Каталог / Фізико-математичні науки / Механіка деформівного твердого тіла
скачать файл: 
- Назва:
- Геометрически точные нелокальные модели накопления повреждений в металлических материалах Ключанцев Владислав Сергеевич
- Альтернативное название:
- Geometrically accurate non-local models of damage accumulation in metallic materials Klyuchantsev Vladislav Sergeevich
- ВНЗ:
- Новосибирский национальный исследовательский государственный университет
- Короткий опис:
- Ключанцев,ВладиславСергеевич.Геометрическиточныенелокальныемоделинакопленияповрежденийвметаллическихматериалах= Geometrically exact nonlocal models of damage accumulation in metallic materials : Geometrically exact nonlocal models of damage accumulation in metallic materials : диссертация ... кандидата физико-математических наук : 01.02.04 /КлючанцевВладиславСергеевич; [Место защиты: ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ; Диссовет Совет по защите диссертаций по математическим наукам]. - Новосибирск, 2024. - 151 с. : ил.больше
Цитаты из текста:
стр. 1
университет» На правах рукописиКлючанцевВладиславСергеевичГеометрическиточныенелокальныемоделинакопленияповрежденийвметаллическихматериалахСпециальность
Оглавление диссертациикандидат наук Ключанцев Владислав Сергеевич
Contents
Preface
Chapter 1. Introduction
1.1 Scope and motivation
1.2 General remarks regarding discretization in Space
1.3 Ductile damage model
1.4 General remarks on non-local modeling of damage
Chapter 2. Basic problem statement
2.1 Strain tensors
2.2 Stress tensors
2.3 Equation of motion
2.4 Discretization of the problem
2.4.1 Finite element method
2.4.2 Smoothed particle hydrodynamics
Chapter 3. Local constitutive equations
3.1 Hyperelastic compressible neo-Hookean material
3.2 Maxwell model according to Simo-Miehe
3.3 Elasto-plastic material
3.4 Thermodynamically consistent model
3.5 Gurson-Tvergaard-Needleman model
Chapter 4. Delocalization of integral type
4.1 General approach
4.2 Delocalization under plane strain
4.3 Delocalization under axial symmetry
4.4 Delocalization in thin plates
4.5 Volume-reducing symmetries
4.6 Combination of symmetries
4.7 New easy-to-use delocalization kernel
4.8 Receiver-based normalization
4.9 Source-based normalization
4.10 Orthotropic delocalization scheme
4.11 Stress-based modification of kernels
4.12 Strain-based modification of kernels
Chapter 5. Non-local ductile damage models
5.1 Delocalization procedure for the TDC model
5.2 Delocalization procedure for the GTN model
5.3 Basic properties of the model
5.4 Numerical procedure
Chapter 6. Boundary value problems and numerical results
6.1 Hyperelastic material
6.2 Maxwell material
6.3 Elasto-plastic material
6.4 Comparison between the non-local GTN model and the non-local
TDC model
6.5 Integral-based averaging with spatial symmetries for nonlocal
damage modelling
6.5.1 Damage of a thick-walled tube
6.5.2 Damage of a thin ring
6.6 Simulation of fracture of a CT specimen
6.6.1 Sample geometry and applied boundary conditions
6.6.2 Compact tension test under plane strain
6.6.3 Compact tension test under plane stress
6.6.4 SPH simulations with the local model
6.6.5 SPH simulations with non-local models
6.6.6 Simulations with regularized crack path predictions
6.7 SPH simulation of crack initiation
6.8 Basic set of material parameters for aluminium alloy EN AW5754
H111
6.9 Size-effect and boundary layer caused by non-locality
6.10 Fracture of compact tension—shear samples
6.10.1 Experimental set-up
6.10.2 Delocalization near the crack tip: visibility and metrics
6.10.3 Test of mesh dependence
6.10.4 Simulation results for different types of kernels
Chapter 7. Conclusions
Bibliography
Author's publications on the dissertation topic
- Стоимость доставки:
- 230.00 руб