Probing early universe with primordial relics from inflation: primordial blackholes, dark matter and dark radiation Порей Шиладитья




  • скачать файл:
  • Название:
  • Probing early universe with primordial relics from inflation: primordial blackholes, dark matter and dark radiation Порей Шиладитья
  • Альтернативное название:
  • Исследование ранней Вселенной с помощью первичных реликтов инфляции: первичные чёрные дыры, тёмная материя и тёмное излучение Порей Шиладитья
  • Кол-во страниц:
  • 128
  • ВУЗ:
  • Новосибирский национальный исследовательский государственный университет
  • Год защиты:
  • 2024
  • Краткое описание:
  • Порей Шиладитья.
    Исследование ранней Вселенной с помощью первичных реликтов инфляции : первичные чёрные дыры, тёмная материя и тёмное излучение = Probing early universe with primordial relics from inflation: primordial blackholes, dark matter and dark radiation : Probing early universe with primordial relics from inflation: primordial blackholes, dark matter and dark radiation : диссертация ... кандидата физико-математических наук : 01.04.02 / Порей Шиладитья; [Место защиты: ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» ; Диссовет Совет по защите диссертаций по физическим наукам]. - Новосибирск, 2024. - 151 с. : ил.
    Оглавление диссертациикандидат наук Порей Шиладитья
    Contents
    1 Introduction
    1.1 Relevance of the topic
    1.2 The purpose of the work
    1.3 Theoretical and practical significance
    1.4 Scientific novelty
    1.5 Approbation of results
    1.6 Structure of the thesis
    2 Brief overview of ACDM cosmology
    2.1 Metric and Hubble parameter
    2.2 Einstein equation and energy-momentum tensor
    2.3 Thermal history of the universe
    2.4 Conservation of entropy
    2.5 Neutrino Decoupling
    2.6 BBN
    2.7 Recombination
    2.8 Shortcomings of standard model of cosmology
    2.8.1 Flatness problem
    2.8.2 Horizon problem
    2.8.3 Slow roll inflation
    2.9 Perturbation
    2.10 Dark matter
    3 Chapter PBH
    3.1 Introduction
    3.2 Dolgov-Silk mechanism of PBH formation
    3.3 Log-normal mass spectrum
    3.4 Fixing parameters from the present-day observed data
    3.4.1 Mass spectrum of black holes in the galaxy
    3.4.2 Total mass density of black holes
    3.4.3 Supermassive PBHs in the center of large galaxies
    3.4.4 Estimation of parameters and number density of Intermediate mass black holes
    3.5 GW from the coalition of PBH-pairs
    3.5.1 Chirp Mass and cumulative distribution of Chirp Mass
    3.5.2 Statistical analysis and result
    3.6 Discussion
    3.6.1 Low spin of BHs : PBHs vs astrophysical models
    3.6.2 MACHO
    4 Inflation and BSM particles as DM
    4.1 Inflection-point Inflation Models
    4.1.1 Inflection-point achieved with Linear term
    4.1.2 Inflection-point achieved with Sextic Term
    4.2 Stability analysis
    4.2.1 Stability analysis for linear term inflation
    4.2.2 Stability analysis for sextic inflation
    4.3 Reheating and Dark Matter
    4.4 Production of Dark Matter and Relic Density
    5 Measuring inflaton couplings with dark radiation as Neff in CMB
    5.1 Effective number of relativistic degrees of freedom
    5.2 Inflation and Dark Radiation
    5.2.1 Hilltop Inflation (H-I)
    5.2.2 Natural Inflation (N-I)
    5.2.3 Coleman-Weinberg Inflation (C-I)
    5.2.4 Starobinsky Inflation (S-I)
    5.3 Inflaton decay during reheating
    5.4 Inflaton Decaying to Dark Radiation
    5.4.1 Reheat temperature
    6 Summary, conclusions and future directions
    6.1 The main provisions for the defense:
    6.2 Major outcomes of the thesis
    6.2.1 Log-normal mass spectrum of PBHs
    6.2.2 BSM particles as non-thermal DM, and slow roll inflation
    6.2.3 BSM particles as DR, and slow roll inflation
    6.3 Future directions
    A Appendix
    A.1 Estimation of number density of IMBHs
    A.2 Constraints on /pbh for different mass range of PBHs(M denotes that mass of PBH)
    B Appendix
    B.1 Planck2018+BICEP3+Keck Array2015 bound on ns - r plane
    B.2 Generalized version of Hilltop inflation and Coleman-Weinberg inflation for
    /cw >mp
    B.3 Contribution in ANeff for scalar DR produced from 00 ^ cp^
    B.4 range of couplings such that BSM particles can not reach in thermal equilibrium with SM plasma
    List of Figures
    2.1 AT as a function of
    3.1 The parameters of the black-hole-distribution in galaxies assuming it follows Gaussian function, best-fit by a narrow distribution with peak at
    7.8 ± 1.2M© [204]
    3.2 Model distribution FPBH(< M) with parameters M0 and Ypbh (in this figure y = Ypbh) for two best Kolmogorov-Smirnov tests. EDF= empirical distribution function
    3.3 Model distribution FPBH(< M) with parameters M0 and Ypbh (in this figure y = Ypbh) for two best Van der Waerden tests. EDF= empirical distribution function
    3.4 Cumulative distributions FABH(< M) for two astrophysical models of BH-BH coalescences - C-O core collapse and CE
    3.5 Gravitational lensing constraints for MACHOs
    4.1 Top-left panel: Normalized U$($) (Eq. (4.22)) as a function $/MP for benchmark value from Table
    4.2 Top-left panel: Normalized Uip(p) (Sec. 4.1.2) as a function of p/MP for benchmark value from Table
    4.3 Illustration of permissible upper limits for yx and A12 obtained from stability analysis in Model I SRI
    4.4 Illustration of permissible upper limits for yx and A12 obtained from stability analysis in Model II SRI
    4.5 Variation of Tmax/Trh as a function of Trh: left panel is for the linear term SRI, whereas right panel is for the sextic term SRI. The apple green-shaded stripe presents lower bound on Trh i.e. Trh ^ 4MeV, and higher bound on Trh are demonstrated by the blue-shaded region. The upper bound arises from the stability analysis (see Eq. (4.40) andEq. (4.47))
    4.6 The allowed region (unshaded) for the Yukawa-like coupling yx to produce the entire CDM of the present universe: left panel is for Model I inflation and right for Model II inflation
    4.7 mxxYield of DM produced from the 2-to-2 scattering with graviton as mediator for different values of mx
    5.1 This figure displays ns — r predictions for four inflationary models: H-I, N-I, C-I, and S-I, as well as 1 — o and 2 — o best fit contour when Neff is fixed at SM value and when it is treated as free variable
    5.2 This figure illustrates ANeff as a function of BX from Eq. (5.26)
    5.3 This figure presents 1 — o and 2 — o best-fit contours from [369], and predicted ranges of r of the four aforementioned slow roll inflationary models on (r, BX) plane
    5.4 Colored lines outline parameter space on the plane of couplings within current bounds ANeff obtained from observed data of CMB and future prospective reaches for upcoming CMB observations mentioned in Table
    5.5 This figure illustrates how the permissible parameter space (or the parameter space that is within the reach of sensitivity of upcoming CMB observations) on (A^X, \2,H) plane changes when o'm, Am are varied from
    m^
    5.6 In this figure, inclined lines correspond to fixed values of A^X, while horizontal lines denote present bounds and prospective future reaches on ANeff for forthcoming CMB observations listed in Table 5.1, on (ANeff, Ai2,h ) plane
    B.1 This figure displays ns — r predictions for four inflationary models : HI, N-I, C-I, and S-I, alongside current 1 — a and 2 — a best fit contour when ANeff = 0 from Planck2018 (in green shading), Planck2018+BICEP3+Keck Array2018 (in yellow shading), and forthcoming CMB observation (SO)
    represented by the black shaded region
    B.2 Left panel: Presenting predicted values of ns — r for regularized Hilltop inflation ( Eq. (B.1)) and C-I inflationary model ( Eq. (5.9)) for few ^ MP alongside 1 — a and 2 — a best-fit contour from Planck2015, and Planck2015+BICEP2-Keck Array2015, and bound derived from analysis
    considering Neff as a variable [24, 348], as detailed in Fig
    B.3 Variation of ANeff versus r for three different values of y^hh/H (in this figure y = Y^hh) for a scalar BSM particle (<) contributing to ANeff and
    produced via Eq. (5.34)
    B.4 In order for DR particles to remain out of thermal equilibrium with the SM Higgs through the inflaton exchange processes at the tree level, representative sets of values for the couplings (A12,H, A12,^) (top-right panel), (A12,h,yx) (top-left panel), (A12,H, g^Y) (bottom panel) are shown
    List of Tables
    1 Common acronyms used throughout this thesis
    2.1 Values of some of the ЛСБМ parameters from CMB (hCM в ~ 0.674)
    2.2 Constraints on As, ns, and r
    4.1 Benchmark value for иФ from Eq. (4.22), with ФШт indicating the minimum of potential
    4.2 Benchmark values for sextic potential (фШт is the minimum of potential
    Eq. (4.31))
    5.1 Bounds on Neff (or Д Neff )from observed data from CMB, and prospective future reaches of Neff (or Д^д) that upcoming CMB experiments may be able to observe [332, 333]
    5.2 Benchmark value for four inflationary models mentioned in Secs
    to 5.2.4 (ln(l010As) = 3.047, see Table 2.2)
    5.3 For benchmark value from Table 5.2, estimation of Trh and NRH for different interaction Eqs. (5.30), (5.32) and (5.33), and for four inflationary model Secs. 5.2.1 to
    A.1 Estimation of number density of intermediate mass black holes (N1MBH). Here is the value of ^ estimated from the condition Nga1 = 0.1/Mpc3 (see Sec. 3.4.3), and is the value of ^ estimated from the condition PPBH = fpbh 2.5 10-30 g/cm3 (see Eqs. (3.6) and (3.7)). Mo, Ypbh, and ^ are three parameters of log-normal mass function defined in Eq. (3.5). Mmax and Mb are defined in Eqs. (3.6) and (3.8), respectively. M1MBH represents the mass of IMBH, while M1MBH denotes the number density of IMBHs per galaxy
    A.2 Constraints on fpbh for different mass range of PBHs
  • Список литературы:
  • -
  • Стоимость доставки:
  • 230.00 руб


ПОИСК ДИССЕРТАЦИИ, АВТОРЕФЕРАТА ИЛИ СТАТЬИ


Доставка любой диссертации из России и Украины


ПОСЛЕДНИЕ СТАТЬИ И АВТОРЕФЕРАТЫ

ГБУР ЛЮСЯ ВОЛОДИМИРІВНА АДМІНІСТРАТИВНА ВІДПОВІДАЛЬНІСТЬ ЗА ПРАВОПОРУШЕННЯ У СФЕРІ ВИКОРИСТАННЯ ТА ОХОРОНИ ВОДНИХ РЕСУРСІВ УКРАЇНИ
МИШУНЕНКОВА ОЛЬГА ВЛАДИМИРОВНА Взаимосвязь теоретической и практической подготовки бакалавров по направлению «Туризм и рекреация» в Республике Польша»
Ржевский Валентин Сергеевич Комплексное применение низкочастотного переменного электростатического поля и широкополосной электромагнитной терапии в реабилитации больных с гнойно-воспалительными заболеваниями челюстно-лицевой области
Орехов Генрих Васильевич НАУЧНОЕ ОБОСНОВАНИЕ И ТЕХНИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЭФФЕКТА ВЗАИМОДЕЙСТВИЯ КОАКСИАЛЬНЫХ ЦИРКУЛЯЦИОННЫХ ТЕЧЕНИЙ
СОЛЯНИК Анатолий Иванович МЕТОДОЛОГИЯ И ПРИНЦИПЫ УПРАВЛЕНИЯ ПРОЦЕССАМИ САНАТОРНО-КУРОРТНОЙ РЕАБИЛИТАЦИИ НА ОСНОВЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА