Бесплатное скачивание авторефератов |
СКИДКА НА ДОСТАВКУ РАБОТ! |
Увеличение числа диссертаций в базе |
Снижение цен на доставку работ 2002-2008 годов |
Доставка любых диссертаций из России и Украины |
Каталог авторефератів / МЕДИЧНІ НАУКИ / Патологічна фізіологія
Назва: | |
Альтернативное Название: | ВПЛИВ ІШЕМІЧНОГО ПРЕДСТАНУ НА МОРФОФУНКЦІОНАЛЬНУ АДАПТАЦІЮ СЕРЦЯ ДО НЕКРОЗУ МІОКАРДА ПРИ ВВЕДЕННІ АЛКІЛСЕЛЕНОНАФТИРИДИНУ (експериментальне дослідження) |
Тип: | Автореферат |
Короткий зміст: | Матеріал і методи дослідження. Робота виконана на 80 щурах-самцях лінії Wistar масою 187–280 г. Утримання й догляд за тваринами (включаючи анестезіологічне забезпечення та евтаназію) здійснювали відповідно до чинних наказів, які регламентують організацію роботи з використанням експериментальних тварин, і з дотриманням принципів «Європейської конвенції про захист хребетних тварин, які використовуються в експериментальних та інших наукових цілях» (Страсбург, 1985), а також рішення Першого національного конгресу з біоетики (Київ, 2001). Тварин було розподілено на контрольну й дослідні групи. До контрольної групи увійшло 10 інтактних тварин, до дослідних – 70 (7 груп по 10 щурів у кожній). У тварин дослідних груп вивчали функціональні й морфологічні показники: у щурів першої групи – після моделювання ІПС; у тварин другої групи – після моделювання некоронарогенного НМ; у тварин третьої і четвертої груп – після моделювання некоронарогенного НМ відразу і через 24 год після моделювання ІПС; у тварин п’ятої групи – після уведення АСНР (№ 7498352, «Довідник Бейльштейна») у дозі 180 мкг/100 г маси тварини (M.A. Ansari et al., 2004); у тварин шостої групи – після моделювання некоронарогенного НМ на тлі уведення АСНР; у тварин сьомої групи – при моделюванні НМ після ІПС на тлі уведення АСНР. ІПС моделювали з утриманням тварин у гіпоксичному середовищі (10 об’ємних % О2) протягом 30–40 хв (H.T. Sommerschild, K.A. Kirkeboen, 2000). Термін утримання у гіпоксичному середовищі залежав від стану тварин. НМ моделювали за методикою Р.А. Серова зі співавт. (1977) шляхом внутрішньочеревного уведення токсичної дози адреналіну (sol. Adrenalini hydrochloridi 0,1 % з розрахунку 0,25 мл/100 г маси тварини). Електричну активність міокарда вивчали шляхом аналізу ЕКГ. Запис ЕКГ виконували портативним електрокардіографом УКОМ-1 в 3 стандартних відведеннях. Внутрішньошкірну РО2 вимірювали за допомогою транскутанного оксигемометра Radiometer TCM-2 (Данія). Стан антиоксидантної системи визначали за активністю каталази в гомогенаті міокарда шлуночків серця (М.А. Королюк зі співавт., 1988). Порушення проникності оболонки міоцитів визначали за ЕДС (О.А. Виноградов, 1989). Вміст води у міокарді правого (ПШ) та лівого (ЛШ) шлуночків серця визначали за методикою Ю.В. Исакова та М.В. Ромасенко (1986). Зміни маси міокарда вивчали шляхом роздільного зважування шлуночків серця у перерахунку на 100 г маси тварини. Гістологічні препарати забарвлювали гематоксиліном – основним фуксином – пікриновою кислотою (Р.А. Серов с соавт., 1977). Цифрові дані обробляли методами варіаційної статистики за допомогою ліцензованої комп’ютерної програми Microsoft Excel. Визначали: середню арифметичну вибірки (M); помилку середньої арифметичної вибірки (±m); імовірність помилки (р<); коефіцієнт кореляції (Rxy); помилку коефіцієнта кореляції (±mr). Результати дослідження та їх обговорення. Визначено, що морфофункціональні прояви адаптації серця до ІПС полягали у збільшенні маси міокарда ПШ і ЛШ, підвищенні ЕДС і вмісту води. При цьому знижувалася внутрішньошкірна РО2 й активність каталази в гомогенаті міокарда шлуночків серця. На гістологічних препаратах, забарвлених гематоксиліном – основним фуксином – пікриновою кислотою, виявлено фуксинофільні осередки, що вказували на метаболічні зміни у міокарді. Виявлені ознаки морфофункціональної адаптації серця були виражені неоднаково та залежали від стадії ІПС. При моделюванні НМ загинуло 40 % тварин. Морфофункціональні зміни серця полягали у збільшенні маси ПШ на (31,3±7,2) % (Rxy±mr=0,897±0,196 при p<0,01), а ЛШ – на (16,1±1,0) % (Rxy±mr=0,937±0,123 при p<0,001). На гістологічних препаратах виявлено грубі осередки гіпоксичних пошкоджень міокарда аж до некрозу. М’язові волокна були деформовані, ядра слабко забарвлені. При порівняльному аналізі ступеня гіпоксичного пошкодження міокарда ПШ і ЛШ серця виявлено більш грубі зміни м’язових волокон у міокарді ЛШ. У проекції міжшлуночкової борозни, в перехідній зоні між ЛШ і ПШ, осередки геморагій з великою інфільтрацією. Дифузна геморагійна інфільтрація була визначена також у міокарді ПШ. Виявлені фуксинофільні осередки, які, за даними Р.А. Серова зі співавт. (1977), вказують на грубі метаболічні зміни в міокарді. Наявність метаболічних змін підтверджували результати дослідження ЕДС – показника, який, за даними О.А. Виноградова (1998, 2001), має досить високу чутливість до зміни функціонального стану тканин. Показники ЕДС і вмісту води в шлуночках серця були значно підвищені відносно контрольних – (9,2±0,1) мкг/мг (p<0,01) і (83,82±0,45) % (p<0,05) відповідно при контрольних показниках (6,03±0,46) мкг/мг і (80,35±0,37) %. У ПШ середній показник ЕДС дорівнював (9,2±0,1) мкг/мг (p<0,01), у ЛШ – (9,35±0,08) мкг/мг (p<0,01), а вміст води – (84,34±0,46) і (83,19±0,61) % відповідно (p<0,05 в обох випадках). Вміст води в міокарді шлуночків серця після моделювання некоронарогенного НМ у тварин був більше контролю: у ПШ – в (1,040±0,003) раза (Rxy±mr=0,840±0,192 при p<0,01), а в ЛШ – в (1,050±0,001) раза (Rxy±mr=0,997± 0,027 при p<0,001). Показники ЕДС перевищували контроль в (1,590±0,133) раза (Rxy±mr=0,981±0,069 при p<0,001) і в (1,500±0,056) раза (Rxy±mr=0,905±0,151 при p<0,001). При порівнянні результатів дослідження встановлено, що вміст води в міокарді шлуночків серця не залежав від рівня ЕДС при моделюванні НМ. Аналогічна думка була висловлена О.А. Виноградовим (1998, 2004) при вивченні ЕДС і вмісту води в головному мозку при розвитку гострого набряку-набухання. Активність каталази в гомогенаті міокарда шлуночків серця різко знижувалася – до (65,35±4,72) мМ/хв при p<0,001 відносно контрольного показника – (105,92±1,78) мМ/хв, а внутрішньошкірна РО2 у перші 2 години експерименту – до (26,37±1,3) мм рт. ст. (p<0,05) при контрольному показнику – (31,13±2,34) мм рт. ст., через 4 год – до (25,22±1,60) мм рт. ст. (p<0,01) і через 6 год – до (26,72±1,01) мм рт. ст. (p<0,05). На ЕКГ визначали зниження електричної активності міокарда з ознаками дистрофії та некрозу. Встановлено, що у процесі моделювання ІПС у першій його стадії (стадія ІПС-1, яка спостерігається у перші години після моделювання ІПС) маса ПШ серця збільшувалася на (21,80±3,33) % (Rxy±mr=0,794±0,215 при p<0,01), а ЛШ – на (8,30±2,49) % (Rxy±mr=0,908±0,148 при p<0,001). На гістологічних препаратах у міокарді було виявлено осередки ранніх ішемічних змін. Суттєві зміни визначено в міокарді ЛШ. Ступінь ішемічного пошкодження міокарда ПШ був менш виражений, незважаючи на збільшення маси міокарда. Виявлені фуксинофільні осередки вказували на метаболічні зміни в міокарді, але вони не характеризувалися як грубі, бо були транзиторними. Про це свідчив той факт, що через 24 год після моделювання ІПС (стадія ІПС-2) фуксинофільні осередки були майже відсутні. Гістологічними дослідженнями виявлено поодинокі волокна або частини м’язових волокон, забарвлені в червоний колір. У процесі дослідження визначено підвищення ЕДС в міокарді шлуночків серця – до (8,72±0,23) мкг/мг при p<0,05. Виявилося, що рівень ЕДС у ЛШ і ПШ був практично однаковим – (8,76±0,31) і (8,76±0,11) мкг/мг при p<0,05. Вміст води в міокарді шлуночків серця підвищувався до (82,61±0,33) % при p<0,05. У міокарді ПШ вміст води підвищувався до (82,40±0,16) % (p<0,05), а у міокарді ЛШ – до (82,82±0,42) % (p<0,05). Вміст води в міокарді шлуночків серця у тварин у стадії ІПС-1 був більше контролю: у ПШ – в (1,020±0,003) раза (Rxy±mr=0,797±0,214 при p<0,01), а у ЛШ – в (1,040±0,001) раза (Rxy±mr=0,965±0,093 при p<0,001). Показники ЕДС перевищували контроль в (1,520±0,117) раза (Rxy±mr=0,835±0,195 при p<0,01) і в (1,460±0,122) раза (Rxy±mr=0,973±0,123 при p<0,001). При порівнянні результатів дослідження встановлено, що рівень ЕДС у стадії ІПС-1 не залежав від вмісту води в міокарді шлуночків серця. Активність каталази в гомогенаті міокарда шлуночків серця знижувалася до (92,82±6,74) мМ/хв при p<0,05. Внутрішньошкірна РО2 знижувалася до (23,80±2,04) мм рт. ст. при p<0,01; контрольний показник становив (31,13± У стадії ІПС-1 на ЕКГ було визначено ознаки ішемії (тахіаритмія, зниження амплітуди зубця R і зсув STII і STIII вище ізолінії), які були транзиторними. У літературі розцінюють цей стан як парадоксальний феномен, при якому потенційний стрес-стимул може підвищити клітинну толерантність до наступних стрес-стимулів (F. Tomai et al., 1999; H.T. Sommerschild et al., 2000). На думку авторів, виникає пізній захист міокарда через 24 год після ІПС (R. Strasser et al., 1996). У наших дослідженнях встановлено, що через 24 год після моделювання ІПС (стадія ІПС-2) маса ПШ (у перерахунку на 100 г маси тварини) була збільшена на (7,90±3,23) % (Rxy±mr=0,885±0,165 при p<0,001), а ЛШ – на (3,50± 2,16) % (Rxy±mr=0,987±0,057 при p<0,001). На гістологічних препаратах визначено поодинокі ледь забарвлені фуксинофільні осередки ішемічних змін. У тварин у стадії ІПС-2 ЕДС в міокарді шлуночків серця залишалася підвищеною – (7,98±0,49) мкг/мг при p<0,05. Рівень ЕДС у ПШ [(8,04±0,27) мкг/мг при p<0,05] був вищим, ніж у ЛШ [(7,92±0,69) мкг/мг при p<0,1]. Вміст води в міокарді шлуночків серця знижувався відносно показника щурів у стадії ІПС-1 до (81,54±0,42) % при p<0,1. У міокарді ПШ і ЛШ вміст води був майже однаковим – (81,42±0,30) і (81,66±0,53) % відповідно. При порівнянні результатів дослідження встановлено, що рівень ЕДС не залежав від вмісту води в міокарді шлуночків серця. У стадії ІПС-2 вміст води в міокарді ПШ був більше контролю в (1,010±0,002) раза (Rxy±mr=0,824±0,200 при p<0,01), а ЛШ – в (1,020±0,003) раза (Rxy±mr=0,960±0,049 при p<0,001), результати ЕДС перевищували контроль в (1,39±0,11) раза (Rxy±mr=0,909±0,148 при p<0,001) і в (1,27±0,05) раза (Rxy±mr=0,901±0,153 при p<0,001) відповідно. Активність каталази в гомогенаті міокарда шлуночків серця відносно показника щурів у стадії ІПС-1 підвищувалася до (102,57±4,97) мМ/хв (p<0,05), але була нижче контролю (при p<0,5). Внутрішньошкірна РО2 так само підвищувалася – до (30,67±2,18) мм рт. ст. при p<0,01, але залишалася нижче контролю (p<0,5). Аналіз результатів дослідження у тварин після моделювання ІПС показав, що в стадії ІПС-2 відбуваються позитивні зрушення відносно показників у стадії ІПС-1. Напевно, транзиторні ішемічні зміни в міокарді шлуночків серця тварин у стадії ІПС-2 зменшилися або не були такими значущими, як у стадії ІПС-1. Тому в процесі моделювання некоронарогенного НМ у стадії ІПС-1 загинуло 60 % тварин. Морфофункціональна адаптація серця у тварин, що вижили, супроводжувалася збільшенням маси ПШ на (38,6±4,1) % (Rxy±mr=0,919±0,139 при p<0,001), а ЛШ – на (9,5±2,2) % (Rxy±mr=0,873±0,173 при p<0,001). При моделюванні некоронарогенного НМ у стадії ІПС-1 на гістологічних препаратах виявлені неоднакової інтенсивності осередки гіпоксичних ушкоджень міокарда. У тварин, які загинули в процесі експерименту, ішемічна деструкція міокарда поширювалася на всю товщу стінки ЛШ. У стінці ПШ на тлі незмінених м’язових волокон специфічного жовто-коричневого кольору виділялися осередки ішемічної деструкції м’язових волокон, які були забарвлені в яскраво-червоний колір і займали до 1/3 товщини стінки. У перехідній зоні між ПШ і ЛШ (проекція міжшлуночкової борозни) були виявлені великі осередки геморагічної інфільтрації. У тварин, які загинули у процесі експерименту, у міокарді ЛШ визначали численні фуксинофільні осередки гіпоксичного пошкодження, які зливалися та поширювалися на більшу групу волокон через усю товщу стінки шлуночка. У тварин через 6 год від початку моделювання НМ у стадії ІПС-1 показники ЕДС і вмісту води були значно вищими, ніж після моделювання НМ без ІПС. У міокарді шлуночків серця ЕДС становила (9,41±0,15) мкг/мг. Внутрішньошкірна РО2 була значно знижена та коливалася протягом 6 год від початку моделювання НМ від (21,76±2,54) мм рт. ст. у перші 2 год до (20,67±4,15) мм рт. ст. після 4-ї години і до (21,50±1,92) мм рт. ст. (p<0,001) на 6-й годині експерименту. Встановлено, що у тварин, які загинули в процесі експерименту, рівень внутрішньошкірної РО2 був значно нижчим, ніж у тих, що вижили. Активність каталази в гомогенаті міокарда шлуночків серця відносно такої у щурів попередніх груп знижувалася до (65,35±4,75) мМ/хв (p<0,001). На ЕКГ визначали зниження електричної активності міокарда з ознаками дистрофії та некрозу. Аналіз одержаних результатів дає можливість зробити припущення, що при моделюванні НМ у стадії ІПС-1 транзиторні ішемічні зміни в міокарді шлуночків серця є головними при розвитку дизадаптації. При цьому морфологічні прояви дизадаптації до некрозу полягають у переході транзиторних ішемічних змін у стаціонарне гіпоксичне ураження – дистрофію міокарда. При моделюванні НМ у стадії ІПС-2 виживаність тварин становила 100 %. Спостерігалася позитивна динаміка адаптації серця. Маса ПШ збільшувалася відносно контролю на (24,2±0,5) % (Rxy±mr=0,792±0,216 при p<0,05), а ЛШ – на (8,6±2,8) % (Rxy±mr=0,933±0,128 при p<0,001) з розвитком менш грубих фуксинофільних осередків гіпоксичних змін кардіоміоцитів. Помірно знижувалася ЕДС – до (8,68±0,24) мкг/мг при p<0,05: у ПШ – (8,660±0,128) мкг/мг при p<0,05; у ЛШ – (8,70±0,12) мкг/мг при p<0,05, але практично незмінним залишався вміст води – (83,19±0,61) %: у ПШ – (83,08±0,78) % при p<0,05; у ЛШ – (83,30±0,48) % при p<0,05. Визначалося підвищення внутрішньошкірної РО2 у процесі експерименту: через 2 год – (25,90±0,93) мм рт. ст. при p<0,01; через 4 год – (27,33±1,11) мм рт. ст. при p<0,01 і через 6 год – (26,93±1,01) мм рт. ст. (p<0,05) на тлі невеликого підвищення активності каталази до (72,32± При порівнянні одержаних кількісних і якісних показників морфологічних змін серця при НМ у різних стадіях ІПС встановлено, що більші зміни, з деструкцією міокарда, відбуваються при моделюванні НМ у стадії ІПС-1. Виявилося, що зміни маси міокарда ЛШ у щурів при ІПС-1 і при моделюванні НМ у стадії ІПС-1 майже однакові, що вказує на кардіопротекторну дію ІПС навіть у першій стадії. Однак маса міокарда ПШ у щурів, яким моделювали НМ у стадії ІПС-1, значно перевищувала показники групи ІПС-1. У результаті дослідження встановлено, що при моделюванні НМ у стадіях ІПС-1 і ІПС-2 простежувалася позитивна динаміка, що відбивало підвищення резистентності кардіоміоцитів під впливом ІПС. Дані результати дослідження показують також різницю у впливі ІПС на міокард ПШ і ЛШ. Значні зміни відбувалися в міокарді ПШ. Можливо, це пов’язано з різною толерантністю міокарда ПШ і ЛШ до гіпоксії. Останнє могло стати причиною появи суперечливих даних у літературі щодо підвищення резистентності кардіоміоцитів під впливом ІПС. У літературних джерелах є думка щодо медикаментозного підвищення ефективності ІПС з метою збільшення резистентності міокарда до ішемії, без виникнення некрозу, та поліпшення прогнозу у хворих з інфарктом міокарда та НМ (F. Tomai еt al., 1999; J. Siegrist, 2001; H.T. Sommerschild, 2001). У нашому дослідженні вивчено вплив селенопротеїну – АСНР – на резистентність та морфофункціональну адаптацію серця до НМ, а також на ефективність ІПС. Виявилося, що уведення АСНР протягом 7 днів не викликає різких морфологічних змін у міокарді шлуночків серця. Однак виявлено підвищення ЕДС у міокарді шлуночків серця до (6,9±0,7) мкг/мг. Рівень ЕДС у ПШ [(6,54± При порівнянні результатів дослідження встановлено, що рівень ЕДС практично не пов’язаний з вмістом води в міокарді шлуночків серця. Вміст води в міокарді ПШ був більше контролю в (1,015±0,004) раза (Rxy±mr=0,879± 0,168 при p<0,001), а ЛШ – в (1,025±0,006) раза (Rxy±mr=0,975±0,078 при p<0,001). Результати ЕДС перевищували контроль в (1,23±0,03) раза (Rxy±mr= 0,956±0,104 при p<0,001) і (1,250±0,045) раза (Rxy±mr=0,935±0,126 при p<0,001) відповідно. Активність каталази в гомогенаті міокарда шлуночків серця була знижена відносно контролю – до (102,85±2,86) мМ/хв (p<0,5). Внутрішньошкірна РО2 у порівнянні з контролем була майже не змінена (31,73±1,57) мм рт. ст. У процесі моделювання НМ із попереднім уведенням АСНР загинуло 20 % тварин. Встановлено підвищення маси міокарда ПШ і ЛШ відносно «селенового» контролю на (20,00±3,38) % (Rxy±mr=0,946±0,115 при p<0,001) і (2,60±1,22) % (Rxy±mr=0,973±0,0,81 при p<0,001). На гістологічних препаратах у ПШ виявлені великі фуксинофільні осередки. М’язові волокна деформовані, ядра слабко або зовсім не забарвлені. При порівняльному аналізі ступеня гіпоксичного пошкодження міокарда виявлено більш грубі зміни в міокарді ПШ. ЕДС у міокарді шлуночків серця залишалася підвищеною – (9,130± Активність каталази в гомогенаті міокарда шлуночків серця була (96,81± 7,4) мМ/хв (p<0,05). Показник внутрішньошкірної РО2 залежав від експозиції експерименту: через 2 год – (25,93±2,24) мм рт. ст. при p<0,05, через 4 год – (23,90±3,44) мм рт. ст. при p<0,01 і через 6 год – (27,54±1,08) мм рт. ст. при p<0,05. На ЕКГ визначали зниження електричної активності міокарда з ознаками дистрофії та легкого ступеня виразності P-pulmonale (РII і РIII), які більшою мірою були виявлені у тварин, які загинули. Після моделювання НМ у стадії ІПС-1 з попереднім 7-денним уведенням АСНР загинуло 30 % тварин. Підвищення маси міокарда ПШ було більшим, ніж ЛШ. У порівнянні з «селеновим» контролем воно було більшим у ПШ на (27,5±4,9) % (Rxy±mr=0,860±0,180 при p<0,01), у ЛШ – на (7,8±2,1) % (Rxy±mr= 0,943±0,118 при p<0,001). На гістологічних препаратах виявлено неоднакової інтенсивності осередки гіпоксичного пошкодження міокарда. У тварин, які загинули в процесі експерименту, деструкція міокарда поширювалася на всю товщу стінки ЛШ. У стінці ПШ серця тварин, що вижили, зміни були майже однакові з виявленими при моделюванні НМ без ІПС і уведення АСНР. На тлі незмінених м’язових волокон специфічного жовто-коричневого кольору виділялися великі осередки деструкції м’язових волокон, забарвлених у яскраво-червоний колір. У ЛШ загиблих тварин були виявлені великі осередки геморагічної інфільтрації. У тварин, що вижили, у міокарді ЛШ були ознаки дифузної геморагії, які зливалися з осередками деструкції, чим нагадували зміни, виявлені у тварин після моделювання НМ в стадії ІПС-1. У міокарді шлуночків серця ЕДС була підвищеною до (9,05±0,10) мкг/мг (p<0,01). У ПШ вона була нижчою, ніж у ЛШ, – (8,96±0,048) і (9,14±0,09) мкг/мг відповідно (p<0,01). Вміст води в міокарді шлуночків серця був (83,92±0,26) % при p<0,05. У міокарді ПШ вміст води був вищим, ніж у ЛШ, – (83,02±0,34) і (82,82±0,14) % відповідно при p<0,05. Рівень ЕДС не залежав від вмісту води в міокарді шлуночків серця: у ПШ він був вище контролю в (1,390± 0,144) раза (Rxy±mr=0,830±0,197 при p<0,01), у ЛШ – в (1,31±0,10) раза (Rxy±mr=0,766±0,226 при p<0,05). Вміст води у ПШ перевищував контроль в (1,014±0,003) раза (Rxy±mr=0,982±0,067 при p<0,001), у ЛШ – в (1,026±0,006) раза (Rxy±mr=0,797±0,214 при p<0,05). Активність каталази в гомогенаті міокарда шлуночків серця була (97,78±1,09) мМ/хв (p<0,01). Показник внутрішньошкірної РО2 залежав від експозиції експерименту: через 2 год – (26,20±2,09) мм рт. ст. при p<0,01, через На ЕКГ визначали збільшення амплітуди зубця R, розширення сегмента STII і STIII з вираженою депресією та появою P-pulmonale (РII і РIII). У ході дослідження встановлено позитивний вплив ІПС і АСНР на морфофункціональну адаптацію серця до НМ. Однак при моделюванні НМ у стадії ІПС-1 відмічалися зміни, можливо, пов’язані із транзиторною ішемією, які, очевидно, були причиною морфофункціональної дизадаптації в міокарді шлуночків серця. Ми погоджуємося з думкою дослідників, які вважають, що ІПС є важливим чинником ендогенного захисту серця від НМ (F. Tomai et al., 1999; H.T. Sommerschild, 2001). Можливо, при цьому антиоксидантна система відіграє ключову роль у запуску пізнього ІПС (D. Agay et al., 2005). У наших дослідженнях встановлено закономірність – у всіх випадках зниження активності каталази нижче 70 мМм/хв були грубі морфофункціональні зміни в міокарді шлуночків серця. Крім того, встановлено, що кардіоміоцити, піддаючись дії транзиторної ішемії, довгостроково змінювали клітинні функції, які визначалися після забарвлення гематоксиліном – основним фуксином – пікриновою кислотою. В опрацьованій нами літературі даних щодо впливу транзиторної ішемії недостатньо (R.D. Lerch et al., 1997). Окремі автори в експериментах на щурах вивчали клітинну адаптацію міокарда до гострої ішемії. Виявилося, що морфофункціональна адаптація серця до гострої ішемії аналогічна отриманим нами даним після ІПС (H. Guski et al., 1993). Автори відтворювали гостру ішемію міокарда шляхом перев’язки лівої коронарної артерії. При цьому вони не виявили розходжень у розвитку НМ та післяопераційній летальності, хоча серцева декомпенсація в групі тренованих тварин була меншою. В нашому дослідженні при моделюванні НМ загинуло 40 % тварин (30 % – у перші 4 години та 10 % – після 5-годинної експозиції експерименту). При моделюванні НМ у стадії ІПС-1 загинуло 60 % тварин (40 % – у перші 4 години та 20 % – після 5-годинної експозиції експерименту). При моделюванні НМ після попереднього 7-денного уведення АСНР загинуло 20 % тварин (у перші 4 години експерименту), а при моделюванні НМ у стадії ІПС-1 на тлі уведення АСАР – 30 % тварин (у перші 4 години експерименту). При моделюванні НМ у стадії ІПС-2 виявлено 100 % виживання тварин. Нами вперше in vivo встановлено, що АСНР позитивно впливає на кардіопротекторну дію ІПС, що виявляється підвищенням резистентності серця і організму в цілому при моделюванні НМ вже в першій стадії ІПС. При порівнянні кількості загиблих тварин при моделюванні НМ у першій стадії ІПС визначено зниження відсотка загиблих тварин у 3 рази після уведення АСНР. Наведені результати дослідження вказують на підвищення резистентності організму та серця зокрема у другій стадії ІПС і попереднього 7-денного уведення АСНР. Це проявлялося не тільки зниженням летальності тварин, але й позитивними змінами морфофункціональних показників у міокарді шлуночків серця. З огляду на викладене можна припустити, що дозоване уведення АСНР знижує руйнівний вплив транзиторної ішемії та підвищує резистентність міокарда до некрозу.
ВИСНОВКИ
Дисертація присвячена проблемі, що стосується впливу алкілселенонафтиридину на ефективність ішемічного предстану у підвищенні резистентності організму до некоронарогенного некрозу міокарда. Вивчено морфофункціональні зміни міокарда шлуночків серця при некрозі міокарда в різних стадіях ішемічного предстану і на тлі попереднього уведення алкілселенонафтиридину. Встановлено, що через 24 год після моделювання ішемічного предстану на тлі попереднього уведення алкілселенонафтиридину підвищується резистентність до некрозу міокарда, що проявляється підвищенням виживання тварин і позитивною динамікою морфофункціональних змін міокарда. 1. Морфофункціональними ознаками адаптації до некрозу міокарда у тварин, що вижили, є збільшення маси серця, помірне підвищення експозиційної динаміки сорбції та вмісту води в міокарді шлуночків серця. При цьому знижуються внутрішньошкірна напруга кисню та активність каталази в міокарді шлуночків серця. 2. У тварин, які загинули протягом 6 год від початку моделювання некрозу міокарда (40 %), на передній план виступають явища дизадаптації з розвитком грубих фуксинофільних осередків гіпоксичного ушкодження кардіоміоцитів аж до некрозу, різкого зниження активності каталази в міокарді шлуночків серця та внутрішньошкірної напруги кисню. 3. У перші години після закінчення моделювання ішемічного предстану (перша стадія ішемічного предстану) в міокарді шлуночків серця виявляються ознаки транзиторної ішемії, що, очевидно, є причиною зниження резистентності організму та зокрема серця. Мабуть, тому при моделюванні некрозу міокарда в першій стадії ішемічного предстану гине до 60 % тварин. Прояви морфофункціональної дизадаптації більш виражені, ніж при моделюванні некрозу міокарда в інтактних тварин. 4. Через 24 год після закінчення моделювання ішемічного предстану (друга стадія ішемічного предстану) підвищувалася резистентність організму до некрозу міокарда, що виявлялося стовідсотковим виживанням тварин. У порівнянні з показниками, що отримані при моделюванні некрозу міокарда в першій стадії ішемічного предстану, у міокарді формувалися менш грубі фуксинофільні осередки; знижувалися експозиційна динаміка сорбції і вміст води. Підвищувалися внутрішньошкірна напруга кисню й активність каталази в міокарді шлуночків серця.
5. Дозоване уведення алкілселенонафтиридину підвищує резистентність серця до розвитку некрозу міокарда, що виявляється зниженням летальності при моделюванні некрозу міокарда до 20 % (без ішемічного предстану) і 30 % (у першій стадії ішемічного предстану). У порівнянні з показниками, що отримані при моделюванні некрозу міокарда в першій стадії ішемічного предстану, у міокарді утворюються менш грубі фуксинофільні осередки; знижується експозиційна динаміка сорбції і вміст води. Підвищуються внутрішньошкірна напруга кисню й активність каталази в міокарді шлуночків серця. |