.2. Syntheses ....................................................................................... 50
    8. REFERENCES AND NOTES.......................................................67
    9. APPENDIX................................................................................71
    9.1. Abbreviations................................................................................ 71
    9.2. List of Products............................................................................. 73
    Abstract
    - 1 -
    1. ABSTRACT
    In this diploma thesis, the synthesis of laterally porphinyl substituted
    polytriacetylene oligomers, linear porphinyl-hex-3-en-1,5-diyne oligomers, as well as
    a tetrakis(porphinyl)tetraethynylethene is described. In addition, the synthesis of a
    versatile building block, which could lead to the construction of a macrocyclic
    fullerene-porphyrin structure, has been achieved.
    Important steps towards the proposed target molecules were the synthesis of the
    revised porphyrin system, its selective mono- and diiodination in meso-position with
    [bis(trifuoroacetoxy)iodo]benzene and zincation of the latter to access the first two
    important building blocks. In parallel, the synthesis of (E)-l,6-
    bis[(triisopropylsilyl)ethynyl]hex-3-ene-l,5-diyne and (E)-3,4-bis[tert-butyldimethylsilyloxymethyl]
    hex-3-ene-1,5-diyne from readily available starting materials has
    been achieved. The modification and optimization of a procedure for acetylenic
    palladium couplings using [Pd2(dba)3], AsPh3, and CuI led to the target molecules in
    acceptable yields. Deprotection of the (E)-3,4-bis[(triisopropylsilyl)ethynyl)]-1,6-
    bis[Zn(II)-5’,15’-bis(4’’-(ethyl-4’’’-butyryl)oxyphenyl)porphinyl]-hex-3-ene-l,5-diyne
    and subsequent oxidative Glaser-Hay couplings successfully completed the route to
    the desired oligomeric TEE derivatives. Although the quantities of the oligomers
    necessary for complete characterization and study are still forthcoming, initial
    investigations have established the ground work required for the realization of these
    materials.
    Introduction
    - 2 -
    2. INTRODUCTION
    Tetrapyrrolic macrocycles such as porphyrins, chlorins, and bacteriochlorins are
    vital to life on this planet. In fact, photosynthesis relies on the existence of the
    chlorophyll and cytochrome porphyrins, by means of which photonic energy is
    converted and stored as chemical energy. It is likely that cytochromes were
    responsible for respiration long before oxygen was abundant in the Earth’s
    atmosphere. With the advent of photosynthesis, the oxygen it produces is the
    terminal electron acceptor for all aerobic respiration. It is this ability of
    hemoproteins to then deal with the biochemistry of molecular oxygen that enables
    cellular redox activity, not only by oxygen storage (monomeric myoglobin) and
    transport (tetrameric hemoglobin) but also by electron transport (cytochromes) and
    catalysis (oxygenases, peroxidases, etc).
    This suggests the central role that porphyrins have played in chemical, biological
    and physical research. Thus, massive contributions to our knowledge of the
    structure and chemistry of porphyrins, metalloporphyrins, and related
    compounds[1-3] were accumulated in the first half of this century. It was over 150
    years ago that Verdeil converted chlorophyll to a red pigment prompting him to
    suggest a structural relationship between chlorophyll, heme, and other porphyrins.
    Shortly thereafter, Hoppe-Seyler strengthened this hypothesis by showing the spectral
    resemblances between hematoporphyrin and an acid degradation product of
    chlorophyll. The final steps in these structural elucidations were initiated by
    Willstätter and culminated in the trailblazing work of Hans Fischer who
    demonstrated the remarkable fact that but for the presence of two hydrogens, grass
    would be coloured red and not green. Since then, the chemistry of porphyrins has
    flourished into a vast and ever developing area of scientific endeavour. But natural
    product chemists are no longer the only group interested in porphyrins. There is a
    much larger constituency of chemists fascinated by the practical applications of
    porphyrins to a wide diversity of fields.[3] In fact, the research carried out during
    Introduction
    - 3 -
    this diploma thesis was not focused on the biological properties of porphyrins[4] but
    on the synthesis of porphyrin systems with potential materials science and
    technological applications.
    To give the interested reader a brief, but by no means exhaustive insight into
    current research being undertaken on sophisticated porphyrin systems, I would like
    to mention the following topics: porphyrins designed to bind to electrodes and
    surfaces,[5-7] porphyrin derived multi-electron reduction and oxidation catalysts,[8-18]
    synthetic porphyrins as light harvesting antenna-systems,[19-21] porphyrinic materials
    exhibiting nonlinear optical (NLO) properties,[19, 22-27] optical information storage
    using porphyrins in matrices,[28-30] as well as possible porphyrin containing organic
    electric conductors, semi- and superconductors,[28, 31] organic ferro-magnets,[32] and
    liquid crystals.[33]
    Compared to the relatively well investigated porphyrins, tetraethynylethene
    (TEE) derivatives, the second important unit in my diploma thesis, are a class of
    molecules only recently introduced. Though reported for the first time in 1969 by
    Hori and co-workers[34] and synthetically advanced by Hauptmann in the mid-
    1970’s,[35] tetraethynylethenes (TEEs) have only recently been developed.[36] Progress
    in the early 1990’s by the works of Diederich et al.[37] then afforded TEEs with
    virtually any desired substitution and protection patterns. TEEs are carbon rich,
    rigid and very stable molecules, featuring undistorted full two-dimensional
    conjugation and tolerating bulky pendant groups without loss of linear conjugation.
    They are ideal precursors and building blocks for the design of new carbon
    allotropes and networks, carbon-rich materials (e.g. polymers, molecular wires[38]),
    as well as nanomaterials.[39, 40] Additionally, recent exciting studies on donoracceptor
    substituted TEE compounds (so-called push-pull TEEs) have revealed their
    interesting second and third order nonlinear optical properties and electrochemical
    behaviour.[41]
    In order to extend the present research[42, 43] towards the construction of
    conjugated all-carbon backbone polymers by preparing polytriacetylenes (PTAs), it
    was decided to link TEE compounds to porphyrins. The combination of the
    chemistry and the chemical properties of these two types of compounds in one
    Introduction
    - 4 -
    molecule was hoped to bring about new and interesting advanced materials for
    electronic, photonic, and nonlinear optic applications.
    In fact, the versatility of the TEE building block was fundamental to the planning
    of the project carried out during my diploma thesis. The project was initiated by
    Mark McLaughlin, an English undergraduate student, whose work targeted the
    feasibility of synthesizing the proposed model systems. His success in achieving the
    desired molecules encouraged the resumption of the investigations, pursuing them
    to access the porphyrin substituted polytriacetylene oligomers.
  • Список литературы:
  • 8. REFERENCES AND NOTES
    [1] K. D. Smith, Ed., Porphyrins and Metalloporphyrins, Elsevier, New York, 1975.
    [2] D. Dolphin, Ed., The Porphyrins, Academic Press, New York, 1978, Vol. I - VII.
    [3] R. H. Thomson, Ed., The Chemistry of Natural Products, 2nd Ed., Blackie A & P,
    London, 1985.
    [4] (a) P. J. Dandliker, F. Diederich, M. Gross, C. B. Knobler, A. Louati, E. M.
    Sanford, Angew. Chem. 1994, 106, 1821-1824; (b) P. J. Dandliker, F. Diederich,
    J.-P. Gisselbrecht, A. Louati, M. Gross, Angew. Chem. 1995, 107, 2906-2909;
    [5] M. Yoneyama, A. Fujii, S. Maeda, T. Murayama, Chem. Lett. 1991, 929-932.
    [6] F. Bedioui, S. G. Granados, J. Devynck, New J. Chem. 1991, 15, 939-941.
    [7] D. K. Luttrull, J. Graham, J. A. DeRose, D. Gust, T. A. Moore, S. M. Lindsay,
    Langmuir 1992, 8, 765-768.
    [8] R. R. Durand, C. S. Bencosme, J. P. Collman, F. C. Anson, J. Am. Chem. Soc.
    1983, 105, 2710-2718.
    [9] J. P. Collman, J. E. Hutchinson, M. A. Lopez, R. Guilard, R. A. Reed, J. Am.
    Chem. Soc. 1991, 113, 2794-2796.
    [10] Y. L. Mest, M. L'Her, N. H. Hendricks, K. Kim, J. P. Collman, Inorg. Chem. 1992,
    31, 835-847.
    [11] C. K. Chang, I. Abdalmuhdi, Angew. Chem., Int. Ed. Eng. 1984, 23, 164-165;
    Angew. Chem. 1984, 96, 154-155.
    [12] P. S. Traylor, D. Dolphin, T. G. Traylor, J. Chem. Soc., Chem. Commun. 1984, 279-
    280.
    [13] T. G. Traylor, K. W. Hill, W. P. Fann, S. Tsuchiya, B. E. Dunlap, J. Am. Chem.
    Soc. 1992, 114, 1308-1312.
    [14] P. E. Ellis, J. E. Lyons, Coord. Chem. Rev. 1990, 105, 181-193.
    [15] J. T. Groves, R. S. Myers, J. Am. Chem. Soc. 1983, 105, 5791-5791.
    [16] D. Mansuy, P. Battioni, J. P. Renaud, R. Guerin, J. Chem. Soc., Chem. Commun.
    1985, 155-156.
    [17] Y. Naruta, F. Tani, N. Ishihara, K. Maruyama, J. Am. Chem. Soc. 1991, 113, 6865-
    6872.
    [18] K. Konishi, K. I. Oda, K. Nishida, T. Aida, S. Inoue, J. Am. Chem. Soc. 1992, 114,
    1313-1317.
    [19] J.-M. Lehn, Supramolecular Chemistry - Concepts And Perspectives, VCH,
    Weinheim, 1995.
    References
    - 68 -
    [20] M. Gouterman, P. M. Rentzepis, K. D. Straub, Porphyrins, ACS Symposium
    Series 321, Washington, 1986.
    [21] V. S.-Y. Lin, S. G. DiMagno, M. J. Therien, Science 1994, 264, 1105-1111.
    [22] P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules
    and Polymers, John Wiley & Sons, New York 1991, 243-245.
    [23] G. H. Wagnière, Linear and Nonlinear Optical Properties of Molecules, VCH,
    Weinheim, 1993.
    [24] Ch. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz,
    P. Günter, Advances in Nonlinear Optics - Organic Nonlinear Optical Materials,
    Vol. 1, Gordon and Breach Publishers, Basel, 1995.
    [25] H. S. Nalwa, Adv. Mater. 1993, 5, 341-358.
    [26] D. V. G. L. N. Rao, F. J. Aranda, J. F. Roach, D. E. Remy, Appl. Phys. Lett. 1991,
    58, 1241-1243.
    [27] H. L. Anderson, S. J. Martin, D. D. C. Bradley, Angew. Chem. 1994, 106, 711-713,
    Angew. Chem. Int. Ed. Engl. 1994, 33, 655-657.
    [28] F. Vögtle, Supramoleculare Chemie, Teubner, Stuttgart, 1991.
    [29] M. Pope, Mol. Cryst. Liq. Cryst. 1993, 228, 1-22.
    [30] U. P. Wild, S. Bernet, B. Kohler, A. Renn, Pure Appl. Chem. 1992, 64, 1335-1342.
    [31] J. Metz, M. Hanack, J. Am. Chem. Soc. 1983, 105, 828-830.
    [32] J. S. Miller, J. C. Calabrese, R. S. McLean, A. J. Epstein, Adv. Mater. 1992, 4,
    498-501.
    [33] (a) B. A. Gregg, M. A. Fox, J. A. Bard, J. Chem Soc. Chem. Commun. 1987,
    1134-1135; (b) B. A. Gregg, M. A. Fox, J. A. Bard, J. Am. Chem Soc. 1989, 111,
    3024-3029.
    [34] Y. Hori, N. Noda, S. Kobayashi, H. Tanigushi, Tetrahedron Lett. 1969, 3563-3566.
    [35] (a) H. Hauptmann, Angew. Chem. 1975, 87, 490-491; (b) H. Hauptmann,
    Tetrahedron Lett. 1975, 1931-1934; (c) H. Hauptmann, Tetrahedron 1976, 32, 1293-
    1297.
    [36] P. J. Stang, F. Diederich, Eds., Modern Acetylene Chemistry, VCH, Weinheim,
    1995.
    [37] Y. Rubin, C. B. Knobler, F. Diederich, Angew. Chem. Int. Ed. Eng. 1991, 30,
    698-700; Angew. Chem. 1991, 103, 708-710.
    [38] J.-M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112; Angew. Chem. 1988, 100,
    91-116.
    [39] F. Diederich, Nature (London) 1994, 369, 199-207.
    [40] F. Diederich, Y. Rubin, Angew. Chem. 1992, 104, 1123-1146; Angew. Chem. 1992,
    31, 1101-1124.
    [41] (a) Ch. Bosshard, R. Spreiter, P. Günter, R. R. Tykwinski, M. Schreiber,
    F. Diederich, Adv. Mater. 1996, 8, 231; (b) R. R. Tykwinski, M. Schreiber,
    V. Gramlich, P. Seiler, F. Diederich, Adv. Mater. 1996, 8, 226-231.
    References
    - 69 -
    [42] M. Schreiber, J. Anthony, F. Diederich, M. E. Spahr, R. Nesper, M. Hubrich,
    R. Bommeli, L. Degiorgi, P. Wachter, P. Kaatz, Ch. Bosshard, P. Günter,
    M. Colussi, U. W. Suter, C. Boudon, J.-P. Gisselbrecht, M. Gross, Adv. Mater.
    1994, 6, 786-790.
    [43] M. Schreiber, R. R. Tykwinski, R. Spreiter, Ch. Bosshard, P. Günther,
    C. Boudon, J.-P. Gisselbrecht, M. Gross, U. Jonas, H. Ringsdorf, F. Diederich,
    Adv. Mater. 1996, in preparation.
    [44] W. Küster, Z. Physiol. Chem. 1912, 82, 463-483.
    [45] H. Fischer, K. Seile, Ann. Chem. 1929, 468, 98-116.
    [46] J. L. Soret, Compt. Rend. 1883, 97, 1267.
    [47] A. Gamgee, Z. Biol. (Munich) 1897, 34, 505.
    [48] A. Stern, G. Klebs, Ann. Chem. 1932, 500, 91-108; 1933, 504, 287-297; 1933, 505,
    295-306.
    [49] J. M. Osgerby and S. F. MacDonald, Can. J. Chem. 1962, 40, 1585-1589.
    [50] P. S. Clezy, A. J. Liepa, A. W. Nichol, G. A. Smythe, Aust. J. Chem. 1970, 23,
    589-602.
    [51] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff,
    J. Org. Chem. 1967, 32, 476.
    [52] G. M. Badger, R. L. N. Harris, R. A. Jones, J. M. Sasse, J. Chem. Soc. 1962,
    4329-4337.
    [53] G. H. Barnett, M. F. Hudson, K. M. Smith, Tetrahedron Lett. 1973, 2887-2892.
    [54] H. Fischer, K. Platz, K. Morgenroth, Z. Physiol. Chem. 1929, 182, 265-288.
    [55] P. Rothemund, J. Am. Chem. Soc. 1936, 58, 625-627.
    [56] G. P. Arsenault, E. Bullock, S. F. MacDonald, J. Am. Chem. Soc. 1960, 82,
    4384-4389.
    [57] J. S. Lindsey, R. W. Wagner, J. Org. Chem. 1989, 54, 828-836.
    [58] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffmann, Nature (London)
    1990, 347, 354-362.
    [59] A. M. Boldi, F. Diederich, Angew. Chem. Int. Edn. Engl. 1994, 33, 482;
    Angew. Chem. 1994, 106, 482-485.
    [60] W. R. Salaneck, I. Lundström, B. Rånby, Conjugated Polymers and Related
    Materials, Oxford University Press, Oxford 1993.
    [61] J. S. Miller, Adv. Mater. 1993, 5, 671-676.
    [62] M. McLaughlin, Diplomarbeit 1995, ETH-Zürich.
    [63] (a) M. Schreiber, Arbeitsbericht 1995; (b) S. G. DiMagno, V. S.-Y. Lin,
    M. J. Therien, J. Am. Chem. Soc. 1993, 115, 2513-2515.
    [64] B. Dietrich, P. Viout, J.-M. Lehn, Macrocyclic Chemistry - Aspects of Organic and
    Inorganic Supramolecular Chemistry, VCH, Weinheim, 1993.
    [65] W. A. Little, Sci. Am. 1965, 212 (2), 21-27.
    [66] W. A. Little, J. Polym. Sci.: Part C 1967, 3-12.
    [67] J. Bardeen, L. N. Cooper, J. R. Schreiffer, Phys.Rev. 1957, 108, 1175.
    References
    - 70 -
    [68] J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein, J. S. Miller, Science 1991,
    252, 1415-1417.
    [69] I. Z. Steinberg, E. Haas, E. Katchalski-Katzir in Time-Resolved Fluorescence
    Spectroscopy in Biochemistry and Biology (R. B. Cundall, R. E. Dale, Eds.), Plenum
    Press, New York 1983, 411-450.
    [70] Th. Föster, Pure Appl. Chem. 1973, 34, 225-234.
    [71] J. S. Manka, D. S. Lawrence, Tetrahedron Lett. 1989, 30, 7341-7344.
    [72] R. Chong, P. S. Clezy, A. J. Liepa, A. W. Nichol, Aust. J. Chem. 1969, 22, 229-238.
    [73] (a) R. W. Boyle, C. K. Johnson, D. Dolphin, J. Chem. Soc., Chem. Commun. 1995,
    527-528. (b) Y. Ogato, K. Aoki, J. Am. Chem. Soc. 1968, 90,
    6187-6191. (c) E. B. Merkushev, N. D. Simakhina, G. M. Koveshnikova,
    Synthesis 1990, 486-487.
    [74] E. Sanford, Dissertation, UCLA 1991.
    [75] (a) J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Gramlich, C. B. Knobler,
    P. Seiler, F. Diederich, Helv. Chim. Acta 1995, 78, 13-45; (b) J. Anthony,
    Dissertation, UCLA 1993.
    [76] S. M. LeCours, H.-W- Guan, S. G. DiMagno, C. H. Wang, M. J. Therien, J. Am.
    Chem. Soc. 1996, 118, 1497-1503.
    [77] H. L. Anderson, C. J. Walter, A. Vidal-Ferran, R. A. Hay, P. A. Lowden, J. K. M.
    Saunders, J. Chem. Soc., Perkin Trans. 1 1995, 2275-2279.
    [78] R. W. Wagner, T. E. Johnson, F. Li, J. S. Lindsey, J. Org. Chem. 1995, 60,
    5266-5273.
    [79] C. Grant, P. Hambright, J. Am. Chem. Soc. 1969, 91, 4195-4198.
    [80] X. Yan, D. Holten, J. Phys. Chem. 1988, 92, 5982-5986.
    [81] 1H-NMR analysis supported this structure, although vigorous analysis was not
    done.
    [82] H. Imahori, Y. Sakata, Chem. Lett. 1996, 199-200.
    [83] C. Bingel, Chem. Ber. 1993, 126, 1957-1959.
  • Стоимость доставки:
  • 230.00 долл


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины