Каталог / Фізико-математичні науки / радіофізика
скачать файл: 
- Назва:
- Extraordinary optical transmission in holographic and polycrystalline structures/Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах Ушков Андрей Александрович
- Альтернативное название:
- Extraordinary optical transmission in holographic and polycrystalline structures/Enhanced optical transmission in holographic and polycrystalline nanostructures Ushkov Andrey Aleksandrovich
- ВНЗ:
- Московский физико-технический институт (национальный исследовательский университет)
- Короткий опис:
- Ушков, Андрей Александрович.
Усиленное оптическое пропускание в голографических и поликристаллических наноструктурах = Extraordinary optical transmission in holographic and polycrystalline structures : Extraordinary optical transmission in holographic and polycrystalline structures : диссертация ... кандидата физико-математических наук : 01.04.03 / Ушков Андрей Александрович; [Место защиты: ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»]. - Долгопрудный, 2021. - 199 с. : ил.
Оглавление диссертациикандидат наук Ушков Андрей Александрович
Contents
Page
1. Introduction
Historical overview
Extraordinary optical transmission
EOT through subwavelength apertures
EOT through continuous metal films
Top-down and bottom-up fabrication approaches for EOT devices
Outline and objective of the thesis
2. Theory of Surface Plasmon Polaritons
2.1 Introduction
2.2 Scattering matrix theory
2.3 Eigenmodes calculation via scattering matrix
2.4 Electromagnetic modes in multilayer plane-parallel structures
2.4.1 Simulation algorithm
2.4.2 Metal-dielectric interface
2.4.3 Thin metal film
2.4.4 Waveguide on the metallic substrate
2.4.5 Fabry-Perot resonator
2.5 Conclusion
3. Theory of Diffraction Gratings
3.1 Introduction
3.2 Diffraction orders and Ewald's sphere
3.3 Numerical methods for gratings simulation
3.3.1 Introduction
3.3.2 Rigorous Coupled Wave Analysis
3.3.3 C-method
3.3.4 Generalized Source Method
3.4 Conclusion
4. Fabrication Methods
4.1 Introduction
4.2 Layer deposition methods
4.2.1 Spin coating
4.2.2 Magnetron sputtering
4.3 Methods of surface nanostructuring
4.3.1 Laser Interference Lithography
4.3.2 Colloidal Self-Assembly
4.4 Simulation of the resist development process
4.4.1 Isotropic development process
4.4.2 Simulations for Laser Interference Lithography
4.4.3 Simulations for Nanosphere Photolithography
4.5 Conclusion
5. Variable Depth Gratings
5.1 Introduction
5.2 Fabrication techniques for variable depth gratings
5.2.1 Resist reflow
5.2.2 Moving edge/slit
5.2.3 Moire patterns in the resist
5.3 Experimental observation of moire patterns
5.3.1 Two LIL exposures
5.3.2 Four LIL exposures
5.4 Conclusion
6. Transmission in Plasmonic Nanostructures
6.1 Introduction
6.2 Transmission through 1D gratings of constant depth
6.3 Transmission through 2D gratings of constant depth
6.3.1 Rectangular lattice
6.3.2 Hexagonal lattice
6.4 Transmission through 1D variable depth gratings
6.4.1 Introduction
6.4.2 Existence of optimal grating depth
6.4.3 Structure-induced color
6.5 Transmission through hexagonal nanohole arrays
6.5.1 Introduction
6.5.2 EOT in colloidal gratings with low and high disorder
6.5.3 Modelling of grating disorder via inverse space approach
6.5.4 Statistical study of polycrystalline structures
6.5.5 Depth-resolved EOT in colloidal gratings
6.6 Conclusion
Conclusion
References
List of figures
List of tables
- Стоимость доставки:
- 230.00 руб