Развитие системы методов статистического анализа временных рядов




  • скачать файл:
  • Название:
  • Развитие системы методов статистического анализа временных рядов
  • Альтернативное название:
  • Розвиток системи методів статистичного аналізу часових рядів
  • Кол-во страниц:
  • 193
  • ВУЗ:
  • Оренбург
  • Год защиты:
  • 2011
  • Краткое описание:
  • Год:

    2011



    Автор научной работы:

    Любчич, Вячеслав Владимирович



    Ученая cтепень:

    кандидат экономических наук



    Место защиты диссертации:

    Оренбург



    Код cпециальности ВАК:

    08.00.12



    Специальность:

    Бухгалтерский учет, статистика



    Количество cтраниц:

    193



    Оглавление диссертациикандидат экономических наук Любчич, Вячеслав Владимирович










    ВВЕДЕНИЕ.
    ГЛАВА 1. МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫСТАТИСТИЧЕСКОГОАНАЛИЗА ВРЕМЕННЫХ РЯДОВ.
    1.1 Определение предпосылок, этапованализаи прогнозирования временных рядов.
    1.2 Теоретические основы исследования тенденции временного ряда.
    1.3 Современные методы статистического анализа периодической и случайнойколеблемости.
    1.4 Обзор и классификация прикладного программного обеспечения для статистического анализавременныхрядов.
    ГЛАВА 2. МЕЖДУНАРОДНЫЙ ОПЫТ В РАЗВИТИИ МЕТОДОЛОГИИ СТАТИСТИЧЕСКОГО АНАЛИЗА ВРЕМЕННЫХРЯДОВ.
    2.1Преимуществаиспользования в российских исследованиях принципов моделирования временного ряда, сложившихся в международной практике.
    2.2 Скользящие и рекурсивные оценки в системеметодовэконометрического анализа одномерного временного ряда.
    2.3 Применение двувходового объединения и теориикоинтеграциив анализе взаимосвязи временных рядов.
    ГЛАВА 3. НОВЫЕ МЕТОДЫ И МОДЕЛИ В ПОВЫШЕНИИ КАЧЕСТВА ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ.
    3.1 Потенциал моделей с длинной памятью и стейт-спейс моделей в прогнозировании одномерных временных рядов.
    3.2 Анализ причинности взаимосвязей в многофакторном прогнозировании временных рядов.
    3.3 Сравнительная оценка альтернативных методов прогнозирования и обобщение прогнозов.










    Введение диссертации (часть автореферата)На тему "Развитие системы методов статистического анализа временных рядов"


    Актуальность темы исследования. Развитие общества требует значительного усиления роли знаний и информации, расширения статистических баз данных и информационного пространства. Принятиеуправленческихрешений на всех уровнях во многом зависит от информации, методов и результатов ее анализа.
    Особую важность в управлении различными социально-экономическими процессами в условияхкризисаэкономики приобретает изучение временных рядов экономических показателей и их прогнозирование. Статистический анализ информации, представленной в виде временных рядов, является необходимой составной частью современных экономических исследований.
    С целью получения адекватных результатов анализа экономических процессов важен учет временной структуры данных, то есть необходимо использовать специальную статистическую методологию, разработанную для анализа временных рядов и прогнозирования. Применить же все методы к одному временному ряду или к временным рядам одной сферы человеческой деятельности (например, финансовой) не представляется возможным ввиду их особенностей. Набор имеющихся методов широк, но ещё более велик перечень объектов статистического исследования, каждый из которых обладает своей спецификой. Некоторые из методов развиты достаточно хорошо и являются более или менее универсальными, другие — более специализированными, требуют дальнейшей разработки, уточнения и апробации в новых условиях с целью совершенствования статистического анализа.
    Выбор темы диссертационного исследования обусловлен следующими причинами:
    - во-первых, статистические исследования необходимо направить на изучение сущности наблюдаемых явлений и процессов, на выявление скрытых взаимосвязей, то есть на причинное понимание социально-экономических систем;
    - во-вторых, необходимо развивать статистические методы анализа временных рядов в соответствии с новейшими положениями экономической теории и практики;
    - в-третьих, требуется развитие статистических методик исследования новых свойств динамики: интегрированности,коинтеграции, переменной волатильности.
    Степень разработанности проблемы. Исследованию временных рядов уделяется много внимания в отечественных и зарубежных работах. Основные отечественные труды по методологии анализа временных рядов принадлежат C.B.Арженовскому, В.Н. Афанасьеву, В.В. Витязеву, А.Г.Гранбергу, В.В. Глинскому, Т.А. Дубровой, И.И.Елисеевой, И.Б. Загайтову, М.С. Каяйкиной, Г.С.Кильдишеву, Н.Д. Кондратьеву, C.B. Курышевой, Ю.П.Лукашину, А.И. Маннеле, И.Н. Молчанову, H.A.Садовниковой, A.A. Френкелю, C.JI. Чернышеву, Е.М.Четыркину, Е.П. Чуракову, P.A. Шмойловой, М.М.Юзбашеву.
    Среди зарубежных авторов, занимающихся методологией анализа временных рядов, могут быть выделены С.Армстронг(S. Armstrong), Дж. Бокс (G. Box), Д. Бриллинджер (D. Brillinger), Т.Боллерслев(T. Bollerslev), Дж. Гамильтон (J. Hamilton), Ф. Дайболд (F. Diebold), Дж.Дарбин(J. Durbin), Г. Дженкинс (G. Jenkins), Д. Дики (D. Dickey), Р. Калман (R. Kaiman), M. Кендалл (M. Kendall), JI. Килиан (L. Kilian), Д. Кохрейн (D. Cochrane), Р. Отнес (R. Otnes), Д. Поллок (D. Pollock), Д. Стоффер (D. Stoffer), А. Стьюарт (А. Stuart), А. Тейлор (А. Taylor), Р. Тсэй (R. Tsay), В. Фуллер (W. Fuller), M.Хатанака(M. Hatanaka), Д. Хейс (D. Heise), Э. Хеннан (Е. Hannan), К.Хольт(С. Holt), К. Четфилд (С. Chatfield), Р. Шумвэй (R. Shumway), В. Эндерс (W. Enders), Л. Эноксон (L. Enokson) и другие. Особо отмечают Р. Фриша (R. Frisch) и Я.Тинбергена(J. Tinbergen) в связи с тем, что в 1969 г. за разработку прикладных динамических моделей для анализа экономических процессов им была присужденапремияШведского государственного банка по экономическим наукам памяти А. Нобеля. В 2003 г. даннойпремиибыли удостоены К. Грэнджер (С. Granger) — за методы анализа экономических временных рядов с общимитрендами(коинтеграцией) и Р. Ингл (R. Engle) — за методы анализа экономических временных рядов с меняющейсяволатильностью(модели авторегрессии с условнойгетероскедастичностью).
    Большое разнообразие существующих подходов, методов анализа, недостаточная осведомленность специалистов об особенностях использования тех или иных методов, сложности применяемого математического аппарата создают дляаналитиковтрудности или даже приводят к неверным выводам. В настоящее время отсутствуют специальные работы, отражающие сравнительную оценку методов анализа, описание деталей методов и современных статистических программных продуктов.
    Важное научное и практическое значение совершенствования статистического анализа и прогнозирования временных рядов, актуализации системы методов их анализа в соответствии с современными научными разработками, определили выбор темы, цель и задачи исследования.
    Цель и задачи исследования. Целью диссертационной работы является развитие системы методов статистического анализа временных рядов.
    В соответствии с поставленной целью определены следующие задачи:
    1) установить существующие предпосылки, применяемые в статистическом исследовании временных рядов;
    -2) дополнить методологию анализа одномерного временного ряда методами, повышающими качество результатов при снижениитрудоемкостианализа;
    3) усовершенствовать методику исследования взаимосвязи временных рядов, построения многофакторных моделей;
    4) апробировать исследование причинности для получения качественно высоких результатов анализа временных рядов;
    5) выбрать критерии оптимального прогноза, дать сравнительную оценку полученным практическим результатам.
    Область исследования. Работа выполнена в рамках Паспорта специальности 08.00.12 —Бухгалтерскийучет, статистика (экономические науки) в соответствии с п. 3.3 «Методы обработки статистической информации: классификация и группировки, методы анализа социально-экономических явлений и процессов, статистического моделирования, исследования экономическойконъюнктуры, деловой активности, выявления трендов и циклов, прогнозирования развития социально-экономических явлений и процессов».
    Объектом исследования послужили теоретические и практические разработки в области формализованного статистического анализа экономических временных рядов. Специфические разделы, такие как экспертные методы, нейропрограммирование, прогнозирование климата и демографического развития, не рассматривались.
    Предмет исследования — теоретические, методологические и методические аспекты применения статистических методов в анализе временных рядов.
    Теоретической и методологической основой диссертации послужили фундаментальные и прикладные работы ведущих российских и зарубежных ученых в области статистики,эконометрики, анализа временных рядов и прогнозирования,эконометрическогомоделирования. В исследовании использовались общенаучные методы, принцип системности, монографического исследования, единства анализа и синтеза. При апробации теоретических результатов использовались методы анализа тенденции иколеблемостивременных рядов, фазовый, корреляционно-регрессионный анализ, методы анализа коинтеграции и причинности, вейвлет-анализ, двувходовое объединение, графический метод. Обработка исходной информации, моделирование и расчеты выполнены с использованием пакетов прикладных программ MS Excel, EViews 6, Stata 10, STATISTICA 8.0, MatLab 2007.
    Информационная база исследования включает в себя официальные статистические данныеПродовольственнойи сельскохозяйственной организации Объединенных Наций, Федеральной службы государственной статистики, информацию банка данных статистического портала Государственного университета — Высшей школы экономики.
    Научная новизна исследования заключается в развитии существующей методологии статистического анализа временных рядов.
    Основными элементами научного вклада и предметом защиты являются следующие теоретические и практические результаты:
    - определены и охарактеризованы теоретические предпосылки, принципы статистического исследования временных рядов, вследствие применения которых повышаются обоснованность и точность результатов анализа; ~
    - набор методов эконометрического анализа одномерного временного ряда дополнен локально взвешенной регрессией, фильтромХодрика-Прескотта, вейвлет-анализом, матрицей лаговых зависимостей;
    - предложено использовать двувходовое объединение при изучении синхронности колебаний временных рядов для выделения групп объектов, имеющих синхронные колебания. Апробация нафактическихданных позволила определить взаимовыгодные международные направленияпоставокзерна, предусматривающие обеспечение продовольственной безопасности государства;
    - раскрыта сущность скрытой коинтеграции временных рядов, представлены модели, рекомендуемые для работы со скрытыми взаимосвязями, что позволяет работать с нестационарными компонентами временных рядов для оценки скрытых зависимостей;
    - разработана методика тестирования Грэнджер-причинности для построения причинныхэконометрическихмоделей. В результате изучения динамики реальныхинвестицийв Российской Федерации полученаэконометрическаямодель принципиально высокого уровня, основанная на выявленных причинных взаимосвязях;
    - определены критерии выбора научно обоснованного метода прогнозирования, заключающиеся в точности результата, стоимости, экспертном суждении и других контекстно-зависимых характеристиках. Предложен и апробирован новый способ определения весов индивидуальных прогнозов в усредненном в зависимости от их точности;
    - проведена классификация современного прикладного программного обеспечения, в том числе дана характеристика более чем 50 программным продуктам, применяемым в анализе временных рядов.
    Теоретическая и практическая значимость работы заключается в том, что содержащиеся в ней положения и выводы могут быть использованы при дальнейшем более глубоком исследовании статистической методологии. Теоретические и методологические положения, представленные в диссертации, значительно повышают возможности и качество анализа и прогнозирования временных рядов, уточняют особенности применения методов, обеспечивают глубокое понимание сущности происходящих процессов. Результаты диссертационного исследования целесообразно использовать в высших учебных заведениях при изучении курсов «Общая теория статистики», «Анализ временных рядов и прогнозирование», «Эконометрика», «Эконометрическое моделирование».
    Разработанная модель динамики реальных инвестиций в основнойкапиталимеет практическую направленность с точки зрения ее прогностических функций, а также возможности раскрытия существующих причинных взаимосвязей в данной области.
    Апробация и внедрение результатов исследования. Основные положения диссертационного исследования получили положительную оценку на 57-й сессии Международного статистического института «Статистика: наше прошлое, настоящее и будущее» (г. Дурбан, 2009), а также на различных международных, всероссийских и региональных научно-практических конференциях в городах Ижевске, Москве,- Оренбурге, Санкт-Петербурге, Саратове. Автор был награжден дипломом II степени на Седьмой Всероссийской Олимпиаде развития народного хозяйства России в номинации «Продовольственнаябезопасность России» (г. Москва, 2007).
    Теоретические положения по совершенствованию исследования временных рядов и их практическому осуществлению на статистических данныхагропромышленногокомплекса региона приняты к внедрению Министерством экономического развития иторговлиОренбургской области, что подтверждено соответствующим актом.
    Публикации по теме диссертации. Основные положения диссертации опубликованы в 14 работах общим объемом 4,15 печ. л. (из них авторских — 3,14 печ. л.), в том числе 5 работ размещено в изданиях, определенныхВАК.
    Структура и объем работы. Диссертация состоит из введения, трех глав, заключения, библиографического- списка (174 наименования) и 5 приложений. Основное содержание работы изложено на 152 страницах, включает в себя 5 таблиц и 23 рисунка.
  • Список литературы:
  • Заключение диссертациипо теме "Бухгалтерский учет, статистика", Любчич, Вячеслав Владимирович


    Данные выводы являются не только апробацией современных методов статистического анализа, но и основой причинного понимания наблюдаемых экономических процессов.
    ЗАКЛЮЧЕНИЕ
    В заключении диссертации сформулируем основные выводы и предложения.
    1. Современное общественное развитие характеризуется нарастанием роли информации,глобализациейнациональных экономик, а вследствие этого — высоким резонансов от принятия тех или иныхуправленческихрешений. Необходимость ведения научнообоснованной политики требует умения грамотно анализировать и прогнозировать динамику процессов. Проблема получения достоверных и адекватных результатов включает в себя задачу развития статистического анализа и прогнозирования временных рядов.
    2. Методология статистического исследования временных рядов базируется на ряде основных предпосылок и гипотез, выполнение которых является критически важным для возможности применения методов анализа. К данным предпосылкам относится сама возможность прогнозирования явления, требованиесопоставимостиуровней временного ряда, вероятностный характер изучаемого явления, осведомлённость о предыстории изучаемого процесса, наложение на природу исходных данных какой-либо структуры (стационарность, эргодичность), выделение компонентов динамики (тренд, циклическая, сезонная и случайнаяколеблемость) и определение модели их взаимосвязи (мультипликативной, аддитивной или смешанной).
    3. Необходимым пунктом в реализации задачи совершенствования исследований и апробации результатов является наличие современного программного обеспечения для проведения расчётов. Важными характеристиками для выбора программы являются наличие удобного пользовательского интерфейса, широкогоассортиментавстроенных функций для анализа временных рядов, возможность написания собственных команд, а такжеценоваядоступность для пользователя.
    4. В зарубежной практике сформирован ряд принципов исследования временных рядов, использование которых рекомендуется для совершенствование анализа динамики процессов. К таким принципам относится обязательное предварительное изучение графика и коррелограммы исходного временного ряда; использование формализованного тестирования для определения характеристик временного ряда; верификация использованного метода или модели на данных, не участвовавших в их спецификации и идентификации.
    5. Информативными методами анализа одномерного временного ряда являются фазовый анализ, сглаживание с помощью локально взвешенной регрессии, фильтра Ходрика-Прескотта, сплайнов, исследование частотно-временных характеристик процесса с применением результатов вейвлет-анализа. Использование матрицылаговыхзависимостей в дополнение к анализу выборочной автокорреляционной функции способствует выявлению нелинейных взаимосвязей между последовательными уровнями временного ряда.
    6. В набор методов для анализа качества моделирования необходимо включить расчёт скользящих коэффициентов как средство определения устойчивости модели в генеральной совокупности, тестирование на наличиеавтокорреляциивысоких порядков в остатках, а также изучение реакции модели на импульс. Реакцию на импульс, ступенчатое или функциональное изменение рекомендуется использовать для изучения адаптивных свойств полученной модели и расширения (подтверждения) знаний предметной области, о характере распределённой во времени зависимости между уровнями ряда.
    7. В целях совершенствования анализа взаимосвязи временных рядов предложено использование двувходового объединения как развитие существующего метода анализа синхронности колебаний. Применение двувходового объединения к временным рядам производственных показателей участников рыночных отношений позволяет выделить предпочтительныхконтрагентовс точки зрения оптимальности распределения ресурсов, в зависимости от существующих закономерностейколеблемостипроизводственных показателей.
    Апробация двувходового объединения на данных о динамике урожайности пшеницы в 24 странах за 1961-2009 гг. позволила определить международные направления заключенияконтрактовна поставку зерна для получения не только экономическихвыгод, но и социально-политических, так какперераспределениепродовольственных запасов в соответствии с данным принципом рассматривается какинструментдиверсификации, обеспечения продовольственной безопасности и борьбы с голодом.
    8. Дальнейшее развитие многомерного анализа временных рядов должно быть направлено на раскрытие сущности экономических явлений и процессов. Этому способствует использование методов исследованиякоинтеграциивременных рядов, в том числе — изучения нелинейной и скрытой коинтеграции, прослеживающейся между отдельными компонентами динамики.
    Применяемая методология статистического анализа должна быть развита настолько, чтобы обеспечивать потребности изучения причинных взаимосвязей в социально-экономических данных. Шагом в этом направлении является внедрение в практику исследования временных рядов концепции причинности К.Грэнджера.
    9. Так как многие экономические процессы являются разностно-стационарными, то обоснованным способом их прогнозирования является методология Бокса-Дженкинса. Развитие данного метода связано с возможностью использовать нецелый параметр с1 в моделях АШМА. По аналогии нецелый параметр с1 применяется и в прогнозированииволатильности(модель РЮАЕ1СН). Модели с такими параметрами занимают промежуточное положение между моделями с короткой и бесконечно большой памятью о шоках.
    Многообещающим является применение в отечественной статистике стэйт-спэйс моделей для анализа сигналов, сопровождающихся помехами, так как данный класс моделей даёт более робастные прогнозы, чем ARIMA-модели.
    10. Практическое внедрение многомерных моделейкорректировкиошибок позволяет учесть наличиедолгосрочнойвзаимосвязи не только между уровнями временных рядов, но и между их нестационарными компонентами. Теоретически использованиекоинтеграционныхотношений в моделировании и прогнозировании более предпочтительно, так как модели специфицируются в исходных уровнях временных рядов, поэтому сохраняется информация о долгосрочной взаимосвязи и не нарушаются положения экономической теории. Однако на реальных данных точность таких прогнозов не всегда превосходит другие методы.
    11. Точность прогнозов является наиболее важным критерием качества метода прогнозирования. Многообразие показателей точности рассчитано на различия в «стоимости ошибок», поэтому выбор того или иного метода зависит от используемой функции потерь. Проведённая в работе сравнительная оценка точности прогноза индекса реальныхинвестицийв основной капитал выделила сразу два метода, обеспечивающих наилучшее приближение к послевыборочным данным: экспоненциальное сглаживание и сезонную модель ARMA. Предложенный способ усреднения прогнозов позволил снизить МАЕ послевыборочного прогнозирования как минимум на 0,3 п. п.; PMSE — на 2,9 (п. п.)2.
    12. В результате использования тестов Грэнджер-причинности выявлено одностороннее влияние на индекс реальных инвестиций втекущеммесяце
    - измененийсреднемесячногопроцента роста реального объёма промышленного производства в предшествующие три месяца;
    - ростаденежногоагрегата М2, наблюдавшегося полгода назад;
    -текущегоприроста стоимости доллара.
    Также выявлена двусторонняя причинная взаимосвязь между индексом реальных инвестиций и индексом цен на строительно-монтажные работы.









    Список литературы диссертационного исследованиякандидат экономических наук Любчич, Вячеслав Владимирович, 2011 год


    1.АбдуллаевМ.А. Методология исследования и причины колебания урожайности. // Вопросы статистики. 2004. — №7. С. 89-94.
    2.АбдуллаевМ.А. Статистический метод выявления причин колебания урожайности. // Вопросы статистики. 2003. №9. - С. 82-86.
    3.АнатольевС.А. Эконометрика для подготовленных. Курс лекций. М.: РЭШ, 2003.-64 с.
    4.АнатольевС.А. Эконометрика для продолжающих. Курс лекций. М.: РЭШ, 2006. - 60 с.
    5. Андерсон Т. Введение в многомерный статистический анализ. Пер. с англ. Ю.Ф.Кичатова, Е.С. Кочеткова, Н.С. Райбмана / Под ред. Б.В. Гнеденко — М.: Государственное издательство физико-математической литературы, 1963. 500 с.
    6. Андерсон Т. Статистический анализ временных рядов. Пер. с англ. И.Г.Журбенко, В.П. Носко. / Под ред. Ю.К. Беляева. М.: Мир, 1976. -755 с.
    7.АрженовскийC.B., Молчанов И.Н. Статистические методы прогнозирования. Учебное пособие / Рост. гос.экон. унив. Ростов-на-Дону, 2001.-74 с.
    8.АфанасьевВ.Н. Моделирование и прогнозирование временных рядов: учеб.-метод. пособие для вузов / В.Н. Афанасьев, Т.В.Лебедева. М.: Финансы и статистика, 2009. — 292 с.
    9.АфанасьевВ.Н. и др. Эконометрика: Учебник / В.Н. Афанасьев, М.М.Юзбашев, Т.И. Гуляева; под ред. В.Н. Афанасьева. М.:Финансыи статистика, 2005. - 256 с.
    10.АфанасьевВ.Н. Многомерный статистический анализ факторов уровня устойчивости урожайности сельскохозяйственных культур. СПб.: Научное издание, 1995. — 83 с.
    11.АфанасьевВ.Н. Статистическое обеспечение устойчивости сельскохозяйственного производства. — М.: Финансы и статистика, 1996.-320 с.
    12.АфанасьевВ.Н., Косарева Т.П., Джуламанов A.A. Устойчивость формхозяйствованияв аграрном секторе экономики при переходе к рыночным отношениям: (Общая редакция В.Н.Афанасьева). — СПб., 1995.-96 с.
    13.АфанасьевВ.Н., Маркова А.И. Статистика сельского хозяйства: Учеб. пособие. М.: Финансы и статистика, 2003. - 272 с.
    14.АфанасьевВ.Н., Мартынов А.П. Управление устойчивостью сельскохозяйственного производства региона. — Оренбург: Оренбургская губерния, 2003. — 165 с.
    15.АфанасьевВ.Н. Анализ временных рядов и прогнозирование: учебник / В.Н. Афанасьев, М.М.Юзбашев2-е изд., перераб. и доп. - М.: Финансы и статистика; ИНФРА-М, 2010. - 320 с.
    16. Афифи А., Эйзен С. Статистический анализ: Подход с использованиемЭВМ. Пер. с англ. -М.: Мир, 1982. 488 с.
    17.БалашВ.А., Балаш О.С. Линейные регрессионные модели для панельных данных. — М.:МЭСИ, 2002. 65 с.
    18.БалашВ.А. Эконометрика. Учебник. /МхитарянB.C., М.Ю. Архипова и др. -М.: Проспект, 2008. 384 с.
    19.БарковаЛ.Н., Ткачёва С.А. Компьютерный практикум в пакете STATISTICA: Учебно-методическое пособие. Воронеж, 2005. — 50 с.
    20.БасовскийJ1.E. Прогнозирование и планирование в условиях рынка. Учебное пособие. М.: ИНФРА-М, 2007. - 260 с.
    21.БерндтЭ.Р. Практика эконометрики: классика и современность: Учебник для студентов вузов, обучающихся по специальности 060000 экономики и управления / Пер. с англ. под ред. проф. С.А. Айвазяна / Э.Р. Берндт. -М.: ЮНИТИ-ДАНА, 2005. 863 с.
    22.БогомоловВ.А. Экономическая безопасность: учеб. пособие для студентов вузов, обучающихся по специальности экономики и управления (060000) / В.А. Богомолов. М.: ЮНИТИ-ДАНА, 2006. -303 с.
    23. Бокс Дж., Дженкинс Г. Анализ временных рядов, прогноз и управление: Пер. с англ. Вып. 1. М.: Мир, 1974. - 406 с.
    24. Бокс Дж., Дженкинс Г. Анализ временных рядов, прогноз и управление: Пер. с англ. Вып. 2. М.: Мир, 1974. - 197 с.
    25.БоровиковВ.П. Прогнозирование в системе STATISTICA в среде Windows. Основы теории и интенсивная практика на компьютере: Учебное пособие / В.П. Боровиков, Г.И.Ивченко. — М.: Финансы и статистика, 2000. 384 с.
    26.БородинС.А. Эконометрика: Учеб. пособие / С.А. Бородич. — Минск: Новое знание, 2001. 408 с.
    27.БриллинджерД.Р. Временные ряды. Обработка данных и теория. Пер. с англ. A.B. Булинского, И.Г.Журбенко/ Под ред. А.Н. Колмогорова. -М.:МИР, 1980.-536 с.
    28.ВайнуЯ.Я.-Ф. Корреляция рядов динамики. М.: Статистика, 1977. -120 с.
    29. Винн Р., Холден К. Введение в прикладнойэконометрическийанализ. — М.: Финансы и статистика, 1981. 294 с.
    30.ВитязевВ.В. Вейвлет-анализ временных рядов: Учеб. пособие. — СПб.: Изд-во С.-Петерб. ун-та, 2001. — 58 с.
    31.ВитязевB.B. Спектрально-корреляционный анализ равномерных временных рядов: Учеб. пособие. — СПб.: Изд-во С.-Петерб. ун-та, 2001.-48 с.
    32.ВуколовЭ.А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTICA и EXCEL: Учебное пособие. М.: ФОРУМ: ИНФРА-М, 2004. - 464 с.
    33. Вучков И. и др. Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987. — 240 с.
    34.ГладилинA.B. Эконометрика: учебное пособие / A.B. Гладилин, А.Н.Герасимов, Е.И. Громов. М.: КНОРУС, 2006. - 232 с.
    35.ГлинскийВ.В. Методы типологии данных в социально-экономических исследованиях. Автореферат дисс. на соискание ученой степени доктора экономических наук. СПб.,СПбГУЭФ, 2009. - 44 с.
    36.ГлинскийВ.В., Ионин В.Г. Статистический анализ: Учебное пособие. — 3-е изд., перераб. и доп. М.: ИНФРА-М; Новосибирск: Сибирское соглашение, 2002. — 241 с.
    37.ГоляндинаН.Э. Метод «rycemni;a»-SSA: анализ временных рядов: Учеб. пособие. СПб.: С.-Петербургский гос. университет, 2004. - 76 с.
    38.ГоляндинаН.Э. Метод «Гусеница»-88А: прогноз временных рядов: Учеб. пособие. — СПб.: С.-Петербургский гос. университет, 2004. 52 с.
    39.ГранбергА.Г. Динамические модели народного хозяйства: Учебное пособие для студентов вузов, обучающихся по специальности «Экономическая кибернетика». — М.: Экономика, 1985. 240 с.
    40.ГранбергА.Г. ред. Статистическое моделирование и прогнозирование: Учебное пособие / Г.М.Гамбаров, Н.М. Журавель, Ю.Г. Королев и др.; Под ред. А.Г.Гранберга. М.: Финансы и статистика, 1990. — 383 с.
    41.ГрибунинВ.Г. Введение в анализ данных с применением непрерывного вейвлет-преобразования. Электронная версия книги подготовленафирмойАВТЭКС, СПб. http://www.autex.spb.m-29 с.
    42.ГрибунинВ.Г. Введение в вейвлет-преобразование. Электронная версия книги подготовлена фирмой АВТЭКС, СПб. http://www.autex.spb.ru — 59 с.
    43.ГрэнджерК., Хатанака М. Спектральный анализ временных рядов в экономике. Пер. с англ. B.C. Дуженко и Е.Г. Югер. Науч. ред. В.В. Налимов. М.: Статистика, 1972. - 312 с.
    44.ДавниеВ.В., Тинякова В.И., Мокшина С.И.,АлексееваА.И. Компьютерные решения задач многомерной статистики. Часть 1. Кластерный и дискриминантный анализ. Воронеж, 2005. - 36 с.
    45. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения.Выпуск1. Пер. с англ. В.Ф. Писаренко с предисл. A.M. Яглома М.: МИР, 1971.-316 с.
    46. Дженкинс Г., Ватте Д. Спектральный анализ и его приложения.t
    47. Выпуск 2. Пер. с англ. В.Ф. Писаренко с предисл. A.M. Яглома — М.: МИР, 1972.-286 с.
    48. Джонстон Дж.Эконометрическиеметоды. / Пер. с англ. и предисл. A.A. Рывкина. М.: Статистика, 1980. - 444 с.
    49. Добеши И. Десять лекций по вейвлетам. Ижевск:НИЦ«Регулярная и хаотическая динамика», 2001. - 464 с.
    50.ДоугертиК. Введение в эконометрику: Пер. с англ. М.: ИНФРА-М, 1999.-XIV.-402 с.
    51.ДубровA.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы: Учебник. — М.: Финансы и статистика, 2003. -352 с.
    52.ДуброваТ.А. Статистические методы прогнозирования в экономике. -М.: Московский международный институтэконометрики, информатики, финансов и права, 2003. — 50 с.
    53.ДуброваТ.А. Статистические методы прогнозирования: Учебное пособие для вузов. М.: ЮНИТИ-ДАНА, 2003. - 206 с.
    54.ЕлисееваИ.И., Рукавишников В.О. Логика прикладного статистического анализа. -М.: Финансы и статистика, 1982. 192 с.
    55.ЕлисееваИ.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И.Елисеевой. 5-е изд., перераб. и доп. - М.: Финансы и статистика, 2004. — 656 с.
    56.ЕрохинА.Н. Законы устойчивости воспроизводства и их использование в управлении развитиемАПК. / Под общей редакцией проф. И.Б.Загайтова. Воронеж: ФГОУ ВПО ВГАУ, 2006. - 130 с.
    57.ЗагайтовИ.Б., Половинкин П.Д. Экономические проблемы повышения устойчивости сельскохозяйственного производства. М.: Экономика, 1984.-240 с.
    58.КанторовичГ.Г. Анализ временных рядов. // Экономический журналВШЭ. 2002.-№1.-С. 85-116.
    59.КанторовичГ.Г. Анализ временных рядов. // Экономический журнал ВШЭ. 2002. №2. - С. 251-273.
    60.КанторовичГ.Г. Анализ временных рядов. // Экономический журнал ВШЭ. 2002. №3. - С. 379-401.
    61.КанторовичГ.Г. Анализ временных рядов. // Экономический журнал ВШЭ. 2002. №4. - С. 498-523.
    62.КанторовичГ.Г. Анализ временных рядов. // Экономический журнал ВШЭ. 2003.-№1.-С. 79-103.
    63. Кейн Э. Экономическая статистика иэконометрия. Введение в количественный экономический анализ. Вып. 2. Пер. с англ. Р. Мошкович, С. Николаенко, А. Шмидта. Под ред. Р.Энтова. — М.: Статистика, 1977. 232 с.
    64. Кендалл М. Временные ряды / Пер. с англ. и предисл. Ю.П. Лукашина. — М.: Финансы и статистика, 1981. — 199 с.
    65. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. Пер. с англ. Э.Л.Пресмана, В.И. Ротаря / Под ред. А.Н.Колмогорова, Ю.В. Прохорова. — М.: Наука, 1976. — 736 с.
    66. Кендалл М., Стьюарт А. Статистические выводы и связи. Пер. с англ. Л.И. Гальчука, А.Т.Терехина/ Под ред. А.Н. Колмогорова. М.: Наука, 1973.-900 с.
    67.КильдишевГ.С., Френкель A.A. Анализ временных рядов и прогнозирование. — М.: Статистика, 1973. 102 с.
    68. Ковалёва Л.Н. Многофакторное прогнозирование на основе рядов динамики. -М.: Статистика, 1980. 102 с.
    69.КолениковС. Прикладной эконометрический анализ в статистическом пакете Stata. М.: РЭШ, 2003. - 125 с.
    70.КрастиньО.П. Изучение статистических зависимостей по многолетним данным. М.: Финансы и статистика, 1981. - 136 с.
    71.КрастиньО.П. Разработка и интерпретация моделей корреляционных связей в экономике. — Рига: Зинатне, 1983. 302 с.
    72.КремерН.Ш., Путко Б.А. Эконометрика: Учебник для вузов. / Под ред. проф. Н.Ш. Кремера. М.: ЮНИТИ-ДАНА, 2002. - 311 с.
    73.КузнецоваВ.Е. Методологические аспекты сезоннойкорректировкивременного ряда на региональном уровне. // Вопросы статистики. 2006. — №1. С. 38^14.
    74.КузнецоваВ.Е., Сивелькин В.А. Сезоннаякорректировкаряда с использованием процедуры Х-11 метод Census II 111111 STATISTICA. Учебное пособие. Оренбург: Издательский центрОГАУ, 2005. — 102 с.
    75. Курс социально-экономической статистики: Учебник для вузов / Под ред. М.Г. Назарова. М.:Финстатинформ, ЮНИТИ-ДАНА, 2000. -771 с.
    76.ЛебедеваТ.В. Эконометрическое моделирование одномерного временного ряда. // ВестникОГУ. 2008 г. - №84. - С. 19-23.
    77.ЛевинB.C. Методология статистического исследованияинвестицийв основной капитал: пространственно-временной аспект: автореферат дисс. на соискание уч. степени доктора экономических наук: 08.00.12 / Левин B.C.Оренбург, 2008. - 42 с.
    78.ЛуговскаяЛ.В. Эконометрика в вопросах и ответах: Учебное пособие. — М.: ТК Велби, Изд-во Проспект, 2006. 208 с.
    79.ЛукашинЮ.П. Адаптивная эконометрика. Нелинейные адаптивные регрессионные модели. // Вопросы статистики. 2006. — №6. С. 37-45.
    80.ЛукашинЮ.П. Адаптивные методы краткосрочного прогнозирования временных рядов: Учеб. пособие. М.: Финансы и статистика, 2003. — 416 с.
    81.МагнусЯ.Р., Катышев П.К., Пересецкий A.A.Эконометрика. Начальный курс: Учеб. 6-е изд. - М.: Дело, 2004. - 576 с.
    82.МедведевГ.А. Практикум на ЭВМ по анализу временных рядов: Учебное пособие. / Г.А. Медведев, В.А.Морозов. Минск: Университетское, 2001. — 192 с.
    83.МолчановИ.Н., Герасимова И.А. Компьютерный практикум по начальному курсу эконометрики (реализация на EViews): Практикум / Ростовский государственный экономический университет. Ростов-на-Дону, 2001.-58 с.
    84. Новак Э. Введение в методы эконометрики. Сборник задач: Пер. с польск. / Под ред. И.И. Елисеевой. — М.: Финансы и статистика, 2004. -248 с.
    85.НоскоВ.П. Эконометрика: Введение в регрессионный анализ временных рядов. — Москва, 2002. 254 с.
    86. Отнес Р., Эноксон JI. Прикладной анализ временных рядов. Основные методы. Пер. с англ. В.И. Хохлова. / Под ред. И.Г. Журбенко. — М.: МИР, 1982.-428 с.
    87. Перуновский O.E. Моделированиевалютныхрынков на основе процессов с длинной памятью. М.: ГУ-ВШЭ, 2004. - 46 с.
    88. Практикум поэконометрике: Учеб. пособие / И.И.Елисеева, C.B. Курышева, Н.М. Гордеенко и др. / Под ред. И.И. Елисеевой. — 2-е изд., перераб. и доп. — М.: Финансы и статистика, 2006. 344 с.
    89. Прикладная статистика: Классификация и снижение размерности: Справ, изд. / С.А.Айвазян, В.М. Бухштабер, И.С. Енюков, JI.M. Мешалкин; под ред. С.А. Айвазяна. М.: Финансы и статистика, 1989. — 607 с.
    90. Региональная статистика: учебник. / под ред. Е.В.Заровой, Г.И. Чудилина. — М.: Финансы и статистика, 2006. 624 с.
    91.СадовниковаH.A., Шмойлова P.A. Анализ временных рядов и прогнозирование. Учебное пособие. / Московский государственный университет экономики, статистики и информатики М., 2001. — 67 с.
    92.СивелькинВ.А., Кузнецова В.Е. Многомерная классификация методом кластерного анализа с использованием пакета STATISTICA: Методические указания. Оренбург: ОГАУ, 2003. - 40 с.
    93.СивелькинВ.А., Кузнецова В.Е. Статистическое моделирование рядов с использованием метода классической сезонной декомпозиции (метод Census I) 111111 Statistica: Методические указания. Оренбург:ГОУВПО ОГУ, 2002. - 33 с.
    94.СошниковаЛ.А., Тамашевич В.Н., Уебе Г., Шефер М. Многомерный статистический анализ в экономике: Учеб. пособие для вузов. / Под ред. проф. В.Н.Тамашевича. -М.: ЮНИТИ-ДАНА, 1999. 598 с.
    95. Справочник по прикладной статистике. В 2-х т. Т. 2: Пер. с англ. / Под ред. Э. Ллойда, У. Ледермана, С.А.Айвазяна, Ю.Н. Тюрина. М.: Финансы и статистика, 1990. — 526 с.
    96. Статистика финансов: Учебник. / Под ред. проф. В.Н. Салина. М.: Финансы и статистика, 2000. — 816 с.
    97. Статистические методы в экономическом анализе производства. — Сборник статей. / Под ред. Б.Б. Розина. Новосибирск: Наука, 1968. -200 с.
    98. Статистический анализ временных рядов авторегрессии и скользящего среднего: Учебное пособие. / А.Ф. Тараскин. Самара: Самар. гос. аэрокосм, ун-т., 1998. - 64 с.
    99. Статистическое моделирование и метод Монте-Карло: Учебное пособие /ТараскинА.Ф. Самара: Самар. гос. аэрокосм, ун-т, 1997. - 62 с.
    100. Статистическое моделирование экономических процессов / Под ред. Т.В.Рябушкина. — М.: Статистика, 1980. — 287 с.
    101. Теория статистики: Учебник. / Под ред. проф. P.A.Шмойловой. — 3-е изд., перераб. М.: Финансы и статистика, 2002. - 560 с.
    102.ТихомироваЕ.И. Комплексный подход к оценке устойчивости экономического роста иконкурентоспособностирегионов Российской Федерации. // Вопросы статистики. 2006. №2. — С. 9—18.
    103. Ферстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа. Руководство дляэкономистов. Пер. с немецк. — М.: Финансы и статистика, 1983. 302 с.
    104.ФишерP.A. Статистические методы для исследователей. — М.: Госстатиздат, 1958. 267 с.I
    105.ФлудH.A. Как измерить «устойчивость развития»? // Вопросы статистики. 2006. №10. - С. 19-29.
    106.ФренкельA.A. Математические методы анализа динамики и прогнозированияпроизводительноститруда. М.: Экономика, 1972. -192 с.
    107.ФренкельA.A. Прогнозирование производительности труда: методы и модели. М.: Экономика, 1989. - 213 с.
    108.ФренкельA.A. Производительность труда: проблемы моделирования роста. -М.: Экономика, 1984. 175 с.
    109. Хейс Д. Причинный анализ в статистических исследованиях. Пер. с англ. Ю.Н.Гаврильца, JIM. Кутикова, М.А. Родионова. — М.: Финансы и статистика, 1981. — 255 с.
    110. Хеннан Э. Многомерные временные ряды. Пер. с англ. A.C. Холево / Под ред. Ю.А. Розанова М.: МИР, 1974. - 575 с.
    111. ПЗ.Цыплаков А. Введение в прогнозирование в классических моделях временных рядов. // Квантиль. — 2006 г. №1. - С. 3-19.
    112. Чернышев C.JI. Моделирование экономических систем и прогнозирование их развития: Учебник. М.: Изд-воМГТУим. Н.Э. Баумана, 2003. - 232 с.
    113.ЧетвериковН.С. Статистические и стохастические исследования. / Сборник работ. Предисл. И. Писарева. М.: Госстатиздат, 1963. — 300 с.
    114.ЧетыркинЕ.М. Статистические методы прогнозирования. Изд. 2-е, перераб. и доп. — М.: Статистика, 1977. 200 с.
    115. Чуй Ч. Введение в вейвлеты: Пер. с англ. М.: Мир, 2001. - 412 с.
    116.ЧураковЕ.П. Прогнозирование эконометрических временных рядов:
    117. Учебное пособие. — М.: Финансы и статистика, 2008. 208 с.
    118. Эконометрика: учебник. / И.И.Елисеева, C.B. Курышева, Т.В. Костеева и др.; под ред. И.И. Елисеевой. 2-е изд., перераб. и доп. — М: Финансы и статистика, 2007. — 576 с.
    119. Эконометрика: учебник / Н.П.Тихомиров, Е.Ю. Дорохина. 2-е изд., стереотип. -М.: Издательство «Экзамен», 2007. — 512 с.
    120.ЭренбергА. Анализ и интерпретация статистических данных. / Пер. с англ. Б.И. Клименко; Под ред. и с предисл. А.А. Рывкина. -М.: Финансы и статистика, 1981.-406с.
    121.ЮзбашевМ.М. О правильном измерениитрендапри наличии сезонных колебаний. // Вопросы статистики. 2003. — №3. С. 72-73.
    122. Aalen О.О., Frigessi A. What can statistics contribute to a causal understanding? Board of the Foundation of the Scandinavian Journal of Statistics, 2007. P. 155-168.
    123. Alexander C. Market models: A guide to financial data analysis. Chichester: Wiley, 2001. Reprinted 02.2003. - 494 p.
    124. Anderson H.M., Granger C.W.J1, Haal A. A cointegration analysis of treasury bills. The review of Economics and Statistics, 1992. 74. - P. 116-126.
    125. Armstrong J.S. Principles of forecasting — A handbook for researchers and practitioners. Norwell, MA: Kluwer Academic Publishers, 2001. 849 p.
    126. Balke N.S., Fomby T.B. Threshold cointegration. International Economic Review, 1997. 38. - P. 627-645.
    127. Box G.E.P., Jenkins G.M. Time-series analysis, forecasting and control. San Francisco: Holden-Day, 1970. — 575 p.
    128. Chatfield C. Time series forecasting. London: Chapman, and Hall, 2000. — 267 p.
    129. Cochrane J.H. Time series for macroeconomic and finance. Chicago: Graduate School of Business University of Chicago, 2005. 135 p.
    130. Cvitanic J., Zapatero F. Introduction to the economics and mathematics of financial markets. Massachusetts: Massachusetts Institute of Technology Press, 2004. 494 p.
    131. Davidson R., MacKinnon J.G. Econometric theory and methods. New York: Oxford'University Press, 2004. 693 p.
    132. Diebold F.X., Kilian L. Unit root tests are useful for selecting forecasting models. Journal of business and economic statistics, 2000. 18. - P. 265-273.
    133. Enders W., Granger C.W.J. Unit-root tests and asymmetric adjustment with an example using the term structure if interest rates. Journal of Business and Economic Statistics, 1998. 16. - P. 304-311.
    134. Enders W., Siklos P.L. Cointegration and threshold adjustment. Journal of Business and Economic Statistics, 2001. 19. —P. 166-176.
    135. Engle R. New frontiers for ARCH models. Journal of Applied Econometrics, 2002.- 17.-P. 425-446.
    136. Engle R.F. Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation. Econometrica, 1982. 50. — P. 9871008.
    137. Engle R.F., Ng V. Measuring and testing the impact of news on volatility. Journal of Finance, 1993.-48.-P. 1749-1778.
    138. Fan J., Wang M., Yao Q. Modelling multivariate volatilities via conditionally uncorrelated components. Journal of the Royal Statistical Society, B, 2008. -70, Part 4.-P. 679-702.
    139. Franses P.H., Kleibergen F. Unit roots in the Nelson-Plosser data: Do they matter forecasting? Int. J. Forecasting, 1996. 12. - P. 283-288.
    140. Goodwin B.K., Grennes T.J. Real interest rate equalization and the integration of international financial markets. Journal of International Money and Finance, 1994.- 13.-P. 107-124.
    141. Granger C.W.J., Joyeux R. An introduction to long-memory time series and fractional differencing. Journal of Time Series Analysis, 1980. 1. - P. 1529.
    142. Granger C.W.J., Swanson N.R. Further developments in the study of cointegrated variables. Oxford Bulletin of Economics and Statistics, 1996. -58.-P. 537-553.
    143. Granger C.W.J., Yoon G. Hidden cointegration. Economics working paper. San Diego: University of California, 02.2002. 48 p.
    144. Greene W.H. Econometric analysis. Fifth edition. New York: Pearson Education International, 2003. — 1026 p.
    145. Hamilton J.D. Time series analysis. Princeton University Press, New Jersey, 1994.-814 p.
    146. Hatemi-J A., Shukur G. Multivariate-based tests of twin deficits in the US. Journal of Applied Statistics, 2002. 29. - P. 817-824.
    147. Hayashi F. Econometrics. Princeton: Princeton University Press, 2000. -683 p.
    148. Hull J., White A. Incorporating Volatility updating into historical simulation method for value at risk. Journal of risk, 1999. 1. - P. 5—19.
    149. Kalman R.E. A new approach to linear filtering end prediction problems. Trans. ASME J. Basic Eng., 1960. 82. - P. 35-45.
    150. Kalman R.E., Bucy R.S. New results in filtering and prediction theory. Trans. ASME J. Basic Eng., 1961.-83.-P. 95-108.
    151. Kasa K. Common stochastic trends in international stock markets. Journal of Monetary Economics, 1992. 29. - P. 95-124.
    152. Kirchgassner G.,Wolters J. Introduction to Modern time series analysis. Springer-Verlag Berlin Heidelberg, 2008. 274 p.
    153. Kugler P., Neusser K. International real interest rate parity equalization: a multivariate time series approach. Journal of Applied Econometrics, 1993. -8.-P. 163-174.
    154. Ljunggvist L., Sargent T.J. Recursive macroeconomic theory. 2nd edition. Massachusetts: Massachusetts Institute of Technology Press, 2004. — 1082 p.
    155. Lutkepohl H. New introduction to multiple time series analysis. SpringerVerlag Berlin Heidelberg, 2005. 764 p.
    156. Making data meaningful: a guide to writing stories about numbers. United Nations Economic Commission for Europe. — Geneva, 2006. 21 p.
    157. Pollock D.S.G. A handbook of time-series analysis, signal processing and dynamics. Academic Press, Cambridge University press, 1999. 733 p.
    158. Salvatore D., Reagle D. Schaum's outline of theory and problems of statistics and econometrics. Second edition. McGraw-Hill, 2002. — 328 p.
    159. Stokey N.L. Recursive methods in economic dynamics. / Stokey N.L., Lucas R.E. with collaboration of E.C. Prescott. Harvard: Harvard University Press, 1989. Fifth printing, 1999. - 588 p.
    160. Taylor A.M.R. On the practical problems of computing seasonal unit root tests. Int. J. Forecasting, 1997. 13. - P. 307-318.
    161. The Cambridge dictionary of statistics. Edited by B.S. Everitt. Third edition. New York: Cambridge University press, 2006. 432 p.
    162. Tsay R.S. Analysis of financial time series. Second edition. New Jersey: Wiley, 2005.-605 p.
    163. Tsay R.S. Nonlinear time series models: testing and applications. Volume A. Course in Time Series Analysis. New York: Wiley, 2001. — 680 p.
    164. Woolgridge J.M. Introductory econometrics: a modern approach. 4th edition. Mason: South-Western Cengage Learning, 2009. 865 p.
    165. Yaffee R.A. Stata 10 (Time series and forecasting). Journal of Statistical Software, 12.2007. Volume 23, Software review 1.
  • Стоимость доставки:
  • 230.00 руб


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины


ПОСЛЕДНИЕ СТАТЬИ И АВТОРЕФЕРАТЫ

ГБУР ЛЮСЯ ВОЛОДИМИРІВНА АДМІНІСТРАТИВНА ВІДПОВІДАЛЬНІСТЬ ЗА ПРАВОПОРУШЕННЯ У СФЕРІ ВИКОРИСТАННЯ ТА ОХОРОНИ ВОДНИХ РЕСУРСІВ УКРАЇНИ
МИШУНЕНКОВА ОЛЬГА ВЛАДИМИРОВНА Взаимосвязь теоретической и практической подготовки бакалавров по направлению «Туризм и рекреация» в Республике Польша»
Ржевский Валентин Сергеевич Комплексное применение низкочастотного переменного электростатического поля и широкополосной электромагнитной терапии в реабилитации больных с гнойно-воспалительными заболеваниями челюстно-лицевой области
Орехов Генрих Васильевич НАУЧНОЕ ОБОСНОВАНИЕ И ТЕХНИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ВЗАИМОДЕЙСТВИЯ КОАКСИАЛЬНЫХ ЦИРКУЛЯЦИОННЫХ ТЕЧЕНИЙ
СОЛЯНИК Анатолий Иванович МЕТОДОЛОГИЯ И ПРИНЦИПЫ УПРАВЛЕНИЯ ПРОЦЕССАМИ САНАТОРНО-КУРОРТНОЙ РЕАБИЛИТАЦИИ НА ОСНОВЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА