Modeling Plant Diversity and Post-Fire Regeneration in a 31-Year-Old Bum - Vermilion Pass, Canadian Rackies :

ПОСЛЕДНИЕ НОВОСТИ

Бесплатное скачивание авторефератов
СКИДКА НА ДОСТАВКУ РАБОТ!
ВНИМАНИЕ АКЦИЯ! ДОСТАВКА ОТДЕЛЬНЫХ РАЗДЕЛОВ ДИССЕРТАЦИЙ!
Авторские отчисления 70%
Снижение цен на доставку работ 2002-2008 годов

 

ПОСЛЕДНИЕ ОТЗЫВЫ

Порядочные люди. Приятно работать. Хороший сайт.
Спасибо Сергей! Файлы получил. Отличная работа!!! Все быстро как всегда. Мне нравиться с Вами работать!!! Скоро снова буду обращаться.
Отличный сервис mydisser.com. Тут работают честные люди, быстро отвечают, и в случае ошибки, как это случилось со мной, возвращают деньги. В общем все четко и предельно просто. Если еще буду заказывать работы, то только на mydisser.com.
Мне рекомендовали этот сайт, теперь я также советую этот ресурс! Заказывала работу из каталога сайта, доставка осуществилась действительно оперативно, кроме того, ночью, менее чем через час после оплаты! Благодарю за честный профессионализм!
Здравствуйте! Благодарю за качественную и оперативную работу! Особенно поразило, что доставка работ из каталога сайта осуществляется даже в выходные дни. Рекомендую этот ресурс!



  • Название:
  • Modeling Plant Diversity and Post-Fire Regeneration in a 31-Year-Old Bum - Vermilion Pass, Canadian Rackies
  • Кол-во страниц:
  • 220
  • ВУЗ:
  • Dutch Polymer Institute
  • Год защиты:
  • 2005
  • Краткое описание:
  • TABLE OF CONTENTS
    Approval Page ........................................................................................................i. .
    Abstract ............... .. ........................ ................................................ ....................... iii
    Acknowledgements ................................................................................................ iv
    Dedication ............................................................................................................v.. .
    Table of Contents ......................................................................... . ...................... vi
    ... List of Tables ........................................................................................................... wii
    List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
    List of Equations ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
    S.. Epigraph . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xin
    CHAPTER 1 - INTRODUCTION ..................................................................................... 1
    CHAPTER 2 - BACKGROUND ............................................. ..................... ................ 4
    CHAPTER 3 - LITERATURE REVIEW .... .. .... .. .... .. ...... ..... .. .... . .... . . . . . . . ........... 10
    3.1 - Subalpine Forest Fne Ecology . . . ... . . . .... .. ...... . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . 10
    3.2 - Modeling Composition and Distribution of Vegetation .. . .. . . . . . . . . .. .. . . . . . . . .. . . . . . . ... . . . 12
    3.3 - Past Vegetation Studies in and Around Vermilion Pas ........ . .... .... . .. .. .. .. . ....... .. 17
    3.4 - Literature Review Summary . . .... ... ... ......... . .... . .... . . .... ... . . . . . . . . . . . 26
    CHAPTER 4 - METHODS ..................................... . . ... ................. ....................2 7
    4.1 - Field Data Collection, Input and Verif'ition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 27
    4.2 - Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    4.3 - Incorporation of Spatial Data . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
    4.4 - Identification of Diagnostic Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9
    4.5 - Modeling Distributions of Diagnostic Species ......................... .............. .......... 44
    vi
    4.6 .Mo deling Distribution of Plant Communiaes ................................................ 52
    CHAPTER 5 O RESULTS ............................... .... ........................................................ 57
    5.1 O Field Data Set ...................................................................................5..7.
    5.2 O Cluster Anaiysis ..................................................................................... 58
    5.3 .In corporation of Spatial Data ................................................................... 59
    5.4 .Ide ntification of Diagnostic Species ............................................................. 61
    5.5 . Modeling Distributions of Diagnostic Species ................................................. 71
    5.6 . Modeling Distribution of Plant Cornmunilies ................................................... 83
    CHAPTER 6 O DISCUSSION ........................................................................................ 85
    6.1 .ni e Plant Communities of the Vermilion Bum .............................................. 85
    6.2 . Critique of the Model ........................................................................... 117
    6.3 .............................................................. O Suggestions for Further Research 122
    CHAPTER 7 .CO NCLUSION .................................................................................. 127
    REFERENCES ................................................................................................... 130
    APPENDIX 1 ...................................................... O Data and Software Used in this Thesis 136
    APPENDIX 2 . Model Flow Chart ................................................................................ 137
    APPENDIX 3 .Ca rtographie Model .............................................................................1. 38
    APPENDIX 4 .Ins trument Used for Recording of Field Data ............................................. 141
    APPENDIX 5 O Complete List of Species Identifiied in the Vermilion Bum ............................. 142
    APPENOIX 6 .Su mmary of Plant Species Composition by Cluster ..................................... 145
    APPENDIX 7 .DE M-Derived Ancillary Data Layers ......................................................... 156
    APPENDIX 8 .Su mmary Sbtistics for Tree Species ....................................................... 163
    vii
    LIST OF TABLES
    Table 3.1 .................................................... O Lower Subalpine Ecmites of Vermilion Pass 18
    Table 3.2 .Up per Subalpine Ecosites of Vermilion Pass ....................................................1 9
    Table 5.1 .Su mmary of Main Features of Field Data Set ................................................... 51
    Table 5.2 .Pl ant Communities of the Vermilion Bum ......................................................5..9
    Table 5.3 O Correiation Mat& for Potential Diagnostic Species and Ancillary Variables ............ 62
    Table 5.4 .................................................... O Parameters for Spatial Dependence Models 76
    Table 5.5 .......................................... O Error Matrix For Maximum Likelihood Classification 8 3
    viii
    UST OF FIGURES
    Figure 2.1 . Map of Vermilion Pass and the Vermilion Burn .................................................. 5
    Figure 2.2 .M ean Monthly Temperature and Pracipitation. Verniilion Pass ..............................8
    Figure 3.1 .19 72 Distribution of New Pine Seedlings ....................................................... 23
    Figure 3.2 .19 72 Distribution of New Spruce and Fir Seedlings .......................................... 24
    Figure 3.3 .19 72 Distribution of Dominant Shnib Species ............................................. 24
    Figure 3.4 .19 72 Distribution of Dominant Herb Species ...............................................2 5
    Figure 4.1 .Di agram of a Sample Plot ..........................................................................2 8
    Fgure 4.2 .Co nversion of Raw Aspect Values to Solar and CroûîValey Aspect ...................3 4
    Figure 4.3 .3x 3 Convolution Math for Deriving Cunrature ...............................................3. 7
    Figure 4.4 . Hypothetical Experimental Semivariogram and Spatial Dependence Model ........... 50
    Figure 4.5 .Hy pothetical Maximum Likelihood Classifion ........................................5 3
    Figure 5.1 .De ndrogram of Cluster Analysis Results ......................................................5 8
    Figure 5.2 O Map of Locations of Sample Plots ................................................................ 60
    Figure 5.3 O DEM of Vermilion Pass ............................................................................ 61
    Figure 5.4 O Equiprobability Contour Diagram for Lodgepole Pine and Rusty Menziesia ............ 63
    Figure 5.5 O Coincident Histogram for Lodgepole Pine ......................................................6 4
    Figure 5.6 .Co incident Histogram for Rusty Menziesia ..................................................6. 5
    Figure 5.7 O Equiprobability Contour Diagram for Canadian Bunchberry and Grousebeny ......... 66
    Figure 5.8 .......................................... O Coincident Histogram for Canadian Bunchbeny 6 7
    Figure 5.9 .Co incident Histogram for Giousebeny ........................................................... 68
    Figure 5.1 0 ........... O Results of KM-Wallis Non-Peramehfc Test for Sample Independence 70
    Figure 5.1 1 = Generalized (Regression) Distribution of Lodgepole Pine ................................. 72
    ix
    Figure 5.1 2 .Ge neralized (Regression) Distribution of Rusty Menziesia ................................ 73
    Figure 5.1 3 .Ge neralized (Regression) Distribution of Grousebeny ..................................... 75
    Figure 5.1 4 .Kr iging lnterpolated Surface of Regression Residuals for Lodgepole Pine ........... 77
    Figure 5.1 5 O Kriging Interpolated Surface of Regression Residuals for Rusty Menziesia .......... 78
    Figure 5.16 O Kriging Interpolated Surface of Regression Residuals for Grousebeny ............... 79
    Figure 5.17 = Modeled Distribution of Loâgepole Pine ...................................................... 80
    Figure 5.1 8 . Modeled Distribution of Rusty Menziesia ................................................ 81
    Figure 5.1 9 O Modeled Distribution of Grouseberry ............................................................ 82
    Figure 5.20 . Modeled Distribution of Plant Communities ................................................ 84
    Figure 6.1 O Modeled Distribution of Mount Whyrnper Open Pine/Buffaloberry (Cluster 1) ......... 87
    Figure 6.2 O Modeled Distribution of Subalpine Meadows and Avalanche Tracks (Clustee) ....... 89
    Figure 6.3 O Modeled Distribution of Stonn Mountain Grousebeny (Cluster 3) ......................... 92
    Figure 6.4 O Modeled Distribution of South Side Open PinelMenziesia (Cluster 4) ................... 94
    Figure 6.5 . Modeled Distribution of Open PinelMenziesialGrousebeny-Bunchberry (Cluster 5) . 96
    Figure 6.6 O Modeled Distribution of Ribbon of Menziesia (Cluster 6) .................................... 99
    Figure 6.7 . Modeled Distribution of Dog Hair Pine (Cluster 7) ........................................... 101
    Figure 6.8 O Modeled Distribution of Bottomlands Dense Pine (Cluster 8) ............................. 103
    Figure 6.9 .M odeled Distribution of Midslope Closed PineIMenziesia (Cluster 9) .................. 106
    Figure 6.1 0 .M odeled Dist. of Closed Pine/8uffaalob~îGmuseberry-Twiinofw er (CI . 10 ) ....... 108
    Figure 6.1 1 .19 99 Distribution of Lodgepole Pi ne by Plant Cornmunity ...............................1 09
    Figure 6.12 ... O 1999 Distribution of Engelmann Spruce and Subalpine Fir by Plant Community 11 1
    Figure 6.13 .1 999 Distribution of Dominant Shrub Species by Plant Community ................... 113
    Figure 6.14 ..................... O 1999 Distribution of Dominant Herb Species by Plant Commun* 115
    X
    Figure 9.1 .DE Mderived Slope. Vermilion Pass ........................................................... 156
    Figure 9.2 .DE Mderived Solar Aspect. Vermilion Pass ................................................... 157
    Figure 9.3 - DEMderived Cross-Valley Aspect. Verniilion Pas ......................................... 158
    Figure 9.4 - DEM-derived Solar SlopeAspect Index. Vermilion Pas .................................. 159
    Figure 9.5 . DEMderived Cross-Valley Slope Aspect Index. Vermilion Pass ........................ 160
    Figure 9.6 - DEMderived DomiSIope Curvature. Vermilion Pass ...................................... 161
    Figure 9.7 - DEMderived Cross-Slope Curvature. Vermilion Pas ...................................... 162
    LIST OF EQUATîONS
    Equation (1) .Sq uarad Euclidean Measure of Distance .....................................................3 2
    Equation (2) .Ca lculation of Slope-Aspect Index .............................................................3. 5
    Equation (3) O Cafculation of Slope Vector ................................................................ 37
    Equation (4) O Cakulation of X-Component of Slope ..................................................... 3 8
    Equation (5) .Ca kulatîon of Y-Component of Slope .......................................................... 38
    Equation (6) .Ca lculation of Arimuth ............................................................................. 38
    Equation (7) .Ca hlation of Curvature .......................................................................... 38
    Equation (8) .Pe arson's Correlation Coefficient ............................................................... 40
    Equation (9) O Kniskal-Wallis H-Statistic ......................................................................... 44
    Equation (1 0) O General Simple Linear Regression Equation ............................................. 4 6
    Equation (1 1) .Ge neral Multiple Linear Regression Equation .............................................. 47
    Equation (12) .Ex perimental Semivariogram ............................................................ 4 9
    Equation (13 ) .Or dinary Kriging Estimator ......................................................................5 1
    Equation (14) oe Kappa Index of Agreement Statistic ........................................................ 55
    Equation (15) O Regression Equation for Lodgepole Pine ...............................................7 1
    Equation (16 ) .Re gression Equation for Rusty Menziesia .................................................7. 1
    Equation (17 ) .Re grassion Equation for Grousebeny .......................................................7. 1
    xii
  • Список литературы:
  • 1 27
    CHAPTER 7 - CONCLUSION
    The purpose of this thesis has been to generate a descriptive modal of the vegetative
    response over the past three decades to a fire that bumed 2,430ha of mature spruce and fir forest
    in Vermilion Pass in July, 1988. The Vermilion bum is unique due to its size, one of the largest fires
    in the subalpine ecoregion of the southem Canadian Rocky Mountains in the past half century. It is
    also unique for its location in two of Canada's National Paris, affording it the opportunity to
    regenerate naturally, and with minimal human intewention.
    The modeled distribution and composition of plant communities was produced by
    combining an assortment of methods from various fields - ecdogy, biogeography and hndscape
    modeling, Geostatistics and GIS, and remote sensing.
    Vegetation and site charaderistic data from 218 sample plots were collected duhg th8
    summer of 1999 from th8 Vermilion bum, and subsequently entered into a spreadsheet.
    Hierardical cluster analysis was then used to group vegetation data from simlarly composed
    sample plots into ten distinct clusters or plant communities.
    A point coverage was created in a GIS from GPSobtained locations of sample plots. A
    digital elevation mode1 (DEM) of the study area was obtained, and a series of seven terrain-related
    ancHlary layers were derived from the DEM - measures of dope, solar and cross-valley aspect,
    solar and cross-valley slope-aspect indices, and cross-slope and dom-dope curvature values
    were al1 generated. The values for each of these variables were than spotted a sample plot
    locations in the bum, and added to the thematic data set.
    Next, three diagnostic species, lodgepde pine, rusty menziesia, and grousebeny, were
    Conclusr"0n 128
    selected, to be used to model the distribution of plant communities in the bum. Diagnostic species
    were selected based on the following criteria, which were evaiuated sequentiaily: (a) species had
    to be ubiquitous or near ubiquitous within aie bum; (b) species' had to demonstrate statisticaliy
    signif'mnt correlation to at least one of the DEMderived ancillary variables; and (c) species
    percent cover values within and between individual p Mco mmunities (Le. variance and
    covariance) had to be such that they enabled or improved the separabili of at least one plant
    community or group of plant communities from al1 others.
    Once selected, continuous distributions were modeled for each of the three diagnostic
    species percent cover within the bum, through a three slep process. First, a general distribution of
    the species was modeleci from the regression of species' percent cover values against the mat
    highly correlated ancillary variables at sample plot locations. Next, a continuous surface was
    interpolated from the regression residuals ab sample plot locations using a rigorous geostatistical
    process called ordinary kriging. Finally, the generalized distribution (regression) layer and the
    interpolated residual layer were additiiely combined to produce a modeled distribution map for
    each diagnostic species.
    The three modeled percent cover distribution maps were then used as input channels for a
    maximum likelihood classifkation procedure, which assigned a plant community identifier value
    (between 1 and 10) to each cell in the raster grid, representing 25mX25m on the ground, according
    to the percent cover values for each of the three diagnostic species in that pixel.
    The modeled distribution of the 10 plant communities was used to assign an appropriate
    name to each plant community, based on its vegetative composition, site preference, and speclic
    Conclusion 129
    location in the bum. Separate generalized distribution maps were created for lodgepde pine,
    combined Engelmann spruce and subalpine fir, and dominant species in the 8-stratum and Cstratum.
    These generalized distribution rnaps were used to compare curent vegetative
    regeneration in the Vermilion bum to the plant community distribution that was present irnmediately
    after the 1968 fire, as identaied and mapped by Hams [1976].
    This thesis is directed towards the goal of improving the understanding of the spatial
    dynarnics of vegetative regeneration in a natural ecosystem from the effects of fie. It is anticipated
    that this will be the second in a series of M i e s of the vegetation of the Vermilion bum, aimed at
    acpuinng a full record of the fire cycle in this paiacular location.
    Re ferences 130
    REFERENCES
    Achuff , P.L., Holland, W.D., Coen, G.M., & Van Tighem, K. (ediiors), 1984; Ecologkal h d
    Clasfication of Kootenay National Park-, British Cdumbia - vol. 1: Integnifed Resource
    Description; Alberta InsoMe of Pedology, Edmonton, Alberta, Canada.
    Bailey, Robert G., 1 996; Ecosystem Geography; Springer-Veriag Inc., New York. New York, USA.
    Banett, Neb E., & Niering, William A., 1 993; mdal Mamh Restontion: Trends in Vegetation
    Change Using a Geographical Information System (GIS); in Restomtion Ecology, March
    1 993, pp. 1 8-28; Society for Ecological Aestoration.
    Bessie, W.C., & Johnson. E.A., 1 995; The Relative lmpotfance of Fuek and Weather on FKe
    Behaviour h Subdpine Forestq in Ecology, vol.76 no.3, pp.747-762; Ecological Society of
    America.
    Bolliger, P., & Scherrer, H., 1993; Vegetation Mapping wiih Aerial Photos and GIS; in Anthas,
    February 1 993, pp.22-25.
    Bunough, Peter A., 8 McDonnell, Rachael A., 1 991 ; Pnncr;Oles of Geographbl lnfomation
    System; Oxford University Press, Inc., New York, New York, USA.
    Carlson, Clinton E., Arno, Stephen F., & Menakis, James, 1990; Hybrid lamh of the Caflton Ridge
    Research Natural Area in western Montana, in Natuml Areas Journal, vol. 10 no. 3; pp.134-
    139.
    Cissel, John H., Swanson, Frederick J., & Weisberg, Peter J., 1 999; Landscape Management
    Using Historiwl Re Regimes: Blue River, Oregon; in Ecdogica/Applicafions, vo1.9 no.4,
    pp.l2l7-l23l.
    Cormack, R.G.H., 1 953; A Survey of Conifornus Forest Succession in Ihe Eastern Rockies; in
    Forest Chnicles, vol.29, pp.218-232.
    Davis. John C., 1986; Statistks and Defa Analysis in GmIogy; John Wiley 8 Sons; New York
    1986.
    Re ferences 131
    Eastman, J. Ronald, 1999; IDiilS/ 32 - Guide to GIS and lmage Pmcessing, vols. 1 &2; Clark Labs,
    Clark University, Worcester, Massachusetts, USA.
    Eyton, J. Ronald, 1 991 ; Rate-of-Change Maps; in Carfognphy and Geographic lnfomation
    Systems, vol. 1 8 n0.2, p.87.
    Fall, Patricia L., 1997; FKe history and composition of the subalpine forest of western Colorado
    duhg the ifoIoc8ne; in Journal of Biogeography, vol.24 no.3, pp.309-325; Blackwell Science
    Ltd., Oxford, UK.
    Gadd, Ben, 1995; Handbook of Ihe Canadian Rakies, Cam Press, Jasper, Alberta, Canada.
    Gwvaertç, Pierre, 1997; Geostatistks for Natural Resoumes Evaluation; Oxford University Press,
    Inc., New York, New York, USA.
    Greene, D.F., 8 Johnson, E. A., 1 995; Long-ûistance Wnd Dispersal of Tres Seeds; in Canadian
    Journal of Botany, vol.73, pp. 1 036-1 045.
    Greene, D.F., 8 Johnson, €A., 1996; Mrnd Dispersa1 of Seeds from a Forest into a Cleanng, in
    Ecology, vol.77 no.2, pp.595-609; Ecological Society of America.
    Hale, Jr., ME., (1i Culberson, W.L., 1 970; A Fourth Checkllist for the Likhens of the Continental
    United Sfafesa nd Canada; in BryoIogy, vol.73, pp.499-543.
    Hallwoith, Beryl, & Chinnappa, Chendanda Chengappa, 1997; Plants of Kananaskis Country in the
    Rocky Mountains of Albeda; University of Calgary Press, Alberta, Canada.
    Harris, Stuart A., 1976; The Vennillion Pass Fire - The First Seven Years; Harris Environmental
    Research Ltd., Calgary, Alberta, Canada.
    Hawksworth, D.L., Jantes, P.W., 8 Coppins, B.J., 1980; ChecWist of British Lkhen-foming,
    Lchennokus and Allied Fungk in Lkhenology, vol. 1 2 no. 1 ; p. 1 1 5.
    Horton, K.W., 1956; The ecology of Lodgepde Pine in Alberta and its Ro/e in Succession;
    Technical Note no.45; Canadian Department of Northem Affain and Natural Resources,
    Forestry Branch.
    Refemnces 132
    Johnson, Edward A.. & Larsen, C.P.S. 1 991 ; Climatkally lndirced Change h Fire Frequency in the
    Southern Canadian Rucbs; in Edlogy, vo1.72 no.1, pp.194-201; Ecological Society of
    America.
    Johnson, Edward A., & Miyanishi, Kiyoko, 1991 ; Fre and Population Dynamks of Lodgepole Pine
    and Engelmann S p m Forests in the Southern Canadian Rockieq in Cbniferous Forest
    EcoIogy h m an International Perspecfive, pp.TI-91; SPB Academic Publishing, The Hague,
    The Netherlands.
    Johnson, E.A.. & Van Wagner, C.E., 1984; The Theory and Use of TWO Re History Models; in the
    Canadian Joumal of Forest Uesearch, vol. 1 5, pp.214-220.
    Johnston, R. J., 1 980; Multhriate StatistrCaI Analysis in Geogiaphy - A Primer on the General
    Linear Moûet Longman Scientific and TechnicaVJohn Wiley and Sons, Inc., New York, New
    York, USA.
    Kenhaw, Linda, MacKinnon, Andrew, 8 Pojar, Jim, 1998; Plants of the Rocky Mountains Lone
    Pine Publishing, Edmonton, Alberta, Canada.
    Kushla, J.D., & Ripple, W.J., 1997; Tha RoIe of Temin in a Fire MosaS of a Tempente Conferous
    Forest in Forest Ecology and Management, vol.95 no.2, pp.97-107.
    La Roi, George H., Strong, Wayne L. & Pluth, Donald J., 1988; Understory Plant Communily
    Classifications as Predktors d Forest Site Quality for Lodgepde Pine and White Spnne h
    West-Central Alberta; in the Canadian Journal of Forest Research, vo1.18, pp.875-887.
    Levin, Jack, & Fox, James Alan, 1 994; Elementaiy Statistks h Social Reseatch (6m Ed.);
    HarpeCollins College Publishing, New York, New York, USA.
    Lillesand, Thomas M., & Kiefer, Ralph W., 1994; Remote Sensing and /mage lnterpmtation (3d
    Ed.); John Wiley & Sons, Inc., New York, New York, USA.
    Liston, GE., 8 Sturm, M., 1998; A Snow-Transport Mode1 for Complex Temin; in Journal of
    Glaciology, vol.44 no. 148, pp.498-5 1 6.
    Masters, A.M.; 1990, Tempoml and Spatial Change h Forest Fire Histoiy of Kootenay National
    Park, Canadian Rakies; in Canadian Journal of Bofany, voI.68, pp.1763-1767.
    Referenaes 1 33
    Mitas, 1, & Miasova, H., 1999; Spatial Interpolation; in Geographkal lnfonnation Systerns, vol.1
    (2nd Ed., Longley, Paul A., Goaddrild, Miihael F., Maguire, David J., h Rhind, David W.,
    Editors) ; chapter 34, pp.481-492; John Wiley & Sons, Inc., New York, New York, USA.
    Oksanen, J, 8 Minchin, PR, 1997; Instability of Ordination Resuls Under Changes k Input Data
    Order: Ekplanations and Remedies; in Joumal of Vegetation Science, vol.8, pp.447-454.
    Parks Canada, 2000; Kootenay National Park of Canada Management Plan; Minister of Public
    Works and Government SeMces Canada.
    Peddle, Derek R., & Duguay, Claude R., 1995; Incorporating Topographie and CIHnatic GIS Data
    into Satellite Image Analysis of an A@ne Tundra Ecosystern9 Fmnt Range, Colorado Rocw
    Mountains in Gemrto International, vol.10 no.4, pp.43-60; Geocarto International Centre,
    Hong Kong.
    Renkin, RA., & Des pain, D.G., 1 992; Fuel Moisture9 Focest Tjpe, and dightning-Caused Fire in
    Yellowstone National Park; in Canadian Joumal of Forest Research, vol.22, pp.37-45.
    Schier, George A., 8 Campbell, Robert B., 1978; Aspen Suc& Flegeneration Folbwing Buming
    and Clearcutting on Two Sites in the Rocky Mountains; in Forest Sence, vol.24 240.2,
    pp.303-308.
    Schimmel, Johnny , & Granstrom, Anders, 1 996; Fife Sevenfy and Vegetation Response in the
    Boreal Swedish Forest in Ecology, vol.ïï no.5, pp.1436-1450; Eodogical Society of
    America.
    SPSS version 9.0.0 User's Manual, 1998; SPSS Inc., December 1998.
    Steel, Robert GD., Torrie, James H., 8 Diikey, David A., 1997; Pn'nciples and Procedures of
    Statistics - A BiometriCa/ Appmch (3d Ed.); WCBIMcGraw-Hill, New York, New York, USA.
    Strong, W.L., & Leggat, KR, 1981; Ecomgbns of Alberta, ENR Technical Report no.T/4; Province
    of Alberta, Department of Energy and Natural Resources, ûffice of Resource Information
    SeMces, Edmonton, Alberta, Canada.
    References 134
    Tappeiner, U., Tasser, E., & Tappeiner, O., 1998; Malelling Vegetation Patterns Using Natudand
    Anthmpogenic lntluence Factors: PreIiminary Experienoe with a GIS Ba& Mode1 Appliéd to
    an Alpine Area; in EcologicaI Modekng, ~01.113, pp.225-237; Elsevier Science.
    Wilhrd, T, 8 Harris, S.A., 1972; Report on the Vegetation of Me VenniIion Pass Bum; (unpublishd
    report) for Pa& Canada, Western Regional Office, Calgary.
    Winterbottom, K.M., 1974; The Effects of Slope Angle, Aspect, and Fire on Snow Avalanching in
    the Field, Lake Louiw, and Marbe Canyon Region of the Canadian Rocky Mountains; MSc.
    Thesis, Department of Geography, University of Calgary, Alberta, Canada.
    MAPS
    Cook, DG.; 1973; Geology of the Msw, Ranges of the Rmky Mountains from VermiIlion Pass to
    Blaebeny River and Bow Lake, British Columbia-Alberla; GGeogical Suwey of Canada;
    Ottawa, Ontario.
    British Cokrrnbia Ministry of Enwonment Temin Resouia, Inventoty Maps (TRIM) Nos. 82N.020 &
    82N.030 (1:2O,ûOû scale) (digital and hard copies); McElhanney Consulüng SeMces Ltd.,
    Vancouver, British Columbia, Canada.
    Topoglilphic Map No. 82 N/1- Mount Goodsir (1 50,000 scale) ;1996; Canada Centre for
    Mapping, Natural Resources Canada; Her Majesty the Queen in Right of Canada.
    INTERNET REFERENCES
    Hiemstra, Christopher A., Liston. Glen E.. & Aeiners, William A., 2000; Wind Redistributlion of
    Snow at Treeline in Ihe Medicine Bow Mountains of Wjmming; from prwdings of the 4th
    International Conference on Integrating GIS and Environmental Modeling (GISEM4):
    Problems, Prospects and Research Needs; Banff, Alberta, Canada, September 2 - 8,2000.
    URL: http.Jl~~~.colorado.eddre~8a~cire~anff/up~~525~
    ITIS? 2001 ; - lntegrated Taxonomie Information System (Canadian version) - Taxon based
    biological information system; Govemment of Canada, Department of Agriculture and AgnReferences
    1 35
    food Canada
    URL: http.llsis.agr.gc.calpIsTrtiScalfaxaget?pPPifx=aafc
    Lane, David M.. 2001 ; HyperStat Online Statistics Text Book; David M. lane 1993-2W1.
    URL:
  • Стоимость доставки:
  • 30.00 долл


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины